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1 The isotropic relaxed micromorphic model
The micromorphic model is a generalized continuum model suitable for the effective multi-
scale-description of heterogeneous media with strong contrast between microscopic and
macroscopic properties through the introduction of a characteristic length scale Lc. It
allows to incorporate new effects which extend the classical linear elastic description, e.g. size-
effects and the dispersion of waves. This model couples the macroscopic displace-
ment u ∈ R3 and an affine substructure deformation attached at each macroscopic
point encoded by the micro-distortion field P ∈ R3×3.
The relaxed micromorphic model [3–6] has been introduced in 2013 in [6] and endows
the standard Mindlin-Eringen’s representation with more geometric structure by reducing the
curvature energy term to depend only on the second order dislocation density tensor
α = −CurlP :

W =µe ‖ sym (∇u − P )‖2 + λe
2
(tr (∇u − P ))2︸ ︷︷ ︸

isotropic elastic− energy

+ µc ‖ skew (∇u − P )‖2︸ ︷︷ ︸
rotational elastic coupling

(1)

+ µmicro ‖ symP‖2 + λmicro

2
(trP )2︸ ︷︷ ︸

micro− self − energy

+
µL2

c

2
‖CurlP‖2︸ ︷︷ ︸

isotropic curvature

.

Here µe, µmicro, λe and λmicro are elasticity coefficients. The resulting elastic (relative) stress:
σ (∇u , P ) = 2µe sym (∇u − P ) + 2µc skew (∇u − P ) + λe tr (∇u − P )1 , (2)

is related only to elastic distortions e = ∇u − P . The skew-symmetry of σ is controlled
by the Cosserat couple modulus µc ≥ 0 since

skew σ = µc skew (∇u − P ). (3)

The model is well-posed in statics and dynamics including µc = 0, see [2, 5].

2 Homogenization formula for the isotropic case
Comparing classical linear elasticity with our new relaxed model for Lc → 0 we offer an a
priori relation between µe, λe, µmicro and λmicro on the one side and λmacro and µmacro on the
other side that we callmacroscopic consistency condition (see [1] for the fully anisotropic
case):

µmacro :=
µmicro µe
µmicro + µe

, 2µmacro + 3λmacro :=
(2µmicro + 3λmicro) (2µe + 3λe)

(2µmicro + 3λmicro) + (2µe + 3λe)
. (4)

For µmicro→∞ we recover the Cosserat model or micropolar model which means that
P ∈ so(3) and for Lc→ 0 we obtain classical linear elasticity with µmacro, λmacro from (4).
For comparison, the standard isotropic Mindlin-Eringen model with µc > 0 and curvature
energy depending on ‖∇P‖2 tends to a second gradient model when µe, µc→∞.

3 Dynamic formulation
The dynamical formulation is obtained defining a joint Hamiltonian and assuming stationary
action. For this, we introduce a micro-inertia density contribution η

2‖P,t‖
2, where η is the

scalar micro-inertia density. The dynamical equilibrium equations are:

ρ u,tt =Div σ = Div [2µe sym (∇u − P ) + 2µc skew (∇u − P ) + λe tr (∇u − P )1] ,

η P,tt =2µe sym (∇u − P ) + 2µc skew (∇u − P ) + λe tr (∇u − P )1 (5)
− [2µmicro symP + λmicro tr(P )1]− µL2

c Curl CurlP.

This system is a generalized tensorial Maxwell-problem for the micro-distortion P
coupled to balance of linear momentum.
In our study of wave propagation in micromorphic media we limit ourselves to the case of
plane waves traveling in an infinite domain. We suppose that the space dependence of
all introduced kinematic fields are limited to the component x1 of x which is the direction of
propagation of the wave. Therefore we look for solutions of (5) in the form:

u(x, t) = α ei(k x1−ω t) , α ∈ R3 , P (x, t) = β ei(k x1−ω t) , β ∈ R3×3 . (6)

4 Band-gaps for generalized continuum models
We present the dispersion relations obtained with different generalized continuum mod-
els. In the figures we consider uncoupled waves (a), longitudinal waves (b) and transverse
waves (c). TRO: transverse rotational optic, TSO: transverse shear optic, TCVO: transverse
constant-volume optic, LA: longitudinal acoustic, LO1-LO2: 1st and 2nd longitudinal optic,
TA: transverse acoustic, TO1-TO2: 1st and 2nd transverse optic.

(a)
0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

wr
ws

1

Wavenumber k @1êmmD

Fr
eq
ue
nc
y
w
@106

ra
dêsD

c p
k

cm
k

c s
k

TRO

TSO-TCVO

(b)
0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

wl

wp

ws

1

Wavenumber k @1êmmD

c p
k

cm
k

c s
k

LO1

LO2

LA

(c)
0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

wt

wr
ws

1

Wavenumber k @1êmmD

c p
k

cm
k

c s
k

TO1

TO2

TA

Figure 1: Dispersion relations ω = ω(k) for the relaxed micromorphic model with non-vanishing Cosserat
couple modulus µc > 0. Complete frequency band gap is the shaded intersected domain. The width of the
band gap is related to µc > 0.
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Figure 2: Dispersion relations ω = ω(k) for the standard micromorphic model with ‖∇P‖2: only a partial
band gap can be modeled.
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Figure 3: Dispersion relations ω = ω(k) for the Cosserat model obtained by letting µmicro → ∞ in the
relaxed micromorphic model: only a partial band gap can be modeled.

Dispersion relations ω = ω(k) for the second gradient model obtained as limit case of the
standard micromorphic model by letting µe → ∞ and µc → ∞ show no band gap at all
and for the linear elastic model obtained as limit case of the relaxed micromorphic model
by letting Lc→ 0 there is no dispersion of waves.

5 Conclusion
Metamaterials are artifacts composed by microstructural elements in periodic or quasi-
periodic patterns, giving rise to materials with unorthodox properties. For some of these
metamaterials, the presence of a microstructure allows for local resonances at the micro-
level which globally result inmacroscopic wave-inhibition: the energy of the incident wave
remains trapped at the level of the microstructure.
The presence of band gaps can be observed even in natural materials such as perovskites.
Indeed, these materials are characterized by microscopic rotational and stretch motions
which can been observed using Raman Spectroscopy. The respective micro-vibrational
modes, with frequencies much higher than the acoustic modes, give rise to some local reso-
nances and thus to the onset of band gaps.
The relaxed micromorphic model is the only linear, isotropic, reversibly elastic,
nonlocal generalized continuum model known to date able to predict complete fre-
quency band gaps. It is decisive to use CurlP instead of the full micro-distortion gradient
∇P and to take a positive Cosserat couple modulus µc > 0. A material not showing band
gaps must be modeled with µc ≡ 0.
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