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1 Introduction

For a deformation x = ¢(X), changes of length, area, and vol-

ume are governed by F = V¢, Cof F = det(F)F~', and
J = det(F) > 0, respectively. From the deformation we get a
displacement field u(X) = p(X) — X = x — X.

2 Linear elastic deformations

The isotropic linear elastic energy takes the form
K
Wiin(V ) = pil|dev sym Vul[* + 5 [tr(sym vt (1)

in which 4 > 0 is the shear and Kk > 0 the bulk modulus. The
corresponding stress-strain law is

o =2udeve + rtr(e)l, (2)

with the infinitesimal strain tensor € = sym Vu. It is invertible if
and only if £ > 0 and K > 0. Then o~ ! : Sym(3) — Sym(3)
exists. In addition when the Cauchy stress 0 = T is constant, the
homogeneous displacement

u(X) = [a—l(T) + Z} X +b, (3)

is uniquely determined, up to infinitesimal rigid body rotations

A € s0(3) and translations b € R3.
Furthermore, there is basically only one stress tensor in linear elas-
ticity, because in linear approximition all stress tensors are identical.

3 Nonlinear elastic deformations

In contrast to linear elasticity, in nonlinear elasticity many differ-
ent stress tensors exist. For example the first Piola-Kirchhoff stress

S; = DEW/(F) and the true Cauchy stress o = S;(F)-(Cof F)~L.
Questions

e Does homogeneous Cauchy stress o imply homogeneous
strain in nonlinear elasticity?

e |f not, how can a homogeneous Cauchy stress be generated
by non-homogeneous finite strain deformations?

We already know that

o homogeneous — divw(Q) o =0, “self-equilibrated field”
homogeneous strain = all stress tensors are homogeneous.

Moreover, for a homogeneous isotropic hyperelastic body under
finite strain deformation, the Cauchy stress tensor takes the form

7(B) = Bol + /1B +5_1B7 1, (4)

where B = FF T is the left Cauchy-Green tensor and

2 ow ow 2 oW ow
= [ lp— + I3— = 1= 23—
& \/E<23I2+38|3)'51 o = Vg,

are scalar functions of the principal invariants

1
L h(B)=7 {(tr B)® — tr 82} = [|Cof F%,

1(B) =tr B = ||F|
3(B) = det B = (det F)?,

with W(l{, 15, 13) as the strain energy density function describ-
ing the physical properties of the isotropic hyperelastic mate-
rial. W should be stress free in the reference configuratin €2, i.e.
Bo+ B1+ B-1|lF=1 = 0.

If o : Sym™(3) — Sym(3) is invertible, then for constant

Cauchy stress 0 = T we have a unique left Cauchy-Green ten-
sor B € Sym™(3) which satisfies

Ve(Ve) =B=0"}(T). (5)

The latter implies (formally equivalent to the infinitesimal situa-
tion) that
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where R € SO(3) is an arbitrary constant rotation, b € R3 is an
arbitrary constant translation, and V' is the left principal stretch

tensor satisfying VQ_: B, that is uniquely determined by the given
Cauchy stress 0 = T.

3.1 Geometric compatibility

Assume that the deformation ¢ is continuous and the deforma-
tion gradient takes on two different values F and F such that
B=FF'T =+ FFT = B. We already know that continuity of ¢
requires the Hadamard jump condition F — F = a® n, where
n is the normal vector to the interface between the two phases
with deformation gradients F and F, and ® denotes the dyadic

product. The rank-one connection of F and F is equivalent to this
proposition and shows that the deformation gradient V¢ can only
jump along a unique straight interface.

3.1.1 Example: Compatible 2D deformations

An elastic square is partitioned into uniform right-angled triangles,
such that the deformation gradient is homogeneous on every tri-
angle. Then, if ¢ is continuous everywhere, and the deformation

gradient is F on one set of triangles and F on the remaining set,
such that rank (F — F) = 1, the two sets are separated by a

single straight line.

Therefore there are no layers of the domain where these sets can
alternate.
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3.2 New strain energy function

We define the strain energy function

I —1/3 i > K (1/2 2
W= (5P =3) + S =92+ (1), (@
where 11 > 0 is the infinitesimal shear modulus, x > 0 is the
infinitesimal bulk modulus, and ji > 0 is a positive constant inde-

pendent of the deformation. For this material,

fo = =50t ® 0+ (152 = 1) L By =y ™0 iy V21— 3)

3
B_1=0,

depending only on the principal invariants |; and I5.
And W is stress free in the reference configuration. [1] We take

k sa 0 R k —sa 0
F=({0a 0 [, F=1{0 a 0 [,
001/a 0 0 1/a

where kK > 0, a > 0, and s > 0 are positive constants. The
corresponding left Cauchy-Green tensors are

k215232 532 0 R (k215232 —sa2 0 ]
B = sa? 2 0 , B = —53° 22 0
0 0 1/a° 0 0 1/a°

and have the same principal invariants. The associated Cauchy
stress tensors are

o(B)=Fol+ /1B, o(B)=0Fol+p1B,

with

3 a

1
By = k=53 4+ ikl <k2 +s%a® + 2"+ — — 3) |
a

1
Bo = _Hy—5/3 (k2+5232+32+—2) +k(k—1),

Then, if

=

2172\ 4/3 374
37 (3 341/3) and0<5<%\/3—4(3ﬂ)/_a2_%,

there exists k = kg € (0, 1), such that

o(B) = Bl = o(B).

1 =0 and

Thus, we obtain homogeneous Cauchy stress although we suppose
a non homogeneous deformation.

4 A truly large deformation result

We know that W is strictly rank-one convex on GL™(3) =
{A c R¥3| det A > O} if it is strictly convex on all closed line

segments in GL™(3) with end points differing by a matrix of rank
one, I.e.,

W(F+(1—-0)®n) <9W(F)+(1—9)W(F+g®n)(,8)

forall F € GLT(3), 6 € [0,1] and all £, 17 € R3 with F+t6®1n €
GL™(3) for all t € [0,1]. The strain-ernergy function W in (7) is
not rank-one convex due to the presence of the ji-term.

Theorem: Strict rank-one convexity implies that Cauchy stress
is injective along rank-one lines, i.e.

o(F+&é®@n)=0(F) = £®n=0.[5]

Remark: Similar to linear elasticity, strict rank-one convexity
does not imply that homogeneous Cauchy stress necessitates
homogeneous strain.

5 OQutlook

Invertibility of the first Piola-Kirchhoff stress S; violates material
objectivity (frame-indifference). Therefore, it cannot be imposed.
However, contrary to Sy, invertibility of the Cauchy stress tensor o
is not at variance with any known physical principle, and therefore,
it may be imposed as a constitutive requirement.

An example is the exponentiated Hencky-type energy with

the left stretch tensor V = VFFT

Wep(log V) = L elldevatog VI . 2 o lillog VY (9)
K K
oy(log V) = 2 " |devs log V||?—tr(log V) devs log V
1+ g ebltrllog VIP—tr(log V) yjog ). 1. (10)

0oH is invertible, while W,y is not rank-one convex. [2, 3, 4]

Moreover in finite strain elasticity strict rank-one convexity and
homogeneous Cauchy stress excludes rank-one laminates, but a
construction similar to the linearized case shows that there ex-
ists non-unique inhomogeneous strains for homogeneous Cauchy
stress. So strict rank-one convexity is not enough to ensure that
homogeneous Cauchy stress implies homogeneous strain.
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