The Hencky strain energy $\|\log U\|^2$ measures the geodesic distance of the deformation gradient to SO(*n*) in the canonical left-invariant Riemannian metric on GL(*n*)

Patrizio Neff

Chair for Nonlinear Analysis and Modelling, Faculty of Mathematics, University of Duisburg-Essen, Germany

joint work with Bernhard Eidel, Frank Osterbrink, Robert Martin

July 21, 2013

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Strain measures in linear and nonlinear elasticity

We consider the deformation of an elastic body:

- \blacksquare $\Omega \subset \mathbb{R}^3,$ Ω bounded domain, the reference configuration,
- ${\ensuremath{\,{\rm \bullet}}}\ \varphi:\Omega\to \mathbb{R}^3$ is the deformation mapping,
- $\varphi(x)$ is the deformed position of the material point $x \in \Omega$.

Definition	
• $F = \nabla \varphi$	(the deformation gradient)
$ U = \sqrt{F^T F} $	(the right Biot-stretch tensor)
• $C = F^T F = U^2$	(the right Cauchy-Green deformation tensor)
• $V = \sqrt{FF^T}$	(the left Biot stretch tensor)
$B = FF^T = V^2$	(the Finger tensor)

Definition (Strain)

<u>Strain</u> is a measure of the deformation with respect to a chosen reference configuration that vanishes if and only if φ is a rigid movement of Ω in space.

< 口 > < 同 > < 三 > < 三

Lagrangian strain measures:

- $E_r(U) = \frac{1}{2r}(U^{2r} 1)$
- $E_1(U) = \frac{1}{2}(U^2 \mathbb{1}) = \frac{1}{2}(C \mathbb{1})$
- $E_{1/2}(U) = U 1$
- $E_{-1}(U) = \frac{1}{2}(\mathbb{1} C^{-1})$
- $\bullet E_0(U) = \log U$

- Seth-Hill family
- Green-Lagrange strain

Biot strain

Hencky strain

Eulerian strain measures:

• $\hat{E}_r(V) = \frac{1}{2r}(V^{2r} - \mathbb{1})$ • $\hat{E}_1(V) = \frac{1}{2}(V^2 - \mathbb{1}) = \frac{1}{2}(B - \mathbb{1})$ • $\hat{E}_{1/2}(V) = V - \mathbb{1}$ • $\hat{E}_{-1}(V) = \frac{1}{2}(\mathbb{1} - B^{-1})$ • $\hat{E}_0(V) = \log V$

Almansi strain

イロト イポト イヨト イヨト

Material and spatial strain measures

Lagrangian symmetrized strain measures:

•
$$\tilde{E}_r = \frac{1}{2}[E_r + E_{-r}]$$

• $\tilde{E}_{1/2} = \frac{1}{2}[E_{1/2} + E_{-\frac{1}{2}}] = \frac{1}{2}(U - U^{-1})$
• $\tilde{E}_0 = \log U = \lim_{r \to 0} \tilde{E}_r$

Bažant approximative Hencky strain

Eulerian symmetrized strain measures:

$$\widetilde{\widehat{E}}_{r} = \frac{1}{2} [\widehat{E}_{r} + \widehat{E}_{-r}]$$

$$\widetilde{\widehat{E}}_{1/2} = \frac{1}{2} [\widehat{E}_{1/2} + \widehat{E}_{-\frac{1}{2}}] = \frac{1}{2} (V - V^{-1})$$

$$\widetilde{\widehat{E}}_{0} = \log V = \lim_{r \to 0} \widetilde{\widehat{E}}_{r}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Material and spatial strain measures in terms of stretches λ

Strain may be represented through a scale function on the principal stretches λ_i :

$$U = \sum_{i=1}^{3} \lambda_i \ n_i \otimes n_i , \qquad \qquad V = \sum_{i=1}^{3} \lambda_i \ \tilde{n}_i \otimes \tilde{n}_i ,$$
$$E(U) = \sum_{i=1}^{3} e(\lambda_i) \ n_i \otimes n_i , \qquad \qquad E(V) = \sum_{i=1}^{3} e(\lambda_i) \ \tilde{n}_i \otimes \tilde{n}_i .$$

Strain measures in terms of the principal stretches λ_i :

 $\begin{array}{ll} \mathbf{e}_{r}(\lambda) = \frac{1}{2r}(\lambda^{2\,r} - 1) & \text{Seth-Hill family} \\ \mathbf{e}_{1}(\lambda) = \frac{1}{2}(\lambda^{2} - 1) & \text{Green-Lagrange strain} \\ \mathbf{e}_{1/2}(\lambda) = \lambda - 1 & \text{Engineering strain} \\ \mathbf{e}_{-1}(\lambda) = \frac{1}{2}(1 - \frac{1}{\lambda^{2}}) & \text{Almansi strain} \\ \mathbf{e}_{0}(\lambda) = \ln \lambda & \text{Hencky strain} \\ \mathbf{e}_{1/2}(\lambda) = \frac{1}{2}(\lambda - \frac{1}{\lambda}) & \text{Bažant strain} \end{array}$

