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Strain measures in linear and nonlinear elasticity

We consider the deformation of an elastic body:

Ω ⊂ R3, Ω bounded domain, the reference configuration,

ϕ : Ω→ R3 is the deformation mapping,

ϕ(x) is the deformed position of the material point x ∈ Ω.

Definition

F = ∇ϕ (the deformation gradient)

U =
√

F T F (the right Biot-stretch tensor)

C = F T F = U2 (the right Cauchy-Green deformation tensor)

V =
√

FF T (the left Biot stretch tensor)

B = FF T = V 2 (the Finger tensor)

Definition (Strain)

Strain is a measure of the deformation with respect to a chosen reference
configuration that vanishes if and only if ϕ is a rigid movement of Ω in space.
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Material and spatial strain measures

Lagrangian strain measures:

Er (U) = 1
2 r

(U2r − 11) Seth-Hill family

E1(U) = 1
2

(U2 − 11) = 1
2

(C − 11) Green-Lagrange strain

E1/2(U) = U − 11 Biot strain

E−1(U) = 1
2

(11− C−1)

E0(U) = log U Hencky strain

Eulerian strain measures:

Êr (V ) = 1
2 r

(V 2r − 11)

Ê1(V ) = 1
2

(V 2 − 11) = 1
2

(B − 11)

Ê1/2(V ) = V − 11

Ê−1(V ) = 1
2

(11− B−1) Almansi strain

Ê0(V ) = log V
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Material and spatial strain measures

Lagrangian symmetrized strain measures:

Ẽr = 1
2

[Er + E−r ]

Ẽ1/2 = 1
2

[E1/2 + E− 1
2

] = 1
2

(U − U−1) Bažant approximative Hencky strain

Ẽ0 = log U = lim
r→0

Ẽr

Eulerian symmetrized strain measures:

˜̂
E r = 1

2
[Êr + Ê−r ]

˜̂
E 1/2 = 1

2
[Ê1/2 + Ê− 1

2
] = 1

2
(V − V−1)

˜̂
E 0 = log V = lim

r→0

˜̂
E r
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Material and spatial strain measures in terms of stretches λ

Strain may be represented through a scale function on the principal stretches λi :

U =
3∑

i=1

λi ni ⊗ ni , V =
3∑

i=1

λi ñi ⊗ ñi ,

E(U) =
3∑

i=1

e(λi ) ni ⊗ ni , E(V ) =
3∑

i=1

e(λi ) ñi ⊗ ñi .

Strain measures in terms of the principal stretches λi :

er (λ) = 1
2 r

(λ2 r − 1) Seth-Hill family

e1(λ) = 1
2

(λ2 − 1) Green-Lagrange strain

e1/2(λ) = λ− 1 Engineering strain

e−1(λ) = 1
2

(1− 1
λ2 ) Almansi strain

e0(λ) = lnλ Hencky strain

ẽ1/2(λ) = 1
2

(λ− 1
λ

) Bažant strain

Patrizio Neff The Hencky Strain measures the geodesic distance to SO(n) Faculty of Mathematics, Universität Duisburg-Essen 5 / 41



Material and spatial strain measures

Some reasonable requirements on e : R+ → R:

3 e monotonically increasing, smooth

3 e(1) = 0

3 e′(1) = 1 (linearizations all coincide)

3 e(λ)→ +∞ as λ→ +∞ (not fulfilled by Almansi strain)

3 e(λ)→ −∞ as λ→ 0+ (not fulfilled by Biot/Green strain, . . . )

3 e(λ−1) = −e(λ) (fulfilled by Hencky and Bažant strain family)

3 e(λα) = α e(λ) , α ∈ R (fulfilled only by Hencky strain)
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The Hencky strain tensor

Interesting properties of the Hencky strain tensor:

3 Incompressibility condition takes on the simple form tr(log U) ≡ 0.

3 Additive volumetric-isochoric split:

log U = log
[ 1

(det U)1/3
U︸ ︷︷ ︸

isochoric

· (det U)1/311︸ ︷︷ ︸
volumetric

]
= dev log U + 1

3
tr log U

3 Simple lift of geometrically linear plasticity theory to geometrically nonlinear
plasticity in terms of Hencky strain log U

3 No polar decomposition is needed to compute log U (= 1
2

log C).

