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1 Introduction
For a deformation x = ϕ(X ), changes of length, area, and vol-
ume are governed by F = ∇ϕ, Cof F = det(F )F−T , and
J = det(F ) > 0, respectively. From the deformation we get a
displacement field u(X ) = ϕ(X )− X = x − X .

Ω ϕ(Ω)
ϕ

2 Linear elastic deformations
The isotropic linear elastic energy takes the form

Wlin(∇u) = µ‖dev sym∇u‖2 +
κ

2
[tr(sym∇u)]2 , (1)

in which µ > 0 is the shear and κ > 0 the bulk modulus. The
corresponding stress-strain law is

σ = 2µ dev ε + κ tr(ε)1 , (2)

with the infinitesimal strain tensor ε = sym∇u. It is invertible if
and only if µ > 0 and κ > 0. Then σ−1 : Sym(3) → Sym(3)
exists. In addition when the Cauchy stress σ = T is constant, the
homogeneous displacement

u(X ) =
[
σ−1(T ) + A

]
X + b , (3)

is uniquely determined, up to infinitesimal rigid body rotations
A ∈ so(3) and translations b ∈ R3.
Furthermore, there is basically only one stress tensor in linear elas-
ticity, because in linear approximition all stress tensors are identical.

3 Nonlinear elastic deformations
In contrast to linear elasticity, in nonlinear elasticity many differ-
ent stress tensors exist. For example the first Piola-Kirchhoff stress
S1 = DFW (F ) and the true Cauchy stress σ = S1(F ) ·(Cof F )−1.

Questions

• Does homogeneous Cauchy stress σ imply homogeneous
strain in nonlinear elasticity?
• If not, how can a homogeneous Cauchy stress be generated

by non-homogeneous finite strain deformations?

We already know that

σ homogeneous =⇒ divϕ(Ω) σ = 0 , “self-equilibrated field”
homogeneous strain =⇒ all stress tensors are homogeneous.

Moreover, for a homogeneous isotropic hyperelastic body under
finite strain deformation, the Cauchy stress tensor takes the form

σ(B) = β01 + β1B + β−1B
−1, (4)

where B = FFT is the left Cauchy-Green tensor and

β0 =
2√
I3

(
I2
∂W

∂I2
+ I3

∂W

∂I3

)
, β1 =

2√
I3
∂W

∂I1
, β−1 = −2

√
I3
∂W

∂I2
are scalar functions of the principal invariants

I1(B) = trB = ‖F‖2, I2(B) =
1

2

[
(trB)2 − trB2

]
= ‖Cof F‖2,

I3(B) = detB = (det F )2,

with W (I1, I2, I3) as the strain energy density function describ-
ing the physical properties of the isotropic hyperelastic mate-
rial. W should be stress free in the reference configuratin Ω, i.e.
β0 + β1 + β−1|F=1 = 0.
If σ : Sym+(3) → Sym(3) is invertible, then for constant
Cauchy stress σ = T we have a unique left Cauchy-Green ten-
sor B ∈ Sym+(3) which satisfies

∇ϕ(∇ϕ)T = B = σ−1(T ) . (5)

The latter implies (formally equivalent to the infinitesimal situa-
tion) that

ϕ(X ) =
(
V R

)
X + b =

[√
σ−1(T )R

]
X + b , (6)

where R ∈ SO(3) is an arbitrary constant rotation, b ∈ R3 is an
arbitrary constant translation, and V is the left principal stretch
tensor satisfying V 2

= B , that is uniquely determined by the given
Cauchy stress σ = T .

3.1 Geometric compatibility
Assume that the deformation ϕ is continuous and the deforma-
tion gradient takes on two different values F and F̂ such that
B = FFT 6= F̂ F̂T = B̂ . We already know that continuity of ϕ
requires the Hadamard jump condition F − F̂ = a⊗ n, where
n is the normal vector to the interface between the two phases
with deformation gradients F and F̂ , and ⊗ denotes the dyadic
product. The rank-one connection of F and F̂ is equivalent to this
proposition and shows that the deformation gradient ∇ϕ can only
jump along a unique straight interface.

3.1.1 Example: Compatible 2D deformations

An elastic square is partitioned into uniform right-angled triangles,
such that the deformation gradient is homogeneous on every tri-
angle. Then, if ϕ is continuous everywhere, and the deformation
gradient is F on one set of triangles and F̂ on the remaining set,
such that rank

(
F − F̂

)
= 1, the two sets are separated by a

single straight line.