イロト イポト イヨト イヨト

Some reasonable requirements on $e : \mathbb{R}^+ \to \mathbb{R}$:

- e monotonically increasing, smooth
- e(1) = 0
- ✓ e'(1) = 1 (linearizations all coincide)
- $\checkmark \quad e(\lambda) \to +\infty \quad \text{ as } \lambda \to +\infty$
- $\checkmark \quad e(\lambda) \to -\infty \quad \text{ as } \lambda \to 0^+$
- ✓ $e(\lambda^{-1}) = -e(\lambda)$
- $\checkmark e(\lambda^{lpha}) = lpha e(\lambda), \quad lpha \in \mathbb{R}$

(not fulfilled by Almansi strain) (not fulfilled by Biot/Green strain, ...) (fulfilled by Hencky and Bažant strain family) (fulfilled only by Hencky strain)

(日) (同) (三) (三)

Interesting properties of the Hencky strain tensor:

- ✓ Incompressibility condition takes on the simple form $tr(\log U) \equiv 0$.
- Additive volumetric-isochoric split:

$$\log U = \log \left[\underbrace{\frac{1}{(\det U)^{1/3}}U}_{\text{isochoric}} \cdot \underbrace{(\det U)^{1/3}\mathbb{1}}_{\text{volumetric}}\right] = \operatorname{dev} \log U + \frac{1}{3}\operatorname{tr} \log U$$

- ✓ Simple lift of geometrically linear plasticity theory to geometrically nonlinear plasticity in terms of Hencky strain log U
- ✓ No polar decomposition is needed to compute log U (= $\frac{1}{2} \log C$).
- ✓ Uniaxial Hencky strains form a group strains can be added:

$$\varepsilon_{\log}^{n,n+1} := \int_{L_n}^{L_{n+1}} \frac{1}{L} \, \mathrm{dL} = \ln(L_{n+1}) - \ln(L_n) = \ln\left(\frac{L_{n+1}}{L_n}\right)$$
$$\varepsilon_{\log}^{3,1} = \ln\left(\frac{L_3}{L_1}\right) = \ln\left(\frac{L_3}{L_2}\frac{L_2}{L_1}\right) = \ln\left(\frac{L_3}{L_2}\right) + \ln\left(\frac{L_2}{L_1}\right) = \varepsilon_{\log}^{3,2} + \varepsilon_{\log}^{2,1}$$

Is there any fundamental property that singles out the Hencky strain tensor log U ?

イロト イヨト イヨト イヨト

Is there any fundamental property that singles out the Hencky strain tensor log U ?

No.

イロト イヨト イヨト イヨト

Is there any fundamental property that singles out the Hencky strain tensor $\log U$?

No.

All strain measures are created equal

The choice of a strain measure is <u>immaterial</u>: any strain measure can be used to obtain any stress-strain response (any elastic energy)!

Decisive is the used strain energy W(F)!

Thus the Hencky strain has no intrinsic advantage over other strain measures!

"[...] while logarithmic measures of strain are a favorite in one-dimensional or semi-qualitative treatment, they have never been successfully applied in general. Such simplicity for certain problems as may result from a particular strain measure is bought at the cost of complexity for other problems."

Truesdell, Toupin: The Classical Field Theories

< ロ > < 同 > < 三 > < 三 >

Definition (Isotropic Hencky energy [2])

The isotropic Hencky energy is

$$W_H(F) = \mu \, \| \operatorname{dev} \log U \|^2 + rac{\kappa}{2} [\operatorname{tr}(\log U)]^2 = \mu \, \| \operatorname{dev} \log U \|^2 + rac{\kappa}{2} (\log \det F)^2 \, ,$$

where

- $F = \nabla \varphi$ is the deformation gradient,
- $U = \sqrt{F^T F}$ is the symmetric right Biot-stretch tensor,
- µ > 0 is the shear modulus,
- κ > 0 is the bulk modulus,
- log U is the principal matrix logarithm of U and
- dev log $U = \log U \frac{\operatorname{tr} \log U}{n}$ 11 is the deviatoric part of log U.