3 Uniaxial Hencky strains form a group - strains can be added:

εn,n+1
log : =

∫ Ln+1

Ln

1

L
dL = ln(Ln+1)− ln(Ln) = ln

(Ln+1

Ln

)
ε3,1

log = ln
(L3

L1

)
= ln

(L3

L2

L2

L1

)
= ln

(L3

L2

)
+ ln

(L2

L1

)
= ε3,2

log + ε2,1
log
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What’s in a strain?

Is there any fundamental property that singles out the Hencky strain tensor log U ?

No.

All strain measures are created equal

The choice of a strain measure is immaterial: any strain measure can be used to
obtain any stress-strain response (any elastic energy)!

Decisive is the used strain energy W (F )!

Thus the Hencky strain has no intrinsic advantage over other strain measures!

”[...] while logarithmic measures of strain are a favorite in one-dimensional
or semi-qualitative treatment, they have never been successfully applied in
general. Such simplicity for certain problems as may result from a particular
strain measure is bought at the cost of complexity for other problems.”

Truesdell, Toupin: The Classical Field Theories
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What’s in a strain? Much ado about nothing.

Is there any fundamental property that singles out the Hencky strain tensor log U ?

No.

All strain measures are created equal

The choice of a strain measure is immaterial: any strain measure can be used to
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The isotropic Hencky strain energy

Definition (Isotropic Hencky energy [2])

The isotropic Hencky energy is

WH (F ) = µ ‖ dev log U‖2 +
κ

2
[tr(log U)]2 = µ ‖ dev log U‖2 +

κ

2
(log det F )2 ,

where

F = ∇ϕ is the deformation gradient,

U =
√

F T F is the symmetric right Biot-stretch tensor,

µ > 0 is the shear modulus,

κ > 0 is the bulk modulus,

log U is the principal matrix logarithm of U and

dev log U = log U − tr log U
n

11 is the deviatoric part of log U.

Heinrich Hencky, 1885-1951, Ph.D. - TH Darmstadt
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The isotropic Hencky strain energy

Advantageous properties of the Hencky strain energy:

3 WH →∞ as det F → 0 (infinite energy for infinite compression)

3 WH (F ) = WH (F−1) (tension-compression-symmetry)

3 only 2 Lamé-constants, uniquely determined in infinitesimal range

3 fulfils Baker-Ericksen inequality and Hill’s inequality

3 describes Poynting effect: a circular cylinder lengthens under torsion
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Tension-compression-symmetry: W (F ) = W (F−1)

K E

E K

F

F−1

Figure: Homogeneous deformations
inverse to each other

Consider a homogeneous deforma-
tion of the body K .

”Freeze” the deformed body

Take it as a new, stress free
reference configuration

Apply the inverse of the
original deformation.

Energy per unit volume is the same
in both deformations:

1

|K |

∫
K

W (F ) dx = W (F )

1

|E |

∫
E

W (F−1) dx = W (F−1)
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The isotropic Hencky strain energy

More advantageous properties of the Hencky strain energy:

3 WH has subquadratic growth (consistent with Stillinger-Weber potential,
atomistics, possibility of cavities and fracture)

3 good fit to experimental data for moderately large strains

3 for moderate strains, WH captures the geometrically nonlinear behaviour correctly

3 replace WH with new physics for large deformation: plasticity, phase transition

3 good fit also for anisotropy, correct third order elastic constants
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Third order elastic constants: corrections beyond the linearized response

1 + ε

σ

2µ

k < 0

k > 0

Uniaxial stress response:

W (ε) = µε2 +
k

3
ε3 + . . .

σ(ε) = W ′(ε) = 2µε+ kε2 + . . .

All experimental measurements suggest
negative third order constants k < 0 .

