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1 Introduction

The term shear [8] describes a number of closely related but dis-
tinct concepts, including the (pure) shear stress

T s =

0 s 0

s 0 0

0 0 0


e1

e2
e3

with s ∈ R and the (simple) shear deformation
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with the ammount of shear γ ∈ R. It is well known that in isotropic
linear elasticity, every simple shear deformation Fγ = 1+ εγ + ωγ
corresponds to an infinitesimal pure shear stress tensor σlin.

γ
1 + εγ

Fγ = 1 + εγ + ωγ

Here, εγ = γ
2 (e1⊗ e2+ e2⊗ e1) donates the infinitesimal shear

strain.
In nonlinear elasticity, on the other hand, a non-trivial Cauchy pure
shear stress tensor σ = T s never corresponds to a simple shear de-
formation Fγ. Therefore, the finite generalization of infinitesimal
shear must take another form. [1, 4, 3]
Given a Cauchy pure shear stress σ = T s , the guiding questions
are:

1. Independent of the particular elasticity law, which kind of de-
formations correspond to pure shear stress?

2. Which of these deformations are suitable to be called “shear”?
3. Which constitutive requirements ensure that only “shear” de-

formations correspond to pure shear Cauchy stress?

2 Pure shear stress

Starting with the first question, we utilize the fact that the left
Cauchy-Green deformation tensor B = FFT and the correspond-
ing Cauchy stress tensor σ̂(B) commute for any isotropic stress
response. Thus B and σ̂(B) are simultaneously diagonalizable [7].
If σ̂(B) = T s , then it can be shown that B commutes with σ̂(B)
if and only if B has the form

B =

p q 0

q p 0

0 0 r

 (1)

with p = 1
2(µ1 + µ2), q = 1

2(µ1 − µ2) and r = µ3, where
µ1,µ2,µ3 ∈ R+ are the eigenvalues of B . This determines the
form of the deformation gradient F itself:

If B = FFT commutes with a Cauchy pure shear stress tensor,
then F is uniquely determined by

F = Fγ diag(a, b, c)Q =
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up to an arbitrary Q ∈ SO(3).

3 Finite simple shear deformation
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In order to answer the second question, we introduce the notion
of an idealized shear deformation which translates the character-
istic infinitesimal properties of the simple shear into the setting of
finite elasticity:

We call F = V R ∈ GL+(3) with V ∈ Sym+(3) and R ∈ SO(3)

an (idealized) finite shear deformation if the following require-
ments are satisfied:

i) The stretch V (or, equivalently, the deformation F ) is
volume preserving, i.e. detV = 1.

ii) The stretch V is planar, i.e. V has the eigenvalue 1 to the
eigenvector e3.

iii) The rotation R is such that the deformation F is ground
parallel, i.e. e1, e3 are eigenvectors of F .

In terms of the singular values λ1,λ2,λ3 ∈ R+ of F , i.e. the eigen-
values of V , the first two conditions can be stated as λ1λ2λ3 = 1

and λ3 = 1, respectively. In particular, i) and ii) are satisfied if
and only if there exists λ ∈ R+ with λ1 = λ, λ2 = 1

λ and λ3 = 1.
These considerations lead to the concept of the (idealized) left fi-
nite simple shear deformation as well as the (idealized) finite
pure shear stretch as the class of deformations which exhibit
the general form (2) and are suitable to be called “shear”:

For α ∈ R, we call F ∈ GL+(3) an (idealized) left finite simple
shear deformation gradient if F = Fα has the form
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and V ∈ Sym+(3) a finite pure shear stretch if V = Vα has
the form

Vα =

cosh(α) sinh(α) 0

sinh(α) cosh(α) 0

0 0 1

 = exp
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 . (4)

Note that the definition of finite shear deformation is a direct gen-
eralization of the infinitesimal behavior: the infinitesimal (classcial)
simple shear Fγ is planar, ground parallel and infinitesimally volume
preserving (tr(εγ) = 0). The transition mechanism of inifinitesi-
mal stretch to finite stretch is the matrix exponential via the
identification γ = 2α.

infinitesimal pure shear strain εγ finite pure shear stretch Vα

exp

4 Constitutive conditions

For the third question, it is important to note that whether
or not a deformation gradient F corresponding to a Cauchy pure
shear stress is a finite shear deformation depends on the particu-
lar stress response function. Similarly, not every constitutive law
ensures that every idealized finite shear of the form (3) induces a
Cauchy pure shear stress tensor.

In particular, for a given stress response, a finite pure shear stretch
always induces a pure shear stress if and only if for all λ ∈ R+,
there exists s ∈ R such that

λ1 = λ , λ2 =
1

λ
, λ3 = 1 =⇒ σ1 = s , σ2 = −s , σ3 = 0 ,

where σi denotes the i–th eigenvalue of σ̂(FFT ) for F =

diag(λ1,λ2,λ3). It follows:

Let W : GL+(3)→ R be an elastic energy of the form

W (F ) = Wtc(F ) + f (det F ) , (5)

where Wtc : GL+(3) → R is a sufficiently smooth tension-
compression symmetric function, i.e. Wtc(F

−1) = Wtc(F ) for
all F ∈ GL+(3), and f : R+ → R is differentiable with f ′(1) = 0.
Then σ̂(B) = σ̂(V 2) is a pure shear stress for every finite pure
shear stretch V = Vα.

The most important classes of energy functions that satisfy the
above conditions are the Hencky-type isotropic elastic energy
functions [6, 5]

W (F ) =W
(
‖dev logV ‖2, |tr logV |2

)
(6)

and energy functions which exhibit an additive isochoric-
volumetric split of the form

W (F ) = Wiso

(
F

(det F )1/3

)
+ f (det F ) (7)

with a tension-compression symmetric isochoric part Wiso.
While the above conditions ensure that every pure shear stretch Vα
induces a Cauchy pure shear stress tensor, additional assumptions
on the energy function are required to ensure the reverse implica-
tion (i.e. that Cauchy pure shear stress induces pure shear stretch
Vα) since the Cauchy stress response is in general not invertible.

Let W be a sufficiently smooth isotropic elastic energy satisfying
the conditions (5). Furthermore, assume that W is p-coercive for
some p ≥ 1, i.e. W (F ) ≥ c ·‖F‖p+d for some c > 0 and d ∈ R,
and that W satisfies Hill’s (strict) inequality [2]

〈τ (V1)− τ (V2), log(V1)− log(V2)〉 > 0 (8)
for all V1,V2 ∈ Sym+(n) , V1 6= V2 ,

Then σ(V ) = σ̂(B) is a pure shear stress tensor if and only if
V = Vα is a pure shear stretch.

Here, τ (V ) = det(V ) · σ(V ) denotes the Kirchhoff stress
corresponding to the stretch V . For hyperelastic materials, in-
equality (8) is equivalent to the strict convexity of the mapping
X 7→ W (exp(X )) on Sym(n).
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