Heinrich Hencky, 1885-1951, Ph.D. - TH Darmstadt

イロト イポト イヨト イヨト

Advantageous properties of the Hencky strain energy:

- ✓ $W_H \to \infty$ as det $F \to 0$ (infinite energy for infinite compression)
- ✓ $W_H(F) = W_H(F^{-1})$ (tension-compression-symmetry)
- ✓ only 2 Lamé-constants, uniquely determined in infinitesimal range
- ✓ fulfils Baker-Ericksen inequality and Hill's inequality
- ✓ describes Poynting effect: a circular cylinder lengthens under torsion

(日) (同) (三) (三)

Tension-compression-symmetry: $W(F) = W(F^{-1})$

Figure: Homogeneous deformations inverse to each other

Consider a homogeneous deformation of the body K.

- "Freeze" the deformed body
- Take it as a new, stress free reference configuration
- Apply the inverse of the original deformation.

Energy per unit volume is the same in both deformations:

$$\frac{1}{|\mathcal{K}|} \int_{\mathcal{K}} W(F) \, \mathrm{dx} = W(F)$$
$$\frac{1}{|\mathcal{E}|} \int_{\mathcal{E}} W(F^{-1}) \, \mathrm{dx} = W(F^{-1})$$

< ロ > < 同 > < 三 > < 三

More advantageous properties of the Hencky strain energy:

- ✓ W_H has subquadratic growth (consistent with Stillinger-Weber potential, atomistics, possibility of cavities and fracture)
- ✓ good fit to experimental data for moderately large strains
- \checkmark for moderate strains, W_H captures the geometrically nonlinear behaviour correctly
- \checkmark replace W_H with new physics for large deformation: plasticity, phase transition
- ✓ good fit also for anisotropy, correct third order elastic constants

- 4 同 ト 4 ヨ ト 4 ヨ ト

12/41

Third order elastic constants: corrections beyond the linearized response

Stress response and nonlinear behaviour for infinitesimal strains

Uniaxial response stress

St. Venant-Kirchhoff

Mathematical challenges associated with the Hencky strain energy:

- \times W_H is not polyconvex, not quasiconvex and not rank-one-elliptic [Neff2000].
- ✗ W_H is not Legendre-Hadamard-elliptic:

 $D^2 W_H(F).(\xi \otimes \eta, \xi \otimes \eta) \ge c^+ \cdot |\xi|^2 \cdot |\eta|^2.$ (o real wave speeds)

However, W_H is LH-elliptic in a large neighbourhood of 11 (with admissible stretches $\lambda_i \in (0.21, 1.4)$).

- \checkmark W_H has subquadratic growth for large deformations.
- X No general existence result is known for elasticity formulation based on W_H , apart from implicit function theorem in the neighbourhood of 1.

イロト イポト イヨト イヨト

Take on the challenge...

A conjecture for ideal elastic materials

The Hencky energy W_H is the best overall isotropic energy up to moderate strains.

- Plan: Understand principal properties singling out the Hencky strain energy
- What makes other well known strain measures and strain energies stand out?

(日) (同) (日) (日)

In linearized elasticity, one considers $\varphi(x) = x + u(x)$ with the displacement $u: \Omega \to \mathbb{R}^3$. The classical linearized strain measure is

$$\varepsilon = \operatorname{sym} \nabla u.$$

The strain measure ε appears through a matrix-nearness problem in the euclidean distance:

$$\operatorname{dist}^2_{\operatorname{euclid}}(\nabla u,\mathfrak{so}(3)) := \min_{W \in \mathfrak{so}(3)} \|\nabla u - W\|^2 = \|\operatorname{sym} \nabla u\|^2,$$

where

• $||M|| = \sqrt{\operatorname{tr} M^T M} = \sqrt{\sum_{i,j=1}^n M_{ij}^2}$ denotes the Frobenius matrix norm,

• dist_{euclid}(A, B) = ||A - B|| denotes the euclidean distance and

• $\mathfrak{so}(3)$ is the set of all skew symmetric matrices in $\mathbb{R}^{3\times 3}$.

- 4 同 ト 4 ヨ ト 4 ヨ ト

17/41

The infinitesimal strain tensor $\varepsilon = \operatorname{sym} \nabla u$ is indeed a strain measure:

which implies that W(x) is constant.

Then u(x) = W.x + b is a linearized rigid movement.

Note: $\| \operatorname{sym} \nabla u \|^2 = \| \operatorname{sym}(-\nabla u) \|^2$ (infinitesimal tension-compression-symmetry \checkmark)

イロト 不得下 イヨト イヨト

In nonlinear elasticity, one assumes that $\nabla \varphi(x) \in GL^+(3)$ (no local self-interpenetration of matter) and may consider the Biot strain tensor

$$U - \mathbb{1} = \sqrt{\nabla \varphi^T \nabla \varphi} - \mathbb{1}.$$

The strain measure U - 1 appears naturally through a matrix-nearness problem in the euclidean distance:

$$dist_{euclid}^{2}(\nabla\varphi, \mathsf{SO}(3)) := \min_{Q \in \mathsf{SO}(3)} \|\nabla\varphi - Q\|^{2} = \min_{Q \in \mathsf{SO}(3)} \|Q^{T}\nabla\varphi - \mathbb{1}\|^{2}$$
$$= \|\sqrt{\nabla\varphi^{T}\nabla\varphi} - \mathbb{1}\|^{2} = \|U - \mathbb{1}\|^{2}$$

by a well known optimality result characterizing the polar decomposition

$$F = RU$$
, $R \in SO(n)$, $U \in PSym(n) \implies \min_{Q \in SO(n)} ||Q^T F - \mathbb{1}|| = ||U - \mathbb{1}||$.