WH (ε) ∼ µ| log(1 + ε)|2 ⇒ k = −3µ < 0 ,

WSVK(ε) ∼
µ

4
|(1 + ε)2 − 1|2 ⇒ k = 3µ > 0 .
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Stress response and nonlinear behaviour for infinitesimal strains

Uniaxial response stress

(1 + ε)

σ Biot-stress

Hartig’s law

Hencky stress

St. Venant-Kirchhoff

stress Bazant approximative stressNeo-Hooke

stress

2 4 6 8 10
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2
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The isotropic Hencky strain energy

Mathematical challenges associated with the Hencky strain energy:

7 WH is not polyconvex, not quasiconvex and not rank-one-elliptic [Neff2000].

7 WH is not Legendre-Hadamard-elliptic:

D2WH (F ).(ξ ⊗ η, ξ ⊗ η) ≥ c+ · |ξ|2 · |η|2. (→ real wave speeds)

However, WH is LH-elliptic in a large neighbourhood of 11 (with admissible
stretches λi ∈ (0.21, 1.4)).

7 WH has subquadratic growth for large deformations.

7 No general existence result is known for elasticity formulation based on WH ,
apart from implicit function theorem in the neighbourhood of 11.

7 WH is difficult to calculate: computation of second derivatives requires spectral
representation.
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The isotropic Hencky strain energy

Take on the challenge. . .

A conjecture for ideal elastic materials

The Hencky energy WH is the best overall isotropic energy up to moderate strains.

Plan: Understand principal properties singling out the Hencky strain energy

What makes other well known strain measures and strain energies stand out?
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Geometrically linear strain measure as a matrix nearness problem

In linearized elasticity, one considers ϕ(x) = x + u(x) with the
displacement u : Ω→ R3. The classical linearized strain measure is

ε = sym∇u.

The strain measure ε appears through a matrix-nearness problem in the euclidean
distance:

dist2
euclid(∇u, so(3)) := min

W∈so(3)
‖∇u −W ‖2 = ‖ sym∇u‖2 ,

where

‖M‖ =
√

tr MT M =
√∑n

i,j=1 M2
i j denotes the Frobenius matrix norm,

disteuclid(A,B) = ‖A− B‖ denotes the euclidean distance and

so(3) is the set of all skew symmetric matrices in R3×3.
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Geometrically linear strain measure as a matrix nearness problem

The infinitesimal strain tensor ε = sym∇u is indeed a strain measure:

sym∇u = 0 =⇒ dist2
euclid(∇u(x), so(3)) = 0 =⇒ ∇u(x) = W (x) ∈ so(3)

=⇒ Curl W (x) = Curl∇u(x) = 0 ,

which implies that W (x) is constant.

Then u(x) = W .x + b is a linearized rigid movement.

Note: ‖ sym∇u‖2 = ‖ sym(−∇u)‖2 (infinitesimal tension-compression-symmetry 3)

Patrizio Neff The Hencky Strain measures the geodesic distance to SO(n) Faculty of Mathematics, Universität Duisburg-Essen 18 / 41



Geometrically nonlinear strain measure as a matrix nearness problem

In nonlinear elasticity, one assumes that ∇ϕ(x) ∈ GL+(3) (no local
self-interpenetration of matter) and may consider the Biot strain tensor

U − 11 =
√
∇ϕT∇ϕ− 11.

The strain measure U − 11 appears naturally through a matrix-nearness problem in the
euclidean distance:

dist2
euclid(∇ϕ, SO(3)) : = min

Q∈SO(3)
‖∇ϕ− Q‖2 = min

Q∈SO(3)
‖QT∇ϕ− 11‖2

= ‖
√
∇ϕT∇ϕ− 11‖2 = ‖U − 11‖2

by a well known optimality result characterizing the polar decomposition

F = RU , R ∈ SO(n) , U ∈ PSym(n) =⇒ min
Q∈SO(n)

‖QT F − 11‖ = ‖U − 11‖ .
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Geometrically nonlinear strain measure as a matrix nearness problem

The Biot strain tensor U − 11 is a geometrically nonlinear Lagrangian strain measure:

√
∇ϕT∇ϕ = 0 =⇒ dist2

euclid(∇ϕ, SO(3)) = 0 =⇒ ∇ϕ(x) = Q(x) ∈ SO(3)

=⇒ Curl Q(x) = Curl∇ϕ(x) = 0 ,

which implies that Q(x) is constant, since

‖Curl Q‖2 ≥ c+‖∇Q‖2 ,

c.f. Neff, Münch: Curl bounds Grad on SO(3), ESAIM 2008.

