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Abstract

The initial-boundary value problems arising in the context of finite
elasto-plasticity models relying on the multiplicative split F = Fe Fp are
investigated. First, we present such a model based on the elastic Eshelby
tensor. We highlight the behaviour of the system at frozen plastic flow.
It is shown how the direct methods of variations can be applied to the
resulting boundary value problem. Next the coupling with a viscoplastic
flow rule is discussed. With stringent elastic stability assumptions and
with a nonlocal extension in space local existence in time can be proved.

Subsequently, a new model is introduced suitable for small elastic
strains. A key feature of the model is the introduction of an independent
field of elastic rotations Re. An evolution equation for Re is presented
which relates Re to Fe. The equilibrium equations at frozen plastic flow
are now linear elliptic leading to a local existence and uniqueness result
without further stability assumptions or other modifications. An extended
Korn’s first inequality is used taking the plastic incompatibility of Fp into
account.

1 Notation

Let Ω ⊂ R3 be a bounded domain with smooth Lipschitz boundary ∂Ω and let Γ
be a smooth subset of ∂Ω with non-vanishing 2-dimensional Hausdorff measure.
For a, b ∈ R3 we let 〈a, b〉R3 denote the scalar product on R3 with associated vec-
tor norm ‖a‖2R3 = 〈a, a〉R3 . We denote by M3×3 the set of real 3×3 tensors. The
standard Euclidean scalar product on M3×3 is given by 〈A,B〉M3×3 = tr

[
ABT

]
and thus the Frobenius tensor norm is ‖A‖2 = 〈A,A〉M3×3 . In the following
we omit the index R3,M3×3. The identity tensor on M3×3 will be denoted by
11, so that tr [A] = 〈A, 11〉. We let Sym and PSym denote the symmetric and
positive definite symmetric tensors, respectively. We adopt the usual abbre-
viations of Lie-Group theory, i.e., GL(3,R) := {X ∈ M3×3 |det[X] 6= 0} the
general linear group, SL(3,R) := {X ∈ GL(3,R) |det[X] = 1}, O(3) := {X ∈
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GL(3,R) | XTX = 11}, SO(3,R) := {X ∈ GL(3,R) |XTX = 11, det[X] = 1}
with corresponding Lie-Algebras so(3) := {X ∈ M3×3 |XT = −X} of skew
symmetric tensors and sl(3) := {X ∈ M3×3 |tr [X] = 0} of traceless tensors.
With AdjA we denote the tensor of transposed cofactors Cof(A) such that
AdjA = det[A]A−1 = Cof(A)T if A ∈ GL(3,R). We set sym(A) = 1

2 (AT + A)
and skew(A) = 1

2 (A−AT ) such that A = sym(A)+skew(A). For X ∈M3×3 we
set devX = X− 1

3 tr [X] 11 ∈ sl(3) and for vectors ξ, η ∈ Rn we have (ξ⊗η)ij =
ξi ηj . We write the polar decomposition in the form F = R U = polar(F ) U . In
general we work in the context of nonlinear, finite elasticity. For the total defor-
mation ϕ ∈ C1(Ω,R3) we have the deformation gradient F = ∇ϕ ∈ C(Ω,M3×3).
Furthermore S1(F ) and S2(F ) denote the first and second Piola Kirchhoff stress
tensors, respectively. Total time derivatives are written d

dtA(t) = Ȧ. The first
and second differential of a scalar valued function W (F ) are written DFW (F ).H
and D2

FW (F ).(H,H) respectively. ∂χ is the (possibly set valued) subdifferen-
tial of the scalar valued function χ. We set C = FTF, Cp = FTp Fp, Ce =
FTe Fe, E = 1

2 (C − 11), Ep = 1
2 (Cp − 11), Ee = 1

2 (Ce − 11). We employ the stan-
dard notation of Sobolev spaces, i.e. L2(Ω), H1,2(Ω), H1,2

◦ (Ω) which we use indif-
ferently for scalar-valued functions as well as for vector-valued and tensor-valued
functions. Moreover we set ‖A‖∞ = supx∈Ω ‖A(x)‖. For A ∈ C1(Ω,M3×3) we
define RotA(x) = CurlA(x) as the operation curl applied row wise. We define
H1,2
◦ (Ω,Γ) := {φ ∈ H1,2(Ω) | φ|Γ = 0}, where φ|Γ = 0 is to be understood in the

sense of traces and by C∞0 (Ω) we denote infinitely differentiable functions with
compact support in Ω. We use capital letters to denote possibly large positive
constants, e.g.,C+,K and lower case letters to denote possibly small positive
constants, e.g., c+, d+. The smallest eigenvalue of a positive definite symmetric
tensor P is abbreviated by λmin(P ). Finally, w.r.t. abbreviates “with respect
to”.

2 Introduction

In the nonlinear theory of elasto-visco-plasticity at large deformation gradients
it is often assumed that the deformation gradient F = ∇ϕ splits multiplicatively
into an elastic and plastic part Lee [26], Mandel [30]

∇ϕ(x) = F (x) = Fe(x)Fp(x), Fe, Fp ∈ GL+(3,R) , (1)

where Fe, Fp are explicitly understood to be incompatible configurations, i.e.
Fe, Fp 6= ∇Ψ for any Ψ : Ω ⊂ R3 7→ R3. Thus Fp introduces in a natural way
a non-Riemannian manifold structure. In our context we assume that this
decomposition is uniquely defined only up to a global rigid rotation, since for
arbitrary Q ∈ SO(3) we have

∇ϕ(x) = F (x) = Fe(x)Fp(x) = Fe(x) Q Q
T
Fp(x) = F̃e(x) F̃p(x) , (2)

implying invariance under Fp 7→ QFp, ∀ Q ∈ SO(3). This multiplicative split,
which has gained more or less permanent status in the literature, is microme-
chanically motivated by the kinematics of single crystals where dislocations move
along fixed slip systems through the crystal lattice. The source for the incom-
patibility are those dislocations which did not completely traverse the crystal
and consequently give rise to an inhomogeneous plastic deformation. Therefore,
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in the case of single crystal plasticity it is reasonable to introduce the devia-
tion of the plastic intermediate configuration Fp from compatibility as a kind
of plastic dislocation density. This deviation should be related somehow to
the quantity CurlFp and indeed in Neff [43] we see the important role played
by CurlFp in the existence theory related to models in this area.

The constitutive assumption (1) is incorporated into balance equations gov-
erning the elastic response of the material and supplemented by flow rules in the
form of ordinary differential equations determining the evolution of the plastic
part.