(日) (同) (日) (日)

The Biot strain tensor $U - \mathbb{1}$ is a geometrically nonlinear Lagrangian strain measure:

$$\begin{split} \sqrt{\nabla \varphi^T \nabla \varphi} &= 0 \quad \Longrightarrow \quad \text{dist}^2_{\text{euclid}} (\nabla \varphi, \text{SO}(3)) = 0 \quad \implies \quad \nabla \varphi(x) = Q(x) \in \text{SO}(3) \\ &\implies \quad \text{Curl } Q(x) = \text{Curl } \nabla \varphi(x) = 0 \,, \end{split}$$

which implies that Q(x) is constant, since

 $\|\operatorname{Curl} Q\|^2 \ge c^+ \|\nabla Q\|^2,$

c.f. Neff, Münch: Curl bounds Grad on SO(3), ESAIM 2008.

Then $\varphi(x) = Q \cdot x + b$ is a rigid movement.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

20 / 41

Lagrangian view:

$$\operatorname{dist}^2_{\operatorname{euclid}}(F, \operatorname{SO}(3)) = \|U - \mathbb{1}\|^2$$
.

Eulerian view:

$$dist_{\text{euclid}}^{2}(F^{-1}, SO(3)) = \|\mathbb{1} - V^{-1}\|^{2} = \|U^{-1} - \mathbb{1}\|^{2}.$$

Who decides whether to take the Lagrangian or the Eulerian point of view?

The euclidean distance on $GL^+(n)$: only an extrinsic distance

Reconsider the euclidean distance dist_{euclid}(A, B) = ||A - B|| on $GL^+(n)$.

Problems:

- The Euclidean distance is an arbitrary choice for a distance measure.
- The euclidean distance cannot be weighted.
- dist_{euclid}(F, SO(n)) \neq dist_{euclid}(F^{-1} , SO(n)) Lagrangian measure \neq Eulerian measure
- dist_{euclid} is not an intrinsic distance measure on GL⁺(n): because, in general, A − B ∉ GL⁺(n), the term ||A − B|| depends on the underlying linear structure of ℝ^{n×n}.
- Generally dist_{euclid}(CA, CB) \neq dist_{euclid}(A, B), i.e. dist_{euclid} does not respect the algebraic Lie-group structure of $GL^+(n)$.
- $GL^+(n)$ is not closed in $\mathbb{R}^{n \times n}$ under $dist_{euclid}$ and thus $GL^+(n)$ is not complete in the euclidean metric.
- $A, B \in GL^+(n) \Rightarrow A + t(B A) \in GL^+(n)$, thus dist_{euclid} can not be characterized as the length of a connecting line in $GL^+(n)$.
- Thus dist_{euclid} is only an <u>extrinsic</u> distance measure on $GL^+(n)$.

The euclidean distance on $GL^+(n)$: only an extrinsic distance

<ロ> (日) (日) (日) (日) (日)

$GL^+(n)$ as a Riemannian manifold

We view $GL^+(n)$ as a Riemannian manifold and consider the <u>geodesic distance</u> on $GL^+(n)$:

• Let g be a left-invariant Riemannian metric g on GL(n) of the form

$$g_A: \begin{cases} T_A \operatorname{GL}(n) \times T_A \operatorname{GL}(n) \to \mathbb{R} \\ g_A(X,Y) = \langle A^{-1}X, A^{-1}Y \rangle_g, \quad A \in \operatorname{GL}(n), \end{cases}$$

with a fixed inner product $\langle \cdot, \cdot \rangle_g$ on the tangent space $T_{\mathbb{1}} \operatorname{GL}(n) = \mathfrak{gl}(n) = \mathbb{R}^{n \times n}$. The length of a curve $\gamma \in C^1([0, 1]; \operatorname{GL}^+(n))$ is

$$\mathcal{L}(\gamma) = \int_0^1 g_{\gamma(t)}(\dot{\gamma}(t), \dot{\gamma}(t)) \, \mathrm{dt} = \int_0^1 \langle \gamma^{-1} \dot{\gamma}, \gamma^{-1} \dot{\gamma} \rangle_g \, \mathrm{dt} \, .$$