Therefore there are no layers of the domain where these sets can
alternate.
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3.2 New strain energy function
We define the strain energy function

W =
µ

2

(
I−1/3
3 I1 − 3

)
+
µ̃

4
(I1 − 3)2 +

κ

2

(
I1/2
3 − 1

)2
, (7)

where µ > 0 is the infinitesimal shear modulus, κ > 0 is the
infinitesimal bulk modulus, and µ̃ > 0 is a positive constant inde-
pendent of the deformation. For this material,

β0 = −µ
3
I1I
−5/6
3 + κ

(
I1/2
3 − 1

)
, β1 = µI−5/6

3 + µ̃I−1/2
3 (I1 − 3) ,

β−1 = 0 ,

depending only on the principal invariants I1 and I3.
And W is stress free in the reference configuration. [1] We take

F =

 k sa 0
0 a 0
0 0 1/a

 , F̂ =

 k −sa 0
0 a 0
0 0 1/a

 ,

where k > 0, a > 0, and s > 0 are positive constants. The
corresponding left Cauchy-Green tensors are

B =

 k2 + s2a2 sa2 0
sa2 a2 0
0 0 1/a2

 , B̂ =

 k2 + s2a2 −sa2 0
−sa2 a2 0

0 0 1/a2

 ,

and have the same principal invariants. The associated Cauchy
stress tensors are

σ(B) = β0 1 + β1 B , σ(B̂) = β0 1 + β1 B̂ ,

with

β0 = −µ
3
k−5/3

(
k2 + s2a2 + a2 +

1

a2

)
+ κ (k − 1) ,

β1 = µk−5/3 + µ̃k−1
(
k2 + s2a2 + a2 +

1

a2
− 3

)
.

Then, if

µ
3µ̃ <

(
3−a2−1/a2

4

)4/3
and 0 < s < 1

a

√
3− 4

(
µ

3µ̃

)3/4
− a2 − 1

a2
,

there exists k = k0 ∈ (0, 1), such that

β1 = 0 and σ(B) = β01 = σ(B̂) .

Thus, we obtain homogeneous Cauchy stress although we suppose
a non homogeneous deformation.

4 A truly large deformation result

We know that W is strictly rank-one convex on GL+(3) ={
A ∈ R3×3 | detA > 0

}
if it is strictly convex on all closed line

segments in GL+(3) with end points differing by a matrix of rank
one, i.e.,

W (F + (1− θ) ξ ⊗ η) < θW (F ) + (1− θ)W (F + ξ ⊗ η) ,
(8)

for all F ∈ GL+(3), θ ∈ [0, 1] and all ξ, η ∈ R3 with F + tξ⊗η ∈
GL+(3) for all t ∈ [0, 1]. The strain-ernergy function W in (7) is
not rank-one convex due to the presence of the µ̃-term.

Theorem: Strict rank-one convexity implies that Cauchy stress
is injective along rank-one lines, i.e.
σ(F + ξ ⊗ η) = σ(F ) =⇒ ξ ⊗ η = 0. [5]

Remark: Similar to linear elasticity, strict rank-one convexity
does not imply that homogeneous Cauchy stress necessitates
homogeneous strain.

5 Outlook

Invertibility of the first Piola-Kirchhoff stress S1 violates material
objectivity (frame-indifference). Therefore, it cannot be imposed.
However, contrary to S1, invertibility of the Cauchy stress tensor σ
is not at variance with any known physical principle, and therefore,
it may be imposed as a constitutive requirement.
An example is the exponentiated Hencky-type energy with
the left stretch tensor V =

√
FFT

WeH(logV ) =
µ

κ
e‖dev3 logV ‖2 +

κ

2κ̂
eκ̂ [tr(logV )]2 (9)

σeH(logV ) = 2µ eκ ‖dev3 logV ‖2−tr(logV ) · dev3 logV

+ κ eκ̂ [tr(logV )]2−tr(logV ) tr(logV ) · 1 . (10)

σeH is invertible, while WeH is not rank-one convex. [2, 3, 4]

Moreover in finite strain elasticity strict rank-one convexity and
homogeneous Cauchy stress excludes rank-one laminates, but a
construction similar to the linearized case shows that there ex-
ists non-unique inhomogeneous strains for homogeneous Cauchy
stress. So strict rank-one convexity is not enough to ensure that
homogeneous Cauchy stress implies homogeneous strain.
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