We refer the reader to Bloom [6], Kondo [22], Kröner [23, 24] and
Maugin [31], Steinmann&Stein [54], Cermelli&Gurtin [9] for more details
on the subject of dislocations and incompatibilities and to
Ortiz,Repetto&Stainier [47] and Ortiz&Stainier [48] for an account of
the occurrence of the microstructure related to dislocations. A summary pre-
sentation of the theory for single crystals can be found in Gurtin [18]. For
applications of the general theory of polycrystalline materials in the engineer-
ing field we refer to the non exhaustive list Dafalias [12, 13], Miehe [35]
and Simo&Hughes [51], Simo [52], Simo&Ortiz [53]. An introduction to the
theory of materials and inelastic deformations can be found in Haupt [20],
Besseling&Giessen [5] and Lemaitre&Chaboche [27]. Abstract mathe-
matical treatments concerning the modelling of elasto-plasticity may be found
in Silhavy [50] and Lucchesi&Podio-Guidugli [29].

3 The General Finite Elasto-Plastic Model

To begin with let us first introduce the considered finite compressible 3D-model.
In most applications inertia effects can be safely neglected; one confines atten-
tion to the so called quasistatic case. Moreover, we restrict our considera-
tions to the adiabatic problem without hardening. In general, hardening laws
can be incorporated and will not affect the subsequent mathematical results.
For simplicity the exposition is based on the phenomenological approach for
isotropic polycrystals with associated flow rule, but the single crystal case as
well as non-associated flow rules and general anisotropies can also be treated
in the same spirit. We have opted to present a theory with elastic domain and
yield function, but unified constitutive models cf. Bodner&Partom [7], San-
sour&Kollmann [49] can also be considered. The inclusion of dead load body
forces is standard and for brevity omitted.

In the quasi-static setting without body forces we are therefore led to study
the following system of coupled partial differential and evolution equations for
the deformation ϕ : [0, T ] × Ω 7→ R3 and the plastic variable Fp : [0, T ] × Ω 7→
GL+(3,R):∫

Ω

W (Fe) det[Fp] dx 7→ min . w.r.t. ϕ at given Fp ,

0 = Div DF

[
W (Fe) det[Fp]

]
= Div

[
S1(Fe) det[Fp]

]
,

W (Fe) =
µ

2
‖Fe‖2 +

λ

4
det[Fe]

2 − 2µ+ λ

2
ln det[Fe] , (3)

Fe = ∇ϕF−1
p , ΣE = FTe DFe

W (Fe)det[Fp]−W (Fe)det[Fp] 11 ,
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d

dt

[
F−1
p

]
(t) ∈ −F−1

p (t) f(ΣE) ,

ϕ|Γ(t, x) = g(t, x) x ∈ Γ, F−1
p (0) = F−1

p0
, Fp0 ∈ GL+(3,R) ,

with the constitutive monotone multifunction f : M3×3 7→ M3×3, that governs
the plastic evolution and which is motivated by the principle of maximal dissipa-
tion relevant for the thermodynamical consistency of the model. Subsequently,
f will be obtained as f = ∂χ, with a nonlinear flow potential χ : M3×3 7→ R
(associated plasticity). W (Fe) is the underlying elastic free energy which is al-
ready specified to be of Neo-Hooke type and µ, λ > 0 are the Lamé constants
of the material. Here ΣE denotes the elastic Eshelby energy momentum ten-
sor which may be reduced to ΣM = FTe DFeW (Fe), the elastic Mandel stress
tensor in case of a deviatoric flow rule according to isochoric plasticity. Fp0 is
the initial condition for the plastic variable. The inclusion sign ∈ indicates that
rate-independent, ideal plasticity is covered in this formulation.

The peculiar form of the elastic ansatz∫
Ω

W (∇ϕF−1
p ) det[Fp] dx 7→ min . w.r.t. ϕ at given Fp , (4)

is motivated by the following observation. If Fp(x) = ∇Ψp(x) is compatible and
Ψp is a diffeomorphism, then the multiplicative decomposition (1) turns into

∇ϕ(x) = ∇x [Ψe(Ψp(x))] = ∇ξΨe(Ψp(x))∇xΨp(x) = Fe(x)Fp(x) , (5)

Fe = ∇ϕ(x)F−1
p = ∇ξΨe(Ψp(x))

and (4) is nothing but the change of variables formula∫
Ω

W (∇ϕF−1
p ) det[Fp] dx =

∫
Ω

W (Fe) det[∇Ψp] dx

=
∫
Ω

W (∇ξΨe(Ψp(x))) det[∇Ψp] dx =
∫

ξ∈Ψp(Ω)

W (∇ξΨe(ξ)) dξ. (6)

If DW (11) = 0, as is usually the case, we see that Ψe(ξ) = ξ induces a globally
stress free compatible new (intermediate) reference configuration Ψp(Ω) and the
invariance requirement (2) preserves the compatibility of Ψp. Hence, locally, Fp
induces a change of coordinates to a stress free reference configuration.

4 Infinitesimal Model - Linearized Kinematics

If we identify F = 11 + ∇u and Fp = 11 + p, with both displacement gradient
∇u and plastic variable p infinitesimally small, then the finite model (3) may
be approximated by the reduced, partially linearized system∫

Ω

1
2 〈D.εe, εe〉

[
1 + tr [εp]

]
dx 7→ min . w.r.t. u at given εp ,

0 = Div Dε

[
1
2 〈D.εe, εe〉

[
1 + tr [εp]

]]
= Div

[
T
[
1 + tr [εp]

]]
,
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Ψ(εe) = 1
2 〈D.εe, εe〉 = µ ‖εe‖2 +

λ

2
tr [εe]

2
, T = D.εe =

∂Ψ(εe)
∂ε

,

εe = ε− εp, ε(∇u(x)) = 1
2 (∇uT +∇u), εp = 1

2 (pT + p) , (7)

Ψthermo(ε, εp) = Ψ(εe)
[
1 + tr [εp]

]
,

ε̇p(t) ∈ f(TE) ,

TE = −∂εp

[
Ψthermo(ε, εp)

]
= T

[
1 + tr [εp]

]
− 1

2 〈D.εe, εe〉 11 ,

u|Γ(t, x) = g̃(t, x) x ∈ Γ, εp(0) ∈ Sym(3) ,

where D is the 4th. order elasticity tensor, T is the Cauchy stress tensor and
the multiplicative decomposition (1) has been replaced by the additive decom-
position of the infinitesimal strains into elastic and plastic parts

ε = εe + εp . (8)

Here, Ψthermo acts as thermodynamic potential for the plastic flow. The new
reduced system (7) remains intrinsically thermodynamically correct. There is
a rich mathematical literature successfully treating models based on (8) with
tr [εp] = 0, i.e., tr [f(TE)] = 0 or TE = T , in which case Ψthermo = Ψ(εe)
and the model is of pre-monotone type in the sense of Alber. See, e.g., Al-
ber [1], Han&Reddy [19], Ionescu&Sofonea [21], Chelminski [10, 11] and
references therein.