• The geodesic distance between $P, F \in GL^+(n)$ is defined as

$$\mathsf{dist}_{\mathrm{geod}}(P,F) = \inf\{L(\gamma) \mid \gamma \in C^1([0,1];\mathsf{GL}^+(n)), \, \gamma(0) = P, \, \gamma(1) = F\}.$$

< 口 > < 同 > < 三 > < 三

$GL^+(n)$ as a Riemannian manifold: intrinsic distance

Figure: Intuitive sketch of the manifold $GL^+(n)$ and SO(n)

(日) (同) (三) (三)

We consider Riemannian metrics that are left invariant:

 $g_{BA}(BX,BY) = g_A(X,Y)$ for all $B \in GL(n)$,

as well as right O(n)-invariant:

 $g_{AQ}(XQ, YQ) = g_A(X, Y)$ for all $Q \in O(n)$.

- right O(n)-invariance \cong isotropy of the material
- left SO(n)-invariance \cong frame-indifference
- left GL(n)-invariance \cong dist_{geod} $(AF, AP) = dist_{geod}(F, P) \quad \forall A \in GL(n)$

< 口 > < 同 > < 三 > < 三

Definition

The isotropic inner product $\langle \cdot, \cdot \rangle_{\mu,\mu_c,\kappa}$ on $\mathfrak{gl}(n) = \mathbb{R}^{n \times n}$ is

 $\langle X,Y\rangle_{\mu,\mu_c,\kappa}:=\mu\langle \operatorname{dev}\operatorname{sym} X,\operatorname{dev}\operatorname{sym} Y\rangle+\mu_c\langle \operatorname{skew} X,\operatorname{skew} Y\rangle+\frac{\kappa}{2}\operatorname{tr} X\operatorname{tr} Y\,,$

where

•
$$\langle X, Y \rangle = \operatorname{tr}(X^T Y)$$
 is the canonical inner product on $\mathfrak{gl}(n)$,

- dev sym $X = \text{sym } X \frac{1}{n} \text{tr}[\text{sym } X] \cdot \mathbb{1}$ is the deviatoric part of sym X,
- µ > 0 is the shear modulus,
- $\mu_c > 0$ is the spin modulus and
- $\kappa > 0$ is the bulk modulus.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Every left invariant, right O(n)-invariant Riemannian metric on GL(n) has the form [3]

$$\begin{split} g_A(X,Y) &= \langle A^{-1}X, A^{-1}Y \rangle_{\mu,\mu_c,\kappa} \\ &= \mu \langle \operatorname{dev} \operatorname{sym} X, \operatorname{dev} \operatorname{sym} Y \rangle + \mu_c \langle \operatorname{skew} X, \operatorname{skew} Y \rangle + \frac{\kappa}{2} \operatorname{tr} X \operatorname{tr} Y \,. \end{split}$$

The invariances imply

$$\operatorname{dist}_{\operatorname{geod}}(F,Q) = \operatorname{dist}_{\operatorname{geod}}(F^{-1},Q^T), \quad Q \in \operatorname{SO}(n),$$

thus we obtain

$$\begin{aligned} \mathsf{dist}_{\mathrm{geod}}(F,\mathsf{SO}(n)) &= \min_{Q \in \mathsf{SO}(n)} \mathsf{dist}_{\mathrm{geod}}(F,Q) = \mathsf{dist}_{\mathrm{geod}}(F^{-1},\mathsf{SO}(n))\\ (\mathsf{Lagrangian measure}) \end{aligned}$$

without computing the result.

Patrizio Neff

The Hencky Strain measures the geodesic distance to SO(n) Faculty of N

Every geodesic curve γ connecting $F, P \in GL^+(n)$ is of the form [4, 5]

$$\gamma(t) = F \exp(t(\operatorname{sym} \xi - \frac{\mu_c}{\mu} \operatorname{skew} \xi)) \exp(t(1 + \frac{\mu_c}{\mu}) \operatorname{skew} \xi),$$
(1)

with $\xi \in \mathfrak{gl}(n)$ such that

$$P = \gamma(1) = F \exp(\operatorname{sym} \xi - \frac{\mu_c}{\mu} \operatorname{skew} \xi) \exp((1 + \frac{\mu_c}{\mu}) \operatorname{skew} \xi).$$
(2)

Here.

- exp : $\mathfrak{gl}(n) \to \mathrm{GL}^+(n)$ is the matrix exponential,
- sym $\xi = \frac{1}{2}(\xi + \xi^T)$ is the symmetric part and
- skew $\xi = \frac{1}{2}(\xi \xi^T)$ is the skew symmetric part of ξ

No closed form solution to (2) for given P, F is known, but (1) can be used to obtain a lower bound for dist_{geod}(F, SO(n)) = $\min_{Q \in SO(n)} \text{dist}_{geod}(F, Q)$.

