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1 Non-ellipticity of the Hencky energy

It has been known for a while that the quadratic
isotropic Hencky energy WH with [6]

WH(F ) = µ ‖devn logU‖2 +
κ

2
[tr(logU)]2 , (1)

which is based on the logarithmic strain measures [9, 5]
‖devn logU‖2 , ‖logU‖2 and [tr(logU)]2 , (2)

where U =
√
F TF denotes the Biot stretch tensor

corresponding to the deformation gradient F , is not
overall rank-one convex [8, 3]. Rank-one convexity (or
Legendre-Hadamard ellipticity) is a necessary condition
for polyconvexity, which, in turn, is an essential require-
ment for the applicability of existence proofs based on
the direct methods of the calculus of variations [1]. This
shortcoming raises some concern regarding the suitabil-
ity of the Hencky model in finite element methods, al-
though (rather large) ellipticity domains of the Hencky
energy have been determined explicitly [3, 4].
Moreover [7], for n ≥ 3, there exists no strictly mono-
tone function Ψ: [0,∞) → R such that either of the
energy functions W : GL+(n)→ R with
W (F ) = Ψ(‖logU‖2) or W (F ) = Ψ(‖devn logU‖2)

is elliptic. If Ψ is additionally twice-differentiable, then
there exists no smooth function Wvol : (0,∞) → R
such that the energy W : GL+(n)→ R with

W (F ) = Ψ(‖devn logU‖2) + Wvol(det F )

is Legendre-Hadamard elliptic.

2 A polyconvex extension of the clas-
sical Hencky energy

In order to find an elliptic energy function which ap-
proximates (or, better yet, is identical to) the Hencky
strain energy in the small-strain range, we adapt an
approach by Ball, Muite, Schryvers and Tirry [2] to
construct a polyconvex (and thus rank-one convex) ex-
tension of the quadratic-logarithmic Hencky energy (1)
and, more generally, for suitable energy expressions of
the Valanis-Landel type. In addition, the extension of
the Hencky energy considered here is (unconditionally)
coercive, which implies an immediate applicability of
the direct methods of the calculus of variations to prove
the existence of energy minimizers under appropriate
boundary conditions.
Lemma. For γ ≤ 1, let
Sγ := {F ∈ GL+(n) |

eγ−1 < λ < eγ for each singular value λ of F} .

Then the function

W : Sγ → R , W (F ) = ‖log
√
F TF‖2 =

n∑
i=1

ln2(λi)

has a polyconvex extension W̃γ : GL+(n) → R to
GL+(n), which is given by

W̃γ(F ) =
n∑

i=1

ϕγ(λi) − (2− 2γ) ln(det F ) ,

where

ϕγ(λ) =


−(γ − 1)2 : λ ≤ eγ−1 ,

ln2(λ) + (2− 2γ) ln(λ) : eγ−1 < λ < eγ ,

−γ2 + 2γ + 2
eγ (eλ−e

γ − 1) : eγ ≤ λ .
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Figure 1: The function ϕγ for different values of γ.

Proposition. Let WH denote the quadratic Hencky
energy, given by

WH(F ) = µ ‖log
√
F TF‖2 +

Λ

2
[tr(log

√
F TF )]2 ,

where µ is the shear modulus and Λ is the first Lamé
parameter. If Λ ≥ 0, then the restriction of WH to the
set

S1/3 = {F ∈ GL+(n) |
e−2/3 < λ < e1/3 for each singular value λ of F}

has a polyconvex extension to GL+(n).

The energy W̃H is polyconvex as well as coercive and
bounded below, allowing for a direct application of
Ball’s classical result on the existence of minimizers [1].

Proposition. Let Ω ⊂ Rn be a bounded smooth do-
main, ΓD be a non-empty and relatively open part of the
boundary ∂Ω and ϕ0 ∈ W 1,q(Ω) for some q > 1 such
that

∫
Ω W̃H(∇ϕ0(x)) dx <∞. Then the minimization

problem

min
ϕ∈W 1,p(Ω)
ϕ|ΓD=ϕ0

∫
Ω

W̃H(∇ϕ(x)) dx

admits at least one solution ϕ̂ ∈ W 1,p(Ω).
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Figure 2: The function fγ : λ 7→ W̃γ(λ1) compared to the map-
ping f : λ 7→ WH(λ1) with µ = 1 and Λ = 0; note the singularity
at λ = 0.

3 Valanis-Landel energies

We can apply the same extension method to the more
general case of Valanis-Landel type energy functions,
i.e. to functions of the form

WVL : GL+(n)→ R , WVL(F ) =
n∑

i=1

w(λi)

with a scalar function w : (0,∞) → R. Functions of
this type were suggested by Valanis and Landel [11] as a
general hyperelastic model for incompressible materials,
but are often coupled additively with volumetric energy
terms in order to obtain elastic models for compressible
materials (including the quadratic Hencky energy WH
as well as Ogden’s classical material model [10]). Note
that the energy WVL can only be compatible with linear
elasticity at the identity 1 if w(1) = 0, w ′(1) = 0 and
w ′′(1) > 0; the latter two conditions represent the re-
quirements of a stress-free reference configuration and
ellipticity at 1, respectively.
Proposition. Let w ∈ C 2((0,∞)) such that w ′(1) =
0 and w ′′(1) > 0. Then the function

WVL : GL+(n)→ R , WVL(F ) =
n∑

i=1

w(λi)

has a polyconvex extension from a neighborhood of the
identity F = 1 to GL+(n).
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