A general mathematical treatment either of the reduced system (7) or of
finite plasticity is, however, largely wanting. In the following we want to con-
tribute some partial results in respect of finite plasticity.

Remark 4.1 (Linearisation)
The reduced system (7) is not the exact formal linearisation of (3). However,
the performed reduction yields a system of equations which is, where different
from the formal linearisation, correct of higher order and remains intrinsically
thermodynamically admissible. In addition it retains the Eshelbian like struc-
ture.

5 Thermodynamically Consistent Plastic Flow
Rules

In this part of the paper we would like to indicate how to obtain the canonical
flow rules of finite multiplicative elasto-plasticity. In our context we use the
term canonical in the sense of Miehe [34] meaning that fundamental dissipation
principles together with tools from convex analysis are invoked to get an overall
framework for multiplicative elasto-plasticity. In a more abstract setting this
fits into the framework of a Thermodynamics with Internal Variables (TIV)
as in Maugin [32]. The development is in principle well known but the use
of the Eshelby tensor has only surfaced recently. We will see how the ansatz
(4) naturally leads to the use of the Eshelby tensor. We include therefore the
following for the presentation to be sufficiently self-contained.

A word of caution may be in order. Contrary to some other papers con-
cerned with multiplicative elasto-plasticity we use as independent set of vari-
ables F, F−1

p leading to left-rate flow rules of the form Fp
d
dt

[
F−1
p

]
=: LF−1

p
. The
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traditional approach would use as independent variables F, Fp (C,Cp) leading
to flow rules of the form d

dtFp F
−1
p =: LFp

. However, there is no mathemati-
cal reason to prefer one representation over the other. The main point is that
both types lead to similar mathematical structures. We employ throughout a
material description, any quantity being defined with respect to the reference
configuration; thus avoiding any discussion on consistent stress rates.

Let W = W (Fe) = W (F F−1
p ) be the given hyperelastic energy. The

first Piola-Kirchhoff stress tensor S1 is then S1(F, F−1
p ) = DFW (FF−1

p ) =
DW (FF−1

p )F−Tp . Using the objective Lie derivative and the principle of maxi-
mal dissipation one arrives at the canonical flow rule

−Fp
d

dt

[
F−1
p

]
∈ ∂χ(ΣE) , (9)

where ∂χ is the set valued subdifferential of the indicator function χ of a
convex set E in the stress space related to ΣE . Thus for rate-independent ideal
plasticity

χ(ΣE) =

{
0 ΣE ∈ E
∞ ΣE 6∈ E .

(10)

This flow rule can accommodate the assumption of isochoric plasticity, i.e.,
det[Fp] = 1 (which replaces tr [εp] = 0 in (8)) by defining the convex set E to be

E := {ΣE ∈M3×3 | ‖dev sym(ΣE)‖ ≤ σy} , (11)

where σy is the yield limit. Moreover with 0 = d
dt

[
FpF

−1
p

]
= ḞpF

−1
p +

Fp
d
dt

[
F−1
p

]
and

ḞF−1 =
d

dt
[FeFp] (FeFp)−1 = ḞeF

−1
e + FeḞpF

−1
p F−1

e

= ḞeF
−1
e + Fe

[
−Fp

d

dt

[
F−1
p

]]
F−1
e (12)

the spatial velocity gradient ḞF−1 may be additively decomposed into elastic
and plastic parts as usual.

This is a straightforward generalization of the classical von Mises type J2-
plasticity for infinitesimal strains to finite strains. The macroscopic yield limit
σy corresponds conceptually to the microscopic activation level of dislocation
glide. Observe that the choice sym(ΣE) instead of ΣE sets the so called plastic
material spin Dafalias [14] to zero. But for isotropic W the elastic Eshelby ten-
sor is already symmetric, which has been noted previously Maugin&Epstein
[33]. A shortcut way to see that this flow rule is thermodynamically admissible
proceeds as follows: Let the deformation gradient F be constant in time and
consider

d

dt

[
W (FF−1

p (t)) det[Fp]
]

=

= 〈DW (FF−1
p (t)), F

d

dt

[
F−1
p

]
〉 det[Fp] +W (Fe) 〈AdjFpT ,

d

dt
[Fp]〉

= det[Fp]
[
〈DW (FF−1

p (t)), FF−1
p Fp

d

dt

[
F−1
p

]
〉+W (Fe) 〈F−Tp ,

d

dt
[Fp]〉

]
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= det[Fp]
[
〈F−Tp FTDW (FF−1

p (t)), Fp
d

dt

[
F−1
p

]
〉+W (Fe) 〈11,

d

dt
[Fp]F−1

p 〉
]

= det[Fp]
[
〈FTe DW (Fe(t))︸ ︷︷ ︸

ΣM

, Fp
d

dt

[
F−1
p

]
〉 −W (Fe) 〈11, Fp

d

dt

[
F−1
p

]
〉
]

= 〈det[Fp]
(
FTe DW (Fe(t))−W (Fe) 11

)︸ ︷︷ ︸
ΣE

, Fp
d

dt

[
F−1
p

]
〉 . (13)

In the absence of thermal effects, classical continuum mechanics may be based
on a second law in the form

∀V ⊂ R3 :
d

dt

∫
V

W dx ≤
∫
∂V

〈S1.n, ϕ̇〉 dS +
∫
V

〈f, ϕ̇〉 dx , (14)

where W is the free energy, n is the unit outward normal to the control volume
V and f are the body forces Gurtin [17, p.41]. A sufficient condition for (14)
to hold is the reduced dissipation inequality which is fulfilled whenever

d

dt

[
W (F F−1

p (t)) det[Fp]
]
≤ 0 , (15)

for arbitrary F fixed in time. Thus, when choosing

−Fp
d

dt

[
F−1
p

]
= λ+ ∂χ(ΣE) , (16)

with χ convex, the reduced dissipation inequality (15) is guaranteed, since from
convex analysis 〈ΣE , ∂χ(ΣE)〉 ≥ 0. Moreover, if

∂χ(ΣE) = λ+ dev(sym(ΣE)) , (17)

the right-hand side is traceless implying that det[F−1
p ] = 1 = det[Fp].

Observe that the choice of the elastic Eshelby tensor ΣE as the relevant stress
measure can be conveniently related to the local configurational driving forces
on the inherent inhomogeneities introduced by the local change of reference
through the plastic variable Fp. Moreover, this flow rule is in a natural way
invariant under the change of plastic variable F−1

p 7→ Fp, as indeed it should be
inconsequential which form of independent variable we take.

In order to formulate a viscoplastic regularization of the above evolution
equation (9) the traditional approach proceeds as follows: instead of χ take the
following function χ

η:

χ
η(ΣE) =

{
0 ΣE ∈ E
1
2η‖ΣE − PE .(ΣE)‖2 ΣE 6∈ E .

