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1 Microstructure of materials

The optimal design of the microstructure of materi-
als has enormous potential for industrial applications.
In the emerging field of computational material design,
mathematical modelling needs to reflect physical effects
on micro- and nanoscales. Simple material models are
insufficient for this task.

Figure 1: Example: Microbands and Glide planes in Copper [12]
as modelled by Cosserat theory.

2 Finite Cosserat Theory (1909)

One of the possible models for microstructured materi-
als is the finite-strain Cosserat model [2], which in-
troduces a rotational (micropolar) microstructure
field R € SO(n) in addition to the deformation gradi-
ent F := Vi € GL*(n). The strain energy W(F, R)
depends only on the quantities

U:=RTF
€ := RTD,R (Cosserat curvature tensor) .

(first Cosserat deformation tensor),

Intriguing aspects of the Cosserat model include the de-
coupling of local lattice rotation in crystals as well as a
regularized approximation of simple continua.
However, some fundamental questions remain; for ex-
ample, the effect of the Cosserat couple modulus i
(see below) is not yet completely understood [10].

3 Size-independent Cosserat hypere-
lasticity

In Cosserat hyperelasticity, the aim is to minimize the
energy

(o, R) = /Q W(U)+ L2|e)* dV

over all admissible deformations ¢: Q — R” and mi-
cropolar rotation fields R: Q — SO(n). In general, this
is a nonlinear and non-convex problem. Under quadratic
constitutive assumptions, an exhaustive existence the-
ory has been provided for appropriate boundary condi-
tions [8, 10, 9, 13, 7].
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Here, we restrict our attention to the size-independent
case L. = 0.

The elastic strain energy is closely connected to the
change of length in a material. In particular, an isom-
etry, i.e. a rigid body motion, has zero elastic energy.
This basic observation suggests the characterization of
elastic energy functions as distance measures to the
special orthogonal group SO(n) of pure rotations.
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4 Grioli’'s Theorem and the polar de-
composition

The classical Euclidean distance of the deformation gra-
dient F € GL"(n) to SO(n) is given by Grioli's theorem
[6, 11]: Let FEGL"(n) and || X|[2:=tr(XX). Then

argmin ||R — F||2 = argmin ||RTF7 11H2

Re50(n) R€50(n)

= argmin {1< [|sym(RTF — 1) [|> +1- ||skew(RTF — 1)) }
ReS0(n)

={Re(M)},
where R,(F) € SO(n) is the orthogonal part of the
polar decomposition F = Ry(F) - U with U=V FTF.
In order to find the optimal rotations that minimize the
Cosserat shear-stretch density

Wiisie(F.R) = | sym(RTF = 1) |2 + pc [|skew(RTF — 1)||?
= o]l sym(U — 1) |2 + prc [Iskew(T — 1)||2,

where 11 > 0 is the Lamé shear modulus and i > 0 is
the Cosserat couple modulus, it is no longer suffi-
cient to consider the classical (squared) Euclidean dis-
tance || X — Y||? between X, Y € R"™*".

5 Optimal Cosserat rotations

Let

rpolar,, . (F) := :rgsrg(in)W,,,vuc(F, R)
€ n

= u|lsym(RTF — 1) ||* + pic ||skew(RTF — 1)|%.

Then in the classical regime jic > p > 0, Grioli's The-
orem is still applicable: the unique minimizing rota-
tion is Ry(F). However, in the non-classical regime
1> e > 0, a generalization of the theorem is neces-
sary in order to find rpolar, , (F).

This task is simplified by two reductions: First, rescaling
the deformation gradient F to F, , = L;‘ﬁ F allows
us to reduce the case 1 > . > 0 to the basic case
=1, e = 0 [3]. Second, F can be assumed to
be in diagonal form [4, 1], i.e. we can replace F by
D := diag(v1, ..., vn), where 11 > ... > v, are the
singular values of F.

u,u:(

The problem of determining rpolar,, , (F) requires the
characterization of all (possibly nonsymmetric) real
square roots of a matrix S € Sym(n), i.e. of all
X € R™" such that X2 = S [1]. It turns out
that pitchfork bifurcations between classical and non-
classical solutions appear [1, 3] if

H = He

Vi1 + Vo 2

for the singular values vy of F. Furthermore, the global
minimizers rpolar,, , (F) are pairwise symmetric to the
polar factor Ry(F).

6 The relaxed-polar mechanism in 3D

Let Q = (q1]q2|q3) € SO(3) denote an eigenframe for
U = VFTF. Then the optimal rotation relative to
Ro(F) is a rotation around the axis g3, which is the
eigenvector of U corresponding to its smallest eigen-
value 13, and the angle of rotation is E]_

2
=+ arccos (m)
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Figure 2: The plane P™(F) := span ({q1, g2}) C TxQ of maxi-
mal stretch as defined in [4].

7 Example: ldealized nanoindentation

A possible application of finite Cosserat Theory is
the modelling of nanoindentations in copper, which
were shown by 3D-EBSD to exhibit counter-rotations
of the crystal lattice. The optimal Cosserat rotation
rpolari,y(F) can reproduce such non-classical counter-
rotations in a qualitatively similar way E]

These results on the explicit nature of the microrota-
tions in a specific Cosserat model are among the first
ones since 1909.
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