Then ϕ(x) = Q.x + b is a rigid movement.
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Lagrangian or Eulerian, that is the question!

Lagrangian view:

dist2
euclid(F , SO(3)) = ‖U − 11‖2 .

Eulerian view:

dist2
euclid(F−1, SO(3)) = ‖11− V−1‖2 = ‖U−1 − 11‖2 .

Who decides whether to take the Lagrangian or the Eulerian point of view?

Ω ϕ(Ω)

F

F−1

Lagrangian frame Eulerian frame
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The euclidean distance on GL+(n): only an extrinsic distance

Reconsider the euclidean distance disteuclid(A,B) = ‖A− B‖ on GL+(n).

Problems:

The Euclidean distance is an arbitrary choice for a distance measure.

The euclidean distance cannot be weighted.

disteuclid(F , SO(n)) 6= disteuclid(F−1, SO(n))
Lagrangian measure 6= Eulerian measure

disteuclid is not an intrinsic distance measure on GL+(n):
because, in general, A− B /∈ GL+(n), the term ‖A− B‖ depends on the
underlying linear structure of Rn×n.

Generally disteuclid(CA,CB) 6= disteuclid(A,B), i.e. disteuclid does not respect
the algebraic Lie-group structure of GL+(n).

GL+(n) is not closed in Rn×n under disteuclid and thus GL+(n) is not complete in
the euclidean metric.

A,B ∈ GL+(n) ; A + t(B − A) ∈ GL+(n), thus disteuclid can not be
characterized as the length of a connecting line in GL+(n).

Thus disteuclid is only an extrinsic distance measure on GL+(n).

Patrizio Neff The Hencky Strain measures the geodesic distance to SO(n) Faculty of Mathematics, Universität Duisburg-Essen 22 / 41



The euclidean distance on GL+(n): only an extrinsic distance

GL+(n) ⊂ Rn×n

SO(n)

Q
F

polar(F)

dist2
euclid(F,SO(n)) := inf

Q∈SO(n)
dist2

geod(F,Q)

= ‖U− 1‖2

dist2
euclid(F,Q)
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GL+(n) as a Riemannian manifold

We view GL+(n) as a Riemannian manifold and consider the geodesic distance on

GL+(n):

Let g be a left-invariant Riemannian metric g on GL(n) of the form

gA :

{
TA GL(n)× TA GL(n)→ R

gA(X ,Y ) = 〈A−1X ,A−1Y 〉g , A ∈ GL(n) ,

with a fixed inner product 〈·, ·〉g on the tangent space T11 GL(n) = gl(n) = Rn×n.

The length of a curve γ ∈ C 1([0, 1]; GL+(n)) is

L(γ) =

∫ 1

0
gγ(t)(γ̇(t), γ̇(t)) dt =

∫ 1

0
〈γ−1γ̇, γ−1γ̇〉g dt .

The geodesic distance between P,F ∈ GL+(n) is defined as

distgeod(P,F ) = inf{L(γ) | γ ∈ C 1([0, 1]; GL+(n)), γ(0) = P, γ(1) = F}.
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GL+(n) as a Riemannian manifold: intrinsic distance

GL+(n)

SO(n)

Q

F

argmin
Q∈SO(n)

dist2
geod(F,Q) = ?

dist2
geod(F,SO(n)) = inf

Q∈SO(n)
dist2

geod(F,Q)

≤ dist2
geod(F,Q)

distgeod(F, SO(n)) = ?

dist2
geod(F,Q)