(18)

Here PE denotes the orthogonal projection onto the convex set E which is
uniquely defined. Obviously, in the limit η → 0 we recover the rate-independent
evolution equation, at least formally. As it stands, ∂χη is just the well known
Yosida approximation (linear viscosity) of the subdifferential ∂χ and it holds
true Han&Reddy[19, p.184] that

∀H ∈M3×3 : 〈∂χη(ΣE), H〉 =
1
η
〈ΣE − PE(ΣE), H〉 (19)

7



and, moreover, ∂χη is a monotone function due to the convexity of χη. Unfor-
tunately, the ordinary differential evolution equation −Fp d

dt

[
F−1
p

]
= ∂χη(ΣE)

does not possess the advantageous monotonicity properties with respect to the
plastic variable Fp, in marked contrast to the properties of the infinitesimal flow
rule according to (7) and tr [εp] = 0. Reformulating the last equation we have

d

dt

[
F−1
p

]
= −F−1

p ∂χη(ΣE) = −1
η
F−1
p (ΣE − PE .(ΣE)) . (20)

In particular, we see that ∂χη being Lipschitz continuous in ΣE does not entail
that the right-hand side is Lipschitz continuous altogether with respect to F−1

p

since F−1
p enters again multiplicatively. However, this is one of the main features

which made the Yosida approximation so valuable in infinitesimal plasticity. For
multiplicative plasticity it is typically the case that either the right-hand side
is not Lipschitz continuous (rate independent case), or the right-hand side is
neither monotone nor possesses potential structure.

6 Polyconvexity Conditions in Finite Plasticity

In order to investigate the boundary value problem which arises in the formu-
lation of (3) if one freezes the plastic variable Fp it is convenient to place this
in the context of the direct methods of variations.

In the purely elastic case it is usually a convexity condition, the polyconvex-
ity condition in the sense of Ball [3], that is used together with some coercive-
ness condition to ensure that a minimization problem has at least one solution.
Let us recall this notion. We say that

Definition 6.1 (Polyconvexity)
The free energy density W (x, F ) is polyconvex whenever there exists a (possibly
non-unique) function P (x,X, Y, Z) : R3 ×M3×3 ×M3×3 × R+ 7→ R such that
P (x, , , ) is convex for each x ∈ R3 and

W (x, F ) = P (x, F,AdjF,det[F ]) .

Example 6.2
The Neo-Hooke energy density

W (F ) =
µ

p (
√

3)p−2
‖F‖p +

λ

4
det[F ]2 − 2µ+ λ

2
ln det[F ]

is polyconvex for p ≥ 1.

Corollary 6.3 (Polyconvexity and Ellipticity)
It is well known that
every smooth strictly polyconvex free energy density W (x, F ) is automatically
ensuring overall Legendre-Hadamard ellipticity of the corresponding boundary
value problem in the sense that

∀F ∈ GL+(3,R) : ∀ ξ, η ∈ R3 : D2
FW (x, F ).(ξ ⊗ η, ξ ⊗ η) ≥ c+‖ξ‖2 ‖η‖2.
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Example 6.4
Free energies defined on the Hencky strain tensor lnC such as

W (F ) =
µ

4
‖dev lnC‖2 +

3λ+ 2µ
3

tr [lnC]2

are in general not elliptic and therefore not polyconvex, see Neff[38]. However,
these energies are very popular among engineers due to certain advantages in a
numerical implementation. Quadratic expressions in E such as the St.Venant-
Kirchhoff density

W (F ) = µ‖E‖2 +
λ

2
tr [E]2

are neither elliptic nor polyconvex, they loose ellipticity at finite elastic compres-
sion. Energy densities which are convex functions of generalized strain measures
Lubarda[28, p. 33 ] are equally non elliptic.

Lemma 6.5 (Polyconvexity and Multiplicative Decomposition)
Let W (F ) be polyconvex and assume that Fp ∈ L∞(Ω,GL+(3,R)) is given.
Then the function

W̃ (x, F ) := W (F F−1
p (x)) det[Fp(x)]

is itself polyconvex.

Proof. This is accomplished by a direct check of the polyconvexity condition.
SinceW is polyconvex, we know that there is some function P such thatW (F ) =
P (F,AdjF,det[F ]) with P convex. This yields

W̃ (x, F ) = W (F F−1
p (x)) det[Fp(x)]

= P (F F−1
p (x),AdjF F−1

p (x),det[F F−1
p (x)]) det[Fp(x)]

= P (F F−1
p (x),AdjF−1

p (x) AdjF,det[F ] det[F−1
p (x)]) det[Fp(x)].

Now define

P̃ (x,X, Y, Z) := P (X F−1
p (x),AdjF−1

p (x)Y,Z det[F−1
p (x)]) det[Fp(x)] .

It is easy to see that P̃ (x, ·, ·, ·) is a convex function since P is. The essence is
that Fp introduces merely local inhomogeneity into the formulation. See also
Neff[38].

Definition 6.6 (Coercivity)
We say that W leads to a p-coercive problem whenever∫

Ω

W (∇ϕ) dx ≤ K1 ⇒ ‖ϕ‖1,p,Ω ≤ K2 .

Thus p-coercivity implies that a finite elastic energy level necessitates a finite
value of the W 1,p(Ω)-norm of the deformation ϕ.
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Example 6.7
It is easily seen that the Neo-Hooke energy density is p-coercive for p ≥ 1 if

λ > 0. In this case the term λ
4 det[F ]2 − 2µ+λ

2 ln det[F ] is pointwise bounded
from above. An application of Poincaré’s inequality completes the argument if
Dirichlet boundary conditions are prescribed. However, energies defined on the
Hencky strain tensor lnC such as

W (F ) =
µ

4
‖dev lnC‖2 +

3λ+ 2µ
3

tr [lnC]2

are, typically, not coercive for any p, perhaps indicating a more serious defi-
ciency. See Neff [38, p.185].

7 On the Choice of the Elastic Free Energy

Freezing Fp is typically involved in computations of elasto-plasticity where this
is called the elastic trial step. It seems to be a reasonable requirement in finite
plasticity that the elastic trial step at frozen plastic variable Fp should lead
to a well posed elastic minimization problem as long as Fp is invertible and
sufficiently smooth. Whether this is indeed the case depends entirely on the
chosen elastic free energy.

The only general method in finite elasticity to ascertain well posedness is
based on the direct methods of the calculus of variations. The successful ap-
plication relies on polyconvexity and coercivity. It is expedient to impose these
conditions a priori to guarantee that the elastic trial step can be treated ade-
quately.

