

Rank-one convexity implies polyconvexity for isotropic energies on SL(2)

Ionel-Dumitrel Ghiba, Robert J. Martin and Patrizio Neff

1 Rank-one convexity and polyconvexity on SL(2)

The notion of polyconvexity was introduced into the context of nonlinear elasticity theory by Sir John Ball in his seminal paper [1]. An exhaustive self-contained study giving necessary and sufficient conditions for polyconvexity in arbitrary spatial dimension was given by Alexander Mielke [7]. It is well known that the implications

polyconvexity \implies quasiconvexity \implies rank-one convexity

hold for functions on $\mathbb{R}^{n\times n}$ (as well as on $\mathrm{SL}(n)=\{X\in\mathbb{R}^{n\times n}\mid \det X=1\}$, see [2, Theorem 1.1]) for arbitrary dimension n. The reverse implications do not hold in general: rank-one convexity does not imply polyconvexity for dimension $n\geq 2$, and rank-one convexity does not imply quasiconvexity [3] for n>2. Whether this latter implication holds for n=2 is still an open question: the conjecture that rank-one convexity and quasiconvexity are not equivalent for n=2 is also called Morrey's conjecture [8]. For certain classes of functions on $\mathbb{R}^{2\times 2}$, however, it has been demonstrated that the two convexity properties are equivalent [12, 11, 10, 9]. In this spirit, it has been shown in [6] that any energy function $W\colon \mathrm{GL}^+(2)\to\mathbb{R}$ which is isotropic and objective (i.e. bi-SO(2)-invariant) as well as isochoric is rank-one convex if and only if it is polyconvex. Here, we consider the case of incompressible materials, i.e., we consider objective-isotropic energies $W\colon \mathrm{SL}(2)\to\mathbb{R}$ and we negatively answer Morrey's conjecture for isotropic and objective energies defined on $\mathrm{SL}(2)$.

The restrictions imposed by rank-one convexity are less strict in this case:

Definition. (Rank-one convexity) A function $W: SL(2) \to \mathbb{R}$ is called *rank-one convex* if the mapping $t \mapsto W(F + t \, \xi \otimes \eta), \ t \in \mathbb{R}$ is convex for all $F \in SL(2)$ and all $\xi, \eta \in \mathbb{R}^2$ such that $\langle \xi \otimes \eta, F^{-T} \rangle = 0$.

We recall some definitions regarding the polyconvexity of an energy W on $\mathbb{R}^{2\times 2}$ and $\mathrm{SL}^+(2)$, respectively:

Definition. (Polyconvexity)

i) (Ball [1]) A function $\widetilde{W}: \mathbb{R}^{2 \times 2} \to \mathbb{R} \cup \{\infty\}$ is called *polyconvex* if there exists a convex function $P: \mathbb{R}^5 \to \mathbb{R} \cup \{\infty\}$ such that

$$\widetilde{W}(F) = P(F, \det F)$$
 for all $F \in \mathbb{R}^{2 \times 2}$.

ii) (Mielke [7]) A function $W_{\mathsf{inc}}:\mathsf{SL}(2) \to \mathbb{R}$ is called *polyconvex* if the function

$$\widetilde{W}: \mathbb{R}^{2 \times 2} \to \mathbb{R} \cup \{\infty\}$$
, $\widetilde{W}(F) = \begin{cases} W_{\text{inc}}(F), & F \in \text{SL}(2), \\ \infty, & F \notin \text{SL}(2) \end{cases}$

is polyconvex on $\mathbb{R}^{2\times 2}.$

The following proposition is due to Alexander Mielke and assumes no regularity of the energy $[7,\,$ Theorem 5.1].

Proposition. (Mielke [7]) Let $W\colon SL(2)\to\mathbb{R}$ be an objective and isotropic function, and $\phi:[0,\infty)\to\mathbb{R}$ the unique function with $W(F)=\phi\left(\lambda_{\max}(F)-\frac{1}{\lambda_{\max}(F)}\right)$ for all $F\in SL(2)$, where $\lambda_{\max}(F)$ is the largest singular value of F. Then the following are equivalent:

- i) ϕ is nondecreasing and convex on $[0, \infty)$,
- ii) W is polyconvex (in the sense of Mielke's polyconvexity definition).

For objective and isotropic differentiable energies, a combination of the above proposition and an adaptation of the three dimensional result concerning rank-one convexity of differentiable functions due to Dunn, Fosdick and Zhang [4] leads to the following proposition [5]:

Proposition. Let $W\colon \mathsf{SL}(2)\to \mathbb{R}$ be an objective and isotropic **differentiable** function. Then, the energy W is rank-one convex if and only if W is polyconvex.

2 The main result

Our result [5] shows that rank-one convexity implies polyconvexity of an objective and isotropic energy **without assuming any regularity** of the energy. As an intermedi-

ate step in our approach we use the fact that any $F \in SL(2)$ can be viewed locally as a simple shear in a suitable direction with local amount of shear γ , followed or preceded by a suitable rotation.