Figure: Intuitive sketch of the manifold GL+(n) and SO(n)
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Left-invariant, right O(n)-invariant Riemannian metrics

We consider Riemannian metrics that are left invariant:

gBA(BX ,BY ) = gA(X ,Y ) for all B ∈ GL(n) ,

as well as right O(n)-invariant:

gAQ (XQ,YQ) = gA(X ,Y ) for all Q ∈ O(n) .

right O(n)-invariance ∼= isotropy of the material

left SO(n)-invariance ∼= frame-indifference

left GL(n)-invariance ∼= distgeod(AF ,AP) = distgeod(F ,P) ∀A ∈ GL(n)
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Left-invariant, right O(n)-invariant Riemannian metrics

Definition

The isotropic inner product 〈·, ·〉µ,µc ,κ on gl(n) = Rn×n is

〈X ,Y 〉µ,µc ,κ := µ〈dev sym X , dev sym Y 〉+ µc 〈skew X , skew Y 〉+ κ
2

tr X tr Y ,

where

〈X ,Y 〉 = tr(X T Y ) is the canonical inner product on gl(n),

dev sym X = sym X − 1
n

tr[sym X ] · 11 is the deviatoric part of sym X ,

µ > 0 is the shear modulus,

µc > 0 is the spin modulus and

κ > 0 is the bulk modulus.
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The unique family of left invariant, right O(n)-invariant metrics on GL(n)

Every left invariant, right O(n)-invariant Riemannian metric on GL(n) has the form [3]

gA(X ,Y ) = 〈A−1X ,A−1Y 〉µ,µc ,κ

= µ〈dev sym X , dev sym Y 〉+ µc 〈skew X , skew Y 〉+ κ
2

tr X tr Y .

The invariances imply

distgeod(F ,Q) = distgeod(F−1,QT ) , Q ∈ SO(n) ,

thus we obtain

distgeod(F , SO(n)) = min
Q∈SO(n)

distgeod(F ,Q) = distgeod(F−1, SO(n))

(Lagrangian measure) (Eulerian measure)

without computing the result.
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Shortest geodesics on GL+(n)

Every geodesic curve γ connecting F ,P ∈ GL+(n) is of the form [4, 5]

γ(t) = F exp(t(sym ξ − µc
µ

skew ξ)) exp(t(1 + µc
µ

) skew ξ , (1)

with ξ ∈ gl(n) such that

P = γ(1) = F exp(sym ξ − µc
µ

skew ξ) exp((1 + µc
µ

) skew ξ . (2)

Here:

exp : gl(n)→ GL+(n) is the matrix exponential,

sym ξ = 1
2

(ξ + ξT ) is the symmetric part and

skew ξ = 1
2

(ξ − ξT ) is the skew symmetric part of ξ

No closed form solution to (2) for given P,F is known, but (1) can be used to obtain
a lower bound for distgeod(F , SO(n)) = min

Q∈SO(n)
distgeod(F ,Q).
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The geodesic distance of F to SO(n)

Lower bound: (can be obtained from the geodesic parameterization)

dist2
geod(F , SO(n)) = min

Q∈SO(n)
dist2

geod(F ,Q) ≥ min
Q∈SO(n)

‖ Log(Q F )‖2
µ,µc ,κ

Upper bound:

dist2
geod(F , SO(n)) ≤ dist2

geod(F , polar(F )) ≤ ‖ log(polar(F )T F )‖2
µ,µc ,κ

= ‖ log U‖2
µ,µc ,κ

= µ‖ dev log U‖2 +
κ

2
[tr(log U)]2 ,

where

F = RU is the polar decomposition,

R = polar(F ) ∈ SO(n) is the orthogonal polar factor of F and

U =
√

F T F ∈ PSym(n).
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The geodesic distance of F to SO(n)

Theorem (Optimality result, Neff et al. 2013, [6])

Let ‖ . ‖ be the Frobenius matrix norm on gl(n), F ∈ GL+(n). Then the minimum

min
Q∈SO(n)

‖ Log(QT F )‖2 = ‖ log(polar(F )T F )‖2 = ‖ log(
√

F T F )‖2 = ‖ log U‖2 ,

min
Q∈SO(n)

µ‖ dev sym Log(QT F )‖2 + µc‖ skew Log(QT F )‖2 +
κ

2
[tr(Log(QT F ))]2

= µ‖ dev log(U)‖2 +
κ

2
[tr(log U)]2

is uniquely attained at Q = polar(F ).