In view of the invariance property expressed in Lemma 6.5 it suffices to spec-
ify some polyconvex free energy W (F ) and then to substitute the elastic part
Fe instead of F to get a polyconvex minimization problem at frozen Fp. Thus,
the multiplicative decomposition of the deformation gradient and polyconvexity
are mutually compatible. It can easily be seen that p-coercivity is preserved as
well under the multiplicative decomposition. Following this approach, elastic
energies based on the Hencky tensor lnC or based on E cannot be used. For-
mulations based on an additive decomposition E = Ee + Ep which have been
advocated by Green&Naghdi [16] and Naghdi [36], are also excluded since
ellipticity of the elastic trial step may again be lost.

8 Existence Results in the General Finite Case
- the Flow Based Approach.

We therefore freeze the plastic variable Fp and analyse the elastic trial step.
The corresponding boundary value problem has a variational structure in the
sense that the equilibrium part of (3) is formally equivalent to the minimization
problem

∀ t ∈ [0, T ] : I(ϕ(t), F−1
p (t)) 7→ min, ϕ(t) ∈ g(t) +W 1,p

◦ ,

I(ϕ, F−1
p ) =

∫
Ω

W (∇ϕF−1
p ) det[Fp(x)] dx , (21)
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W (Fe) =
µ

p (
√

3)p−2
‖F‖p +

λ

4
det[Fe]

2 − 2µ+ λ

2
ln det[Fe] .

We have the following preliminary result for fixed time:

Theorem 8.1 (Existence for the static elastic trial step)
Assume that Fp ∈ L∞(Ω,GL+(3,R)) and g ∈ W 1,p(Ω,R3) with p ≥ 2 is given.
Then the elastic minimization problem (21) admits at least one minimizer.

Proof. We sketch the proof and apply the direct methods of variations. The
elastic free energy is of polyconvex Neo-Hooke type. By the invariance of poly-
convexity under the multiplicative decomposition the elastic minimization prob-
lem is still polyconvex. The energy is also coercive over W 1,p(Ω,R3), cf. Exam-
ple(6.7). Thus infimizing sequences ϕk ∈ W 1,p(Ω,R3) exist and admit weakly
converging subsequences. The functional I is lower semicontinuous due to its
polyconvexity. Hence the weak limit ϕ ∈ W 1,p(Ω,R3) minimizes I. For the
details, see Neff [38].

However, no statement is made as to how this solution varies if Fp is varied
or how it changes if the boundary data g are varied. Due to the nonlinear nature
of the problem at hand general theories of this kind cannot be expected to hold.

What would be most convenient is to assume that the solution of the min-
imization problem depends continuously on Fp and the boundary data, i.e.,
elastic stability with respect to the data at least locally. This can be achieved
by assuming that the minimizer lies in a uniform potential well for all plastic
variables in a certain given set. By a uniform potential well we mean

Definition 8.2 (Uniform potential well)
Assume that ϕ is a global mi-nimizer of (21). Whenever there exists a nonde-
creasing function γ+(s) > 0, (e.g. γ+(s) = c+ |s|2), such that

∀ 0 < s ≤ s0 : inf
‖h‖

W
1,p
◦

=1

∫
Ω

W (∇(ϕ+ s h)F−1
p ) det[Fp] dx

≥
∫
Ω

W (∇ϕF−1
p ) det[Fp] dx+ γ+(s) ,

we say that ϕ lies in a uniform potential well.

A sufficient condition for ϕ to lie in a uniform potential well is that the global
minimizer of (21) is locally unique. This definitely does not imply that W
needs to be convex since there might be other local or global minimizers or
stationary points, see Neff [38, p.173] and Ball&Marsden [4]. Under these
circumstances it can be shown, that it is possible to define a local solution
operator ϕ = T (Fp, g), such that

inf
ϕ∈g+W 1,p

◦

∫
Ω

W (∇ϕF−1
p ) det[Fp(x)]dx

=
∫
Ω

W (∇T (Fp, g)F−1
p ) det[Fp(x)]dx , (22)

11



which is Hoelder continuous if p ≥ 6, but may in general not be Lipschitz
continuous. Be that as it may, by introducing T we can dispose of the boundary
value problem and concentrate on the flow rule (the flow based approach).
In order to approach the flow problem we introduce a further modification.
Instead of considering ΣE we replace ΣE with a space averaged Σ̂εE(x) where
ε indicates the average over some small ε-ball Bε(x) := {y ∈ Ω | ‖y − x‖ ≤ ε}
centred at x ∈ Ω. In this fashion we introduce a nonlocal dependence into the
model. This ensures at the same time that the averaged Eshelby stresses are
smoothly distributed which would not be necessarily true for the non averaged
quantities due to a general lack of regularity for the nonlinear elliptic problem.
This type of averaging preserves frame indifference and could even be argued
for on physical grounds. It is also necessary to remove the possible singularity
inherent in the elastic free energy through − ln det[Fe] if det[F ] approaches zero.
This can be done in a consistent manner by replacing − ln with a smooth convex
function h : R 7→ R such that h ≥ 0, h′(1) = −1.

With these assumptions and modifications it is possible to prove a local
existence result for a fully viscoplastic formulation of the model. The modified
nonlocal model reads then∫

Ω

W (Fe) det[Fp] dx 7→ min. w.r.t. ϕ at given Fp ,

W (Fe) =
µ

p (
√

3)p−2
‖F‖p +

λ

4
det[Fe]

2 − 2µ+ λ

2
h(det[Fe]) , (23)

ΣE = FTe DFeW (Fe)det[Fp]−W (Fe) det[Fp]11 ,
d

dt

[
F−1
p

]
(t) ∈ −F−1

p (t) ∂χ(Σ̂E) ,

ϕ|∂Ω(t, x) = g(t, x) x ∈ ∂Ω, F−1
p (0) = F−1

p0
, Fp0 ∈ GL+(3,R) ,

where the nonlinear flow potential χ : M3×3 7→ R is assumed to have a local
Lipschitz subdifferential ∂χ, e.g. of the form (25). It is possible to prove the
following result:

Theorem 8.3 (Local existence for nonlocal model)
Let W be as above with p = 6 and let g ∈ C1(R+;W 1,∞(Ω,R3)); moreover, as-
sume that solutions of the elastic minimization problem at fixed plastic variable
Fp lie in a uniform potential well. Then, there exists a time T > 0 such that (23)
admits a (possibly non unique) local solution F−1

p ∈ C1([0, T ];C(Ω,GL+(3,R))
and ϕ ∈ C([0, T ],W 1,p(Ω,R3)).