イロト イポト イヨト イヨト

Lower bound: (can be obtained from the geodesic parameterization)

$$\mathsf{dist}^2_{\mathrm{geod}}(F,\mathsf{SO}(n)) = \min_{Q \in \mathsf{SO}(n)} \mathsf{dist}^2_{\mathrm{geod}}(F,Q) \geq \min_{Q \in \mathsf{SO}(n)} \|\mathsf{Log}(QF)\|^2_{\mu,\mu_c,\kappa}$$

Upper bound:

$$\begin{split} \operatorname{dist}_{\operatorname{geod}}^2(F,\operatorname{SO}(n)) &\leq \operatorname{dist}_{\operatorname{geod}}^2(F,\operatorname{polar}(F)) \leq \|\log(\operatorname{polar}(F)^T F)\|_{\mu,\mu_c,\kappa}^2 \\ &= \|\log U\|_{\mu,\mu_c,\kappa}^2 = \mu \|\operatorname{dev}\log U\|^2 + \frac{\kappa}{2}[\operatorname{tr}(\log U)]^2\,, \end{split}$$

where

• F = RU is the polar decomposition,

•
$$R = polar(F) \in SO(n)$$
 is the orthogonal polar factor of F and

•
$$U = \sqrt{F^T F} \in \mathsf{PSym}(n).$$

イロト イ団ト イヨト イヨト

Theorem (Optimality result, Neff et al. 2013, [6])

Let $\| . \|$ be the Frobenius matrix norm on $\mathfrak{gl}(n)$, $F \in GL^+(n)$. Then the minimum

$$\begin{split} \min_{\substack{Q \in \mathrm{SO}(n)}} & \| \log(Q^T F) \|^2 = \| \log(\mathrm{polar}(F)^T F) \|^2 = \| \log(\sqrt{F^T F}) \|^2 = \| \log U \|^2, \\ \min_{\substack{Q \in \mathrm{SO}(n)}} & \mu \| \operatorname{dev} \operatorname{sym} \operatorname{Log}(Q^T F) \|^2 + \mu_c \| \operatorname{skew} \operatorname{Log}(Q^T F) \|^2 + \frac{\kappa}{2} [\operatorname{tr}(\operatorname{Log}(Q^T F))]^2 \\ & = \mu \| \operatorname{dev} \operatorname{log}(U) \|^2 + \frac{\kappa}{2} [\operatorname{tr}(\operatorname{log} U)]^2 \end{split}$$

is uniquely attained at Q = polar(F).

The theorem holds for every unitary invariant norm $\|.\|$ on $\mathfrak{gl}(n,\mathbb{C})$ as well, c.f. [7].

Note that the minimum is taken over all logarithms of $Q^T F$ (including non-symmetric arguments):

$$\min_{Q\in \mathrm{SO}(n)} \|\mathrm{Log}(Q^T F)\|^2 = \min\{\|X\| : X \in \mathfrak{gl}(n), \exp(X) = Q^T F\}.$$

Combining this theorem with the upper and lower bound for $dist_{geod}(F, SO(n))$ yields our main result.

イロト 不得下 イヨト イヨト

Theorem (Main result [8])

Let g be any left-invariant Riemannian metric on GL(n) that is also right invariant under O(n), and let $F \in GL^+(n)$. Then:

$$\mathsf{dist}^2_{\mathrm{geod}}(\mathsf{F},\mathsf{SO}(n)) = \mathsf{dist}^2_{\mathrm{geod}}(\mathsf{F}, \, \mathsf{polar}(\mathsf{F})) = \mu \| \operatorname{\mathsf{dev}} \mathsf{log}(U)\|^2 + \frac{\kappa}{2} [\mathsf{tr}(\mathsf{log}\, U)]^2 \, .$$

Thus the geodesic distance of the deformation gradient F to SO(n) is the isotropic Hencky strain energy of F. In particular, the result is independent of the spin modulus $\mu_c > 0$.

For $\mu_c = 0$, the theorem still holds for the resulting pseudometric.

Furthermore, the result is basically identical for any right invariant, left O(n)-invariant metric $g_A(X, Y) = \langle XA^{-1}, YA^{-1} \rangle_{\mu,\mu_c,\kappa}$.

(日) (同) (三) (三)

Main result: The isotropic Hencky energy of F is the geodesic distance of F to SO(n).

33 / 41

イロト イポト イヨト イヨト

Outlook:

- Characterize anisotropic Hencky strain energy $\langle \mathbb{C}, \log U, \log U \rangle$ as a distance in an appropriate anisotropic Riemannian metric?
- Calculate "anisotropic" geodesics?
- Reconsider the well-posedness problem for the Hencky energy (which is unknown).
- Obtain geometric properties of our metric, e.g. the Levi-Civita connection coefficients, the Riemannian or Ricci curvature, preliminary results for μ = μ_c, κ = ²/₃μ (Poisson number ν = 0).
- Numerical implementations: Justify tension-compression-symmetry by atomistic calculations for nearly isotropic lattices?