The theorem holds for every unitary invariant norm ‖ . ‖ on gl(n,C) as well, c.f. [7].

Note that the minimum is taken over all logarithms of QT F (including non-symmetric
arguments):

min
Q∈SO(n)

‖ Log(QT F )‖2 = min{‖X‖ : X ∈ gl(n), exp(X ) = QT F} .

Combining this theorem with the upper and lower bound for distgeod(F , SO(n)) yields
our main result.
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Main result

Theorem (Main result [8])

Let g be any left-invariant Riemannian metric on GL(n) that is also right invariant
under O(n), and let F ∈ GL+(n). Then:

dist2
geod(F , SO(n)) = dist2

geod(F , polar(F )) = µ‖ dev log(U)‖2 +
κ

2
[tr(log U)]2 .

Thus the geodesic distance of the deformation gradient F to SO(n) is the isotropic
Hencky strain energy of F . In particular, the result is independent of the spin modulus
µc > 0.

For µc = 0, the theorem still holds for the resulting pseudometric.

Furthermore, the result is basically identical for any right invariant, left O(n)-invariant
metric gA(X ,Y ) = 〈XA−1,YA−1〉µ,µc ,κ.
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Main result

GL+(n)

SO(n)

Q

F

polar(F)

dist2
geod(F,SO(n)) = inf

Q∈SO(n)
dist2

geod(F,Q)

≤ dist2
geod(F,Q)

dist2
geod(F, SO(n)) = ‖log U‖2

dist2
geod(F,Q)

Main result: The isotropic Hencky energy of F is the geodesic distance of F to SO(n).
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All’s well that ends well

Outlook:

Characterize anisotropic Hencky strain energy 〈C. log U, log U〉 as a distance in an
appropriate anisotropic Riemannian metric?

Calculate ”anisotropic” geodesics?

Reconsider the well-posedness problem for the Hencky energy (which is unknown).

Obtain geometric properties of our metric, e.g. the Levi-Civita connection
coefficients, the Riemannian or Ricci curvature, preliminary results
for µ = µc , κ = 2

3
µ (Poisson number ν = 0).

Numerical implementations: Justify tension-compression-symmetry by atomistic
calculations for nearly isotropic lattices?

Thank You!

Presentation available at:
http://www.uni-due.de/imperia/md/content/mathematik/ag neff/neff hencky13.pdf
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Matrix logarithms

Logarithm of a symmetric matrix

The logarithm of a positive definite matrix is defined as

log U =
3∑

i=1

(lnλi ) ni ⊗ ni ,

where

λi are the (positive) eigenvalues of U,

ni are the corresponding (orthonormal) eigenvectors of U and

ln is the natural logarithm on R+ .

Logarithm of a non-symmetric argument:

log X = (X − 11)−
1

2
(X − 11)2 +

1

3
(X − 11)3 − . . .

The series converges for ‖X − 11‖ < 1.

Every nonsingular X has a (perhaps complex) logarithm.
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Polar decomposition

F = R U U: Lagrangian (material) stretch tensor,

F = V R V : Eulerian (spatial) stretch tensor,

U =
√

F T F , F T F ,U : T Ωref → T Ωref Lagrangian,

V =
√

FF T , FF T ,V : Tϕ(Ωref)→ Tϕ(Ωref) Eulerian,

disteuclid(F , SO(3)) = ‖U − 11‖ Lagrangian Euclidean distance,

disteuclid(F−1, SO(3)) = ‖11− V−1‖ Eulerian Euclidean distance,

disteuclid(F , SO(3)) 6= disteuclid(F−1, SO(3)),

distgeod(F ,SO(3)) = distgeod(F , SO(3),

Weighted euclidean distance

µ‖ dev sym(F − R)‖2 + µc‖ skew(F − R)‖2 +
κ

2
[tr(F − R)]2

is tensorially impossible.
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Weighted isotropic infinitesimal euclidean distance on gl(n)