Proof. Consider the following iterative scheme:∫
Ω

W (∇ϕn+1(x, t)F−np (x, t)) det[Fnp ] dx 7→ min .w.r.t. ϕn+1 at given Fnp ,

d

dt

[
F−1,n+1
p

]
(t) ∈ −F−1,n+1

p (t) ∂χ( ̂det[Fnp ]Σn) , (24)

Σn = F−T,np ∇ϕT,n+1DFeW (∇ϕn+1F−np )−W (∇ϕn+1 F−np ) 11 ,

Σ̂(x) :=
1

|Bε(x)|

∫
y∈Bε(x)

Σ(y) dy ,

12



ϕn+1
|∂Ω

(t, x) = g(t, x) x ∈ ∂Ω, F−1,n+1
p (0) = F−1

p0
, Fp0 ∈ GL+(3,R) .

The direct methods of variations (Theorem 8.1) show the existence of a min-
imizer ∇ϕn+1. By the elastic stability assumptions we have that ∇ϕn+1(x, t)
is well defined. The evolution equation at given ∇ϕn+1(x, t) has a unique lo-
cal solution Fn+1

p (x, t) due to Banach’s fixed point principle (linear ordinary
differential equation). This defines an operator

P : C([0, T ];C(Ω,GL+(3,R))) 7→ C([0, T ];C(Ω,GL+(3,R))) ,

d

dt

[
P.Fnp

]−1 (t) ∈ −
[
P.Fnp

]−1 (t) ∂χ(Σ̂nE) , (ODE)

P : Fnp 7→ Fn+1
p .

It is then possible to show that this operator is indeed compact. First, since the
solutions of the boundary value problem ∇ϕn+1 can be independently bounded
in L2(Ω) and the averaging procedure for fixed ε > 0 delivers smooth solutions
Fn+1
p , the operator P is continuous. Gronwall’s inequality applied to the ODE

together with an application of the Arcela-Ascoli theorem shows that P maps
bounded sets into equicontinuous sets and individual arguments are transformed
to Hoelder continuous functions. Schauder’s fixpoint principle for continuous,
compact operators yields then the existence of at least one fixed point of P .
This proves the claim, for details compare Neff [38]. Observe in passing that
Fn+1
p is not to be confused with a time incremental update but is a new solution

over the whole time interval.

Remark 8.4 (Flow Based Versus Time Incremental Formulation)
In what we like to call the flow based approach priority is given to the plastic
flow rule, and the elastic balance equation is rather treated as a (static) side con-
dition. This is the approach followed in this contribution. In the extreme case
of rigid plastic behaviour the elastic problem is completely discarded, which is
a well known strategy in the literature. Similar ideas are used on the numerical
side, where the resulting discretized initial boundary value problem is inter-
preted as a differential algebraic equation (DAE) and the algebraic constraint
corresponds to the fulfilment of the elastic balance equation.

In the opposite case, the time incremental formulation, priority is given
to the elastic balance equation. The flow rule is implicitly discretized and the
updated plastic variable is inserted into the balance equation. The resulting
field problem in general looses ellipticity in the finite problem but may retain a
variational structure in the case of an associated flow rule. Here, the flow rule
acts merely as a side condition, Carstensen&Hackl [8]. In the infinitesimal
case the time incremental formulation leads to the deformation theory of Hencky
plasticity retaining ellipticity.

Remark 8.5
The above result (Theorem 8.3) is only a very weak statement in view of the
following: we had to assume local elastic stability (uniform potential well) of
the minimization problem related to the elastic trial step. This can in general
not be proved. In addition we needed to modify the formulation to a nonlocal
one through the space averaged elastic Eshelby stresses. And due to the use of
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Schauder’s principle we get only a local solution which might not even be locally
unique. In summary, we see that the solution of the elastic trial step was easily
found but that the properties of this solution are not sufficient to couple it as
such with the flow problem. No attempt has been made to consider the limit
behaviour ε→ 0.

In order to overcome these serious technical difficulties which were entirely
due to the nature of the finite elastic free energy we shall now introduce a new
model which reflects more closely one aspect of the physics of the problem at
least for metals. The chosen Neo-Hooke elastic free energy is in principle appro-
priate for arbitrarily large elastic strains. However, the prevailing deformation
mode for metals is known to comply to small elastic strains in most practical
cases.

9 A Model for Small Elastic Strains

In the three-dimensional case it is easily seen that small elastic strains, i.e.,
‖FTe Fe − 11‖ pointwise small, imply that Fe is approximately a rotation Re ∈
SO(3). If we assume that Re is known, all quantities can be linearized with
respect to Re = polar(Fe). This is a nonlinear constraint. It is possible to relax
this static constraint into a dynamic evolution equation such that a rotation
Re is determined which coincides approximately with polar(Fe) whenever Fe is
approximately a rotation. The static constraint Re = polar(Fe) turns out to be
a global attractor of the evolution equation. These modifications significantly
simplify the mathematical structure without loosing the main ingredients of
finite multiplicative visco-plasticity notably frame indifference and invariance
with respect to superposed rotations of the so called intermediate configuration
are preserved. In addition, the model allows for finite elastic rotations, finite
plastic deformations and overall finite deformations. Let us introduce the con-
sidered new 3D-model which modifies the exposition in Neff [41, 37] to include
in a consistent manner non-isochoric plasticity, i.e., det[Fp] 6= 1.

In the quasi-static setting without body forces we are led to study the fol-
lowing system of coupled partial differential and evolution equations for the de-
formation ϕ : [0, T ]× Ω 7→ R3, the plastic variable Fp : [0, T ]× Ω 7→ GL+(3,R)
and the independent elastic rotation Re : [0, T ]× Ω 7→ SO(3):∫

Ω

W (Fe, Re) det[Fp] dx 7→ min . w.r.t. ϕ at given Re, Fp ,

0 = Div DF [W (Fe, Re) det[Fp]] = Div [S1(Fe, Re) det[Fp]] ,

W (Fe, Re) =
µ

4
‖FTe Re +RTe Fe − 211‖2 +

λ

8
tr
[
FTe Re +RTe Fe − 211

]2
,

Fe = ∇ϕF−1
p ,

ΣE = FTe DFe
W (Fe, Re)det[Fp]−W (Fe, Re) det[Fp]11 ,

S1(Fe, Re) = Re
[
µ(FTe Re +RTe Fe − 211) + λ tr

[
FTe Re − 11

]
11
]
F−Tp ,

ϕ|Γ(t, x) = g(t, x) x ∈ Γ , (P3)
d

dt

[
F−1
p

]
(t) ∈ −F−1

p (t) ∂χ(ΣE) ,
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d

dt
Re(t) = ν+ skew

(
FeR

T
e

)
Re(t) , ν+ = ν+(Fe, Re) ∈ R+ ,

F−1
p (0) = F−1

p0
, Fp0 ∈ GL+(3,R), Re(0) = R0

e, R0
e ∈ SO(3) .