Thank You!

Presentation available at:

 $http://www.uni-due.de/imperia/md/content/mathematik/ag_neff/neff_hencky13.pdf$

< ロ > < 同 > < 三 > < 三 >

Logarithm of a symmetric matrix

The logarithm of a positive definite matrix is defined as

$$\log U = \sum_{i=1}^{3} (\ln \lambda_i) \ n_i \otimes n_i \,,$$

where

- λ_i are the (positive) eigenvalues of U,
- **n_i** are the corresponding (orthonormal) eigenvectors of U and
- In is the natural logarithm on \mathbb{R}^+ .

Logarithm of a non-symmetric argument:

$$\log X = (X - 1) - \frac{1}{2}(X - 1)^2 + \frac{1}{3}(X - 1)^3 - \dots$$

The series converges for ||X - 1|| < 1.

Every nonsingular X has a (perhaps complex) logarithm.

Patrizio Neff

イロト イポト イヨト イヨト

Polar decomposition

- F = R U U: Lagrangian (material) stretch tensor,
- F = VR V: Eulerian (spatial) stretch tensor,
- $\bullet \quad U = \sqrt{F^{\top}F} \,, \quad F^{\top}F, U: \ T\Omega_{\rm ref} \to T\Omega_{\rm ref} \qquad {\rm Lagrangian},$
- $V = \sqrt{FF^{T}}$, FF^{T} , $V : T\varphi(\Omega_{ref}) \rightarrow T\varphi(\Omega_{ref})$ Eulerian,

• dist_{euclid}(
$$F$$
, SO(3)) = $||U - \mathbb{1}||$

• dist_{euclid}
$$(F^{-1}, SO(3)) = ||\mathbb{1} - V^{-1}||$$

Lagrangian Euclidean distance,

Eulerian Euclidean distance,

• dist_{euclid}(F, SO(3)) \neq dist_{euclid}(F^{-1} , SO(3)),

•
$$\operatorname{dist}_{\operatorname{geod}}(F, \operatorname{SO}(3)) = \operatorname{dist}_{\operatorname{geod}}(F, \operatorname{SO}(3))$$
,

Weighted euclidean distance

$$\|\mu\| \operatorname{dev} \operatorname{sym}(F-R)\|^2 + \mu_c \|\operatorname{skew}(F-R)\|^2 + \frac{\kappa}{2} [\operatorname{tr}(F-R)]^2$$

is tensorially impossible.

Patrizio Neff

イロト イポト イヨト イヨト

$$\operatorname{dist}^2_{\operatorname{euclid},\mu,\mu_c,\kappa}(X,Y)) := \mu \|\operatorname{dev}\operatorname{sym}(X-Y)\|^2 + \mu_c \|\operatorname{skew}(X-Y)\|^2 + \frac{\kappa}{2}[\operatorname{tr}(X-Y)]^2,$$

where

- $\mu > 0$ is the shear modulus,
- $\mu_c > 0$ is the spin modulus,
- $\kappa > 0$ is the bulk modulus.

The distance to the set of skew symmetric matrices (infinitesimal strain energy)

$$\begin{split} \operatorname{dist}_{\operatorname{euclid},\mu,\mu_c,\kappa}(\nabla u,\mathfrak{so}(3)) \\ &= \min_{W \in \mathfrak{so}(3)} \mu \| \operatorname{dev} \operatorname{sym}(\nabla u - W)\|^2 + \mu_c \| \operatorname{skew}(\nabla u - W)\|^2 + \frac{\kappa}{2} [\operatorname{tr}(\nabla u - W)]^2 \\ &= \mu \| \operatorname{dev} \operatorname{sym}(\nabla u)\|^2 + \frac{\kappa}{2} [\operatorname{tr}(\nabla u)]^2 = \mu \|\varepsilon\|^2 + \frac{\lambda}{2} [\operatorname{tr}(\varepsilon)]^2 \,, \end{split}$$

is independent of the spin modulus $\mu_c \ge 0$.

