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1 Introduction

An anti-plane shear (APS) deformation [5, 4, 1] is a map-
ping o of the form p(xq, x0, x3) = (x1, X2, x3 + u(xq, x2))T with
an arbitrary scalar valued function u. Let a = uy,, 5 = ux,
and 72 = || Vul||? = o 4+ 5%. Then
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and the three isotropic matrix invariants of the left Cauchy-Green
deformation tensor B are given by

h=trB=3++%, h=tr(CofB)=3+~%, k=detB=1.

Framework

For a cylinder-shaped stress-free elastic isotropic body Q C R3,
Dirichlet boundary conditions corresponding to an APS-function
are applied to the lateral sides. We consider deformations that are
stationary points of the energy functional ¢ — [ W(V)dx.
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A global equilibrium is a stationary point of the variational
problem, i.e. a solution to the corresponding Euler-Lagrange equa-

tion Div[DW (V)] = 0. In the case of isotropy, we can express
W(F) = W(l, b, ) in terms of the invariants of B, and
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DW(F)=2—F +2——(h1—-B)F +2Lh——F " .
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Then the Euler-Lagrange equations are
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Div|{2——F +2——(h1 — B)F +2h3——F =0. (1
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A global APS-equilibrium is a stationary point of the full vari-
ational problem (global equilibrium) that has the form of an APS-
deformation. With
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G(h, b) =2—  H(hk, b):=2 + ) ,
(h. ) oh |, (h, ) (8/1 o ),
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the Euler-Lagrange equations (1) for an APS-deformation read

dx = (QzG),Xl + (aBG) x,, ()
Gx = (ABG) x + (52G),X2 ) (1)
0= (aH)x + (BH) x, - (1)

This system of differential equations for the scalar-valued function
u(x1, x2) is over-determined by two equations.

An APS-equilibrium is a stationary point of our variational prob-
lem with respect to the restriction of the energy functional to the
class of APS-deformations:

/ W3+ [Vul 3+ [VulP, 1) dx — min.
Q

The single corresponding Euler-Lagrange equation is given by

div a—'/'/(/1,/2,1)+a—W(/l,/zJ) Vu| =0 < (Ill).
oh ol

h=h=3+|Vul|?
In particular, every global APS-equilibrium is an APS-equilibrium,

but not the other way around.

Questions

e Under which conditions is every APS-equilibrium a global
APS-equilibrium?

e Under which conditions does an APS-equilibrium exist?
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2 Compatibility conditions

[APS—Framework . Tension-
(K1) < compression
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Cauchy shear

Rank-1 convexity =>[APS—convexity]4=> stress monotonicity

in simple shear

The existence of a solution to equation (Il1) can be ensured by the
sufficient (but not necessary) condition of APS-convexity:

Vur—s WEB+||Vul? 3+ ||Vu|? 1) isconvex.  (2)

In [5], we showed that
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W is APS-convex <+ W(3+ R2, 3+ RZ, 1) >0.

Given a solution of equation (lll) (i.e. an APS-equilibrium),
Knowles' first energy function compatibility condition [3]

Knowles1 3bcR:Vh=h>3hL=1:

ow ow
b——(h b )+ (b—1)—=—(h h ) =0 (K1)
oh oh

ensures that the two other Euler-Lagrange equations (1) and (1)
reduce to one single new equation
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Expressed in its original notation, this leads to the following second
compatibility condition of the energy W(F):

Knowles 2 V /1 = /2 > 3, /3 =1: (K2)
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Under the constraint of incompressibility (det F = 1), it can be
shown that the second condition (K2) is redundant [2] and that ev-
ery energy function which satisfies (K1) already ensures that every
APS-equilibrium is also a global APS-equilibrium.

Several important energy functions have been tested [6] for the
compatibility conditions (K1) and (K2) as well as APS-convexity.
For example, the volumetric-isochoric decoupled Mooney-Rivlin
energy function

WIN

1
W(F) ="t (a(l1/33 —3)+ (1 —a)(hh * - 3)> + h(k) (3)
is APS-convex, but only satisfies condition (K1). Therefore, there
exists an APS-equilibrium for arbitrary APS-boundary conditions,
but only in the case of incompressibility it is ensured that every
APS-equilibrium is also a global equilibrium. The Blatz-Ko en-
ergy function
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#) =5 (h+7z-5) (4
on the other hand, additionally satisfies condition (K2). Therefore,
in the general compressible (as well as the incompressible) case,

every APS-equilibrium is also a global equilibrium. In contrast, the
Veronda-Westman energy function

eV(h=3) _ _
W(F)u< 7 L 3) +h(l)  (5)
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is APS-convex too, but satisfies neither (K1) nor (K2). Therefore,
there exists an APS-equilibrium under arbitrary APS-compatible
boundary conditions, but it is uncertain whether or not this is also
a global equilibrium, even under the constraint of incompressibility.
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3 Connections to constitutive require-
ments in nonlinear elasticity

An energy function W on GL"(3) is called rank-one convex if

t — W(F 4+ t&®n) is convex on [0,1] for all F € R3*3 and all
E,n € R3. Since within the class of APS-functions
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we find that

rank-one convexity =—> APS-convexity .

Moreover, for simple shear ¢(xj, xp, x3) = (x1 + Yx2, X, X3)T
with v € R, APS-convexity is closely connected to the physically
reasonable monotonicity condition

d (7) h
——o12(7) =
dy (d7)?

W3 ++%3++%1) >0 (6)

on the Cauchy shear stress o15:

%012(7) >0 <= APS-convexity.

Furthermore, any tension-compression symmetric energy, i.e.
any energy function W with

W(F) = W(FY) W(/L/z,/g):vv(f—j,f—;%) 7)

for all F € GL™(3), satisfies Knowles' first condition:

Tension-compression symmetry =—> (K1) with b =

N|—

Finite element simulations are able to visualize the difference
between an APS- and a global non-APS-equilibrium. An APS-
deformation has to maintain the given grid-structure within each
x1-xo—plane, whereas arbitrary non-APS-deformations will relocate
the nodes and therefore change the original structure of the grid. In
the quasi-incompressible case (bulk modulus K ~ 10°; shear mod-
ulus), the Mooney-Rivlin energy (left) ensures an APS-equilibrium,
whereas the global equilibrium for the Veronda-Westman model

(right) does not have the shape of an APS-deformation:

Similarly, in the compressible case (bulk modulus K ~ p shear
modulus), the Blatz-Ko model yields an APS-equilibrium, whereas
the global equilibrium with respect to the Mooney-Rivlin energy
does not attain the shape of an APS-deformation:
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