The term ν+ := ν+(Fe, Re) represents a scalar valued penalty function intro-
ducing elastic viscosity. F−1

p0
and R0

e are the initial conditions for the plastic
variable and elastic rotation part, respectively. If we identify Fp = 11 + p and
set Re ≡ 11, the model settles also down to (7).

In the (vanishing elastic viscosity) limit ν+ →∞, the model (P3) approaches
formally the problem∫

Ω

W∞(Ue) det[Fp] dx 7→ stationary w.r.t. ϕ at given Fp ,

0 = Div DF [W∞(Fe) det[Fp]] ,

W∞(Ue) = µ ‖Ue − 11‖2 +
λ

2
tr [Ue − 11]2 , (Biot)

d

dt

[
F−1
p

]
(t) ∈ −F−1

p (t) ∂χ(ΣE,∞) ,

ΣE,∞ = UTe DUe
W∞(Ue)det[Fp]−W∞(Ue) det[Fp]11 ,

with Ue = (FTe Fe)
1
2 the elastic stretch and Ue−11 the elastic Biot strain tensor.

The system (Biot) is an exact model for small elastic strains and finite plastic
deformations. The transition from (P3) to (Biot) is not entirely trivial since
it is not just the replacement of Re by Re = polar(Fe). Moreover, note the
tacit change from minimization in (P3) to stationarity in (Biot). For a detailed
account of the derivation and the properties of the new model (P3) we refer to
Neff [37, 41]. Now in Neff [39, 42] it has been shown that the model (P3)
in a viscous form is locally wellposed. Moreover, first numerical computations
Neff&Wieners [44] confirm the general applicability of the model (P3) for
structural applications compared with standard models.
To grasp the main idea in the above approximation we look at the corresponding
evolution equation for Re. The following theorem can be proved.

Theorem 9.1 (Exact dynamic polar decomposition)
Let

Fe ∈ GL+(3,R) and assume that R0 ∈ SO(3) is given with
‖R0 − polar(Fe)‖2 < 8. Then the evolution equation

d

dt
Re(t) = ν+ skew

(
FeR

T
e

)
Re(t), Re(0) = R0 ,

has a unique global in time solution Re(t) ∈ SO(3) which converges to

R∞ = polar(Fe) .

Proof. See Neff [37, 41].
The guiding idea is then to relax the algebraic constraint Re = polar(Fe) in-

herent in the formulation with Ue in (Biot) into an associated evolution equation
which locally approximates this constraint.
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In practice the flow rule for the (independent) elastic rotations Re introduces
merely reversible nonlinear viscoelastic behaviour restricted to multiaxial defor-
mations well below an assumed elastic yield limit. In contrast to micropolar
theories an additional field equation for Re is avoided.

10 Existence and Uniqueness for Small Elastic
Strains

Now we specify the flow potential χ and the function ν+. For von Mises type
J2-viscoplasticity with elastic domain E (see (11)) and yield stress σy, we take
as visco-plastic potential χ : M3×3 7→ R of generalized Norton-Hoff overstress
type the following function:

χ(ΣE)=

{
0 ΣE ∈ E

1
(r+1)(m+1) η

(
1 + (‖dev(sym ΣE)‖ − σy)r+1

)m+1 ΣE 6∈ E
,

where η > 0 is a viscosity parameter and r,m ≥ 0. An easy calculation shows
that this leads to the single valued locally Lipschitz continuous subdifferential

∂χ(ΣE) =
1
η

(
1 + [‖ dev(sym ΣE)‖ − σy]r+1

+

)m ×
[‖dev(sym ΣE)‖ − σy]r+

dev(sym ΣE)
‖dev(sym ΣE)‖

. (25)

The parameter r allows to adjust the smoothness of the flow rule when passing
the boundary of the elastic domain E . The special choice m = 0, r = 1 cor-
responds precisely to the Yosida approximation (19). With r > 5 and m ≥ 1
it is clear that ∂χ ∈ C5(M3×3,M3×3). A typical range for m in engineering
applications is m ∈ {0, . . . , 80}. For m → ∞ we recover formally ideal rate
independent plasticity. For simplicity, we choose the positive parameter ν+ in
the elastic flow part according to the same level of viscosity as is used in the
plastic flow part and set formally

ν+ =
1
η

(
1+
[
‖ skew(FeRTe )‖ −0

]r+1

+

)m
×

[‖ skew (B) ‖ −0]r+
1

‖ skew (B) ‖
, (26)

similar to (25). This choice makes the flow rule altogether a C5 function. In
this setting we can prove the following result:

Theorem 10.1 (Local existence and uniqueness)
Suppose for the
displacement boundary data g ∈ C1(R+, H5,2(Ω,R3)). Then there exists a time
T > 0 such that the initial boundary value problem (P3) with (25) and (26)
admits a unique local solution

ϕ ∈ C([0, T ], H5,2(Ω,R3)) ,

(Fp, Re) ∈ C1([0, T ], H4,2(Ω, SL(3,R)), H4,2(Ω, SO(3))) .
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Proof. See Neff [39]. We basically repeat the ideas of Theorem 8.3. At frozen
variables (Fp, Re) the (elastic) equilibrium system in (P3) is a linear, second
order, strictly Legendre-Hadamard elliptic boundary value problem with non-
constant coefficients. The nonlinearity has been shifted into the appended evo-
lution equation. This system has variational structure in the sense that the
equilibrium part of (P3) is formally equivalent to the minimization problem

∀ t ∈ [0, T ] : I(ϕ(t), F−1
p (t), Re(t)) 7→ min, ϕ(t) ∈ g(t) +H1,2

◦ ,

I(ϕ, F−1
p , Re) =

∫
Ω

W (∇ϕF−1
p , Re) det[Fp] dx , (27)

W (Fe, Re) =
µ

4
‖FTe Re +RTe Fe − 211‖2 +

λ

8
tr
[
FTe Re +RTe Fe − 211

]2
.

The main task in proving that (P3) is well posed consists of showing uniform
estimates for solutions of linear, elliptic systems whose coefficients are time
dependent and do not induce a pointwise positive bilinear form. This problem
does not arise in infinitesimal elasto-viscoplasticity (7) with tr [εp] = 0, since
there, the elasticity tensor D is assumed to be a constant positive definite 4th.
order tensor.

We are first concerned with the static situation where (Fp, Re) are assumed
to be known. We prove existence, uniqueness and regularity of solutions to the
related (elastic) boundary value problem. In addition we elucidate in which
manner these solutions depend on (Fp, Re). These investigations rely heavily
on a theorem recently proved by the author extending Korn´s first inequality
to nonconstant coefficients.