Theorem. Let $W\colon \mathsf{SL}(2)\to \mathbb{R}$ be an objective and isotropic function. Then the following are **equivalent**:

- i) W is rank-one convex;
- ii) the mapping $\widetilde{\phi}:\mathbb{R} o\mathbb{R}$, $\widetilde{\phi}(\gamma)=W(\left(\begin{smallmatrix}1&\gamma\\0&1\end{smallmatrix}\right))$ is convex;
- iii) W is polyconvex;
- iv) the function $\phi:[0,\infty)\to\mathbb{R}$ satisfying $W(F)=\phi\Big(\lambda_{\max}(F)-\frac{1}{\lambda_{\max}(F)}\Big)$ is nondecreasing and convex.

3 Isochoric energies and functions on SL(2)

Any objective, isotropic and isochoric function can be written as

$$\mathit{W}(\mathit{F}) = \mathit{W}_{\mathsf{inc}}\left(rac{\mathit{F}}{(\det \mathit{F})^{1/2}}
ight)$$
 ,

where $W_{\mathsf{inc}} = W\big|_{\mathsf{SL}(2)}$ is the restriction of W to the special linear group $\mathsf{SL}(2)$.

Proposition. Let $W\colon \mathsf{GL}^+(2)\to \mathbb{R}$ be an objective, isotropic and isochoric function. If W is rank-one convex (equivalently polyconvex) on $\mathsf{GL}^+(2)$, then $W_{\mathsf{inc}}\colon \mathsf{SL}(2)\to \mathbb{R}$ is rank-one convex (equivalently polyconvex) on $\mathsf{SL}(2)$.

The reverse of the above Proposition does not hold true, in general. Consider the function $W_{iso}: \mathsf{GL}^+(2) \to \mathbb{R}$ with

$$W_{\rm iso}(F) = \left| \sqrt{\frac{\lambda_1}{\lambda_2}} - \sqrt{\frac{\lambda_2}{\lambda_1}} \right|$$

for all $F \in \mathsf{GL}^+(2)$ with singular values $\lambda_1, \lambda_2 \in \mathbb{R}^+.$ Then

- i) $W_{\rm iso}$ is objective, isotropic and isochoric on ${\rm GL}^+(2)$,
- ii) W_{iso} is not rank-one convex on $GL^+(2)$,
- iii) the restriction $W_{\rm inc} = \left.W_{\rm iso}\right|_{{\rm SL}(2)}$ of $W_{\rm iso}$ to ${\rm SL}(2)$ is polyconvex on ${\rm SL}(2)$.

References

- $\frac{\text{[1] J. M. Ball. Convexity conditions and existence theorems in nonlinear elasticity. } {\textit{Arch. Rat. Mech.}} \\ \frac{\textit{Anal., 63:337-403, 1977.}}{\textit{Anal., 63:337-403, 1977.}}$
- $\frac{\text{[2] S. Conti. Quasiconvex functions incorporating volumetric constraints are rank-one convex. \textit{J. Math. Pures Appl., 90(1):15–30, 2008.}$
- [3] B. Dacorogna. Direct Methods in the Calculus of Variations., volume 78 of Applied Mathematical Sciences. Springer, Berlin, 2. edition, 2008.
- [4] J. E. Dunn, R. Fosdick, and Y. Zhang. Rank 1 convexity for a class of incompressible elastic materials. In Rational Continua, Classical and New, pages 89–96. Springer, 2003.
- [5] I. D. Ghiba, R. J. Martin, and P. Neff. Rank-one convexity implies polyconvexity in isotropic planar incompressible elasticity. submitted, 2016.
- [6] R. J. Martin, I. D. Ghiba, and P. Neff. Rank-one convexity implies polyconvexity for all isotropic, objective and isochoric elastic energies defined in two-dimensions. *Proc. Roy. Soc. Edinburgh Sect.* A, 2016.
- [7] A. Mielke. Necessary and suffcient conditions for polyconvexity of isotropic functions. J. Conv. Anal., 12(2):291–314, 2005.
- [8] C. B. Morrey. Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math. 2(1):25-53, 1952.
- [9] S. Müller. Rank-one convexity implies quasiconvexity on diagonal matrices. *Int. Math. Res. Not.*, 1999(20):1087–1095, 1999.
- [10] P. Rosakis and H. Simpson. On the relation between polyconvexity and rank-one convexity in nonlinear elasticity. *J. Elasticity*, 37:113–137, 1995.
 [11] D. Serre. Formes quadratiques et calcul des variations. *J. Math. Pures Appl.*, 62(9):177–196, 1983.
- [12] F. J. Terpstra. Die Darstellung biquadratischer Formen als Summen von Quadraten mit Anwendung auf die Variationsrechnung. *Math. Ann.*, 116(1):166–180, 1939.

Faculty of Mathematics "Alexandru Ioan Cuza" University of Iași Blvd. Carol I, no. 11 700506 Iași, Romania

Faculty of Mathematics University