< 口 > < 同 > < 三 > < 三

 Ψ isotropic scalar-valued function on Sym(3): $\Psi(Q^T S Q) = \Psi(S) \quad \forall Q \in O(3)$,

$$\begin{split} & \mathcal{W}(F) = \widehat{\mathcal{W}}(C) = \Psi(\log C) \,, \\ & S_1(F) = D_F[\mathcal{W}(F)] \,, \\ & S_2(F) = D_C \widehat{\mathcal{W}}(C) = F^{-1} \cdot S_1(F) \,, \\ & S_1(F) = \det F \cdot T \cdot F^{-T} \,, \end{split}$$

(first Piola-Kirchhoff tensor) (second Piola-Kirchhoff tensor) (T Cauchy stress tensor)

 $D_C \widehat{W}(C) = D\Psi(\log C) \cdot C^{-1},$ (det F) \cdot T = D\Pu(log C), while $D_C[\log C] \neq C^{-1}$ in general Hill

イロト イポト イヨト イヨト

 $\langle S_1(F), H \rangle = \langle D\Psi(\log C) \cdot F^{-T}, H \rangle$

 $\{SL(n)/SO(n)\}$, the quotient space of unimodular positive definite symmetric matrices, is not a Lie-group with respect to the matrix multiplication.

Because PSym(n) is a convex cone, the straight line connecting F with R = polar(F) lies in $GL^+(n)$:

$$\det((1-t)F + tR) = \det((1-t)R^TF + tR^TR) = \det(\underbrace{(1-t)U + t\mathbb{1}}_{\in \mathsf{PSym}(n)}) > 0.$$

However, the line is generally not contained in SL(n), even if $F \in SL(n)$.

< ロ > < 同 > < 三 > < 三 >

Geodesic distance on SO(n)

The Riemannian metric induced on the compact Lie group SO(n)

$$g_Q : \begin{cases} T_Q \operatorname{SO}(n) \times T_Q \operatorname{SO}(n) \to \mathbb{R} \\ g_Q(X, Y) = \mu_c \langle Q^{-1}X, Q^{-1}Y \rangle = \mu_c \langle X, Y \rangle = \mu_c \operatorname{tr}(X^T Y), \quad Q \in \operatorname{SO}(n) \end{cases}$$

is bi-invariant (left- and right group invariant):

$$egin{aligned} g_{RQ}(RX,RY) &= g_Q(X,Y)\,, \ g_{QR}(XR,YR) &= g_Q(X,Y) & ext{ for all } Q,R \in \mathrm{SO}(n)\,. \end{aligned}$$

Geodesics on SO(n) are one-parameter groups:

$$\gamma(t) = Q \cdot \exp(tW), \quad Q \in SO(n), W \in \mathfrak{so}(n).$$

The SO(*n*)-geodesic distance between $Q_1, Q_2 \in SO(n)$ is

$${
m dist}^2_{{
m geod},\,{
m SO}(n)}({\it Q}_1,{\it Q}_2) \ = \ \mu_c \|\log {\it Q}_1^{\sf T}{\it Q}_2\|^2\,,$$

where

I
$$||M|| = \sqrt{\operatorname{tr} M^T M} = \sqrt{\sum_{i,j=1}^n M_{ij}^2}$$
 denotes the Frobenius matrix norm and

log denotes the principal logarithm on SO(n).

Patrizio Neff

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

References

[1]	P. Neff and I. Münch, Curl bounds Grad on SO(3). ESAIM: Control, Optimisation and Calculus of Variations, 14(1):148–159, 2008.
[2]	H. Hencky. Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen. Z. Techn. Physik, 9:215220, 1928.
[3]	R. Bryant. Personal communication, 2013. Mathematical Sciences Research Institute, Berkeley.
[4]	A. Mielke. Finite elastoplasticity, Lie groups and geodesics on SL(d). In P. Newton, P. Holmes, and A. Weinstein, editors, <i>Geometry, Mechanics, and Dynamics</i> , pages 61–90. Springer New York, 2002.
[5]	P. Neff and R. Martin. Minimal geodesics on GL(n) for left-invariant Riemannian metrics which are right invariant under O(n). in preparation, 2013.
[6]	P. Neff, Y. Nakatsukasa, and A. Fischle. The unitary polar factor $Q = U_p$ minimizes $\ \log(Q^*Z) \ ^2$ and $\ \operatorname{sym}_* \log(Q^*Z) \ ^2$ in the spectral norm in any dimension and the Frobenius matrix norm in three dimensions. <i>arXiv:1302.3238</i> , submitted. 2013.
[7]	J. Lankeit, P. Neff, Y. Nakatsukasa. The minimization of Logarithms. On a fundamental property of the unitary polar factor. in preparation, 2013.
[8]	P. Neff, B. Eidel, F. Osterbrink and R. Martin. The isotropic Hencky strain energy $ \log U ^2$ measures the geodesic distance of the deformation gradient $F \in GL^+(n)$ to $SO(n)$ in the unique left-invariant Riemannian metric on $GL^+(n)$ which is also right $O(n)$ -invariant. in preparation 2013

More references: http://www.uni-due.de/mathematik/ag_neff/

æ

<ロ> (日) (日) (日) (日) (日)