Theorem 10.2 (Extended Korn’s first inequality)
Let Ω ⊂ R3 be a bounded Lipschitz domain and let Γ ⊂ ∂Ω be a smooth part
of the boundary with nonvanishing 2-dimensional Lebesgue measure. Define
H1,2
◦ (Ω,Γ) := {φ ∈ H1,2(Ω) | φ|Γ = 0} and let Fp, F

−1
p ∈ C1(Ω, GL+(3,R)) be

given with det[Fp(x)] ≥ µ+ > 0. Moreover suppose that for the dislocation
density CurlFp ∈ C1(Ω,M3×3). Then

∃ c+ > 0 ∀ φ ∈ H1,2
◦ (Ω,Γ) :

‖∇φF−1
p (x) + F−Tp (x)∇φT ‖2L2(Ω) ≥ c

+ ‖φ‖2H1,2(Ω) .

Clearly this result generalizes the classical Korn’s first inequality

∃ c+ > 0 ∀ φ ∈ H1,2
◦ (Ω,Γ) : ‖∇φ+∇φT ‖2L2(Ω) ≥ c

+ ‖φ‖2H1,2(Ω) ,

which is just our result with Fp = 11.

Proof. See Neff [43]. Recently it was possible to significantly relax the con-
tinuity assumptions necessary for this theorem to hold. Precisely in the case
Γ = ∂Ω it can be shown that

∃ c+ > 0 ∀ φ ∈ H1,2
◦ (Ω)

‖∇φF−1
p (x) + F−Tp (x)∇φT ‖2L2(Ω) ≥ c

+ ‖φ‖2H1,2(Ω) ,

if only Fp ∈ L∞(Ω,GL+(3,R)) with det[Fp(x)] ≥ µ+ > 0 and CurlFp ∈
L2(Ω,M3×3). In addition one has to assume that with Fp = Rp Up, the po-
lar factorization of Fp, the orthogonal part Rp has locally jumps of maximal
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height C+ λmin,Ω(Up)
λmax,Ω(Up) , where C+ is a given non small constant. This allows Fp

to be quite discontinuous. In the general case of mixed boundary data one
needs, moreover, that Fp is smooth in an arbitrarily small boundary layer Neff
[40].

Now, the minimization problem (27) can be easily solved by applying the
direct methods of variations. We show that I is strictly convex over the affine
space {g+H1,2

◦ (Ω)}. This is done by computing the second derivative. We have

D2
ϕI(ϕ, F−1

p , Re).(φ, φ) =∫
Ω

(µ
2
‖F−Tp ∇φTRe +RTe ∇φF−1

p ‖2 + λ tr
[
RTe ∇φF−1

p

]2)
det[Fp(x)] dx

≥
∫
Ω

µ

2
‖(ReFp)−T∇φT +∇φ(ReFp)−1‖2 det[Fp(x)] dx

≥ µ c+(Fp, Re,Ω) ‖φ‖21,2,Ω , (28)

by applying Theorem 10.2 with Fp := ReFp. Since the Lamé constant µ > 0
we see that D2

ϕI(ϕ, F−1
p , Re).(φ, φ) is uniformly positive. Hence I(ϕ, F−1

p , Re)
is strictly convex.

We can write the evolution part of (P3) in the following block diagonal form
with A = (F−Tp , Re):

d

dt

(
F−Tp (t)
Re(t)

)
=
(
−∂χ(ΣE(t))T 0

0 ν+ skew(B(t))

) (
F−Tp (t)
Re(t)

)
. (29)

Thus, the system (P3) is equivalent to

d

dt
A(t) = ĥ (∇xT (A(t), g(t)), A(t)) A(t) , (30)

with ĥ : M3×3 ×M3×3 7→M6×6

ĥ (∇xT (A(t), g(t)), A(t)) =
(
−∂χ(ΣE(t))T 0

0 ν+ skew(B(t))

)
, (31)

where ΣE and B are expressions depending on A = (F−Tp , Re) and on

F = ∇xϕ = ∇xT (A, g) , (32)

where ϕ = T (A, g) is the unique solution of the (elastic) elliptic boundary value
problem at given A whose existence has been established by making use of the
extended Korn inequality. By use of refined elliptic regularity results Ebenfeld
[15] it can be shown that T is indeed locally Lipschitz (note that in the general
finite case of Theorem 8.3 we had instead to assume that T is well defined
and locally Hoelder continuous). It remains to show that the right hand side
as a function of A is locally Lipschitz in some properly defined Banach space
allowing to apply the well known local existence and uniqueness theorem. This
part then is standard since the subdifferential is sufficiently smooth.

In a recent numerical study Neff&Wieners [44] the approximation inher-
ent in (P3) has been completely justified for structural applications.
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11 Discussion

In the first part of the contribution we saw that finite elasto-plasticity based on
the multiplicative decomposition allows the successful application of the direct
methods of variations to the static elastic trial step. This feature is generally
lost for additive ansatzes.

The only additional requirement necessary is polyconvexity of the elastic
free energy, which can be easily met. However, elastic free energies defined on
Hencky strains are not polyconvex, leading to a loss of ellipticity.

Polyconvexity in itself, however, is not sufficient to treat the coupled prob-
lem. Certain mathematical problems can be circumvented in the case of small
elastic strains but finite deformations. The investigated model for small elastic
strains combines mathematical simplifications with additional physical mech-
anisms. The introduced evolution equation for ‘elastic’ rotations Re leads to
deformation induced texture evolution and Re can conceptually be interpreted
as the elastic part of the total rotation of grains in a polycrystal, see Neff [41].

All presented mathematical results are obtained for essentially fully rate
dependent viscous models. Our investigations suggest that introducing viscous
behaviour in the finite deformation regime is still enough to regularize the initial
boundary value problem. Yet, the smoothness of the plastic variables may
deteriorate in finite time leading to bifurcation or fracture. In the viscous case,
however, this is entirely a problem of the smoothness of the elastic moduli set
by the internal variables. It remains to investigate which type of mechanism
could prevent this catastrophic loss of smoothness.

The flow based approach hinges on the assumption that the flow rule is
locally Lipschitz thus excluding rate independent material behaviour. It may
therefore turn out that the qualitative picture for rate independent behaviour
changes dramatically, e.g. microstructure could immediately develop even for
smooth data. Numerical calculations based on the time incremental formula-
tion seem to indicate this possibility, cf. Carstensen&Hackl [8] and Or-
tiz&Repetto [46].

First mathematical ideas suggest that a physically motivated backstress evo-
lution, based on augmenting the thermodynamic potential with quantities mea-
suring the local incompatibility, such as ‖FTp CurlFp‖, could prevent the above
mentioned failure process and at the same time introducing a length scale into
the model.

The ensuing coupled system, however, is drastically changed: instead of the
ordinary differential evolution equation, one has to solve a degenerate parabolic
system for the evolution of the plastic variable. The standard numerical treat-
ment of elasto-plasticity does not any longer apply.
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