dist2
euclid,µ,µc ,κ

(X ,Y )) := µ‖ dev sym(X − Y )‖2 + µc‖ skew(X − Y )‖2 +
κ

2
[tr(X − Y )]2 ,

where

µ > 0 is the shear modulus,

µc > 0 is the spin modulus,

κ > 0 is the bulk modulus.

The distance to the set of skew symmetric matrices (infinitesimal strain energy)

disteuclid,µ,µc ,κ(∇u, so(3))

= min
W∈so(3)

µ‖ dev sym(∇u −W )‖2 + µc‖ skew(∇u −W )‖2 +
κ

2
[tr(∇u −W )]2

= µ‖ dev sym(∇u)‖2 +
κ

2
[tr(∇u)]2 = µ‖ε‖2 +

λ

2
[tr(ε)]2 ,

is independent of the spin modulus µc ≥ 0.
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Tensor identities

Ψ isotropic scalar-valued function on Sym(3) : Ψ(QTS Q) = Ψ(S) ∀Q ∈ O(3),

W (F ) = Ŵ (C) = Ψ(log C) ,

S1(F ) = DF [W (F )] , (first Piola-Kirchhoff tensor)

S2(F ) = DC Ŵ (C) = F−1 · S1(F ) , (second Piola-Kirchhoff tensor)

S1(F ) = det F · T · F−T , (T Cauchy stress tensor)

DC Ŵ (C) = DΨ(log C) · C−1 , while DC [log C ] 6= C−1 in general

(det F ) · T = DΨ(log C) , Hill

〈S1(F ),H〉 = 〈DΨ(log C) · F−T ,H〉
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Nonlinear structure of GL(n)

GL+︸︷︷︸
Lie group

= SL(n)︸ ︷︷ ︸
det F =1
Lie group

· R+ · 11︸ ︷︷ ︸
volumetric
Lie group

= SO(n)︸ ︷︷ ︸
rotations
Lie group

·
{

SL(n)
/

SO(n)
}︸ ︷︷ ︸

isochoric shears
Not a Lie group!

· R+ · 11︸ ︷︷ ︸
volumetric
Lie group

{
SL(n)

/
SO(n)

}
, the quotient space of unimodular positive definite symmetric

matrices, is not a Lie-group with respect to the matrix multiplication.

Because PSym(n) is a convex cone, the straight line connecting F with R = polar(F )
lies in GL+(n):

det((1− t)F + t R) = det((1− t)RT F + t RT R) = det((1− t)U + t 11︸ ︷︷ ︸
∈PSym(n)

) > 0.

However, the line is generally not contained in SL(n), even if F ∈ SL(n).
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Geodesic distance on SO(n)

The Riemannian metric induced on the compact Lie group SO(n)

gQ :

{
TQ SO(n)× TQ SO(n)→ R

gQ (X ,Y ) = µc 〈Q−1X ,Q−1Y 〉 = µc 〈X ,Y 〉 = µc tr(X T Y ), Q ∈ SO(n)

is bi-invariant (left- and right group invariant):

gRQ (RX ,RY ) = gQ (X ,Y ) ,

gQR (XR,YR) = gQ (X ,Y ) for all Q,R ∈ SO(n) .

Geodesics on SO(n) are one-parameter groups:

γ(t) = Q · exp(t W ), Q ∈ SO(n), W ∈ so(n) .

The SO(n)-geodesic distance between Q1,Q2 ∈ SO(n) is

dist2
geod, SO(n)(Q1,Q2) = µc ‖log QT

1 Q2‖2 ,

where

‖M‖ =
√

tr MT M =
√∑n

i,j=1 M2
i j denotes the Frobenius matrix norm and

log denotes the principal logarithm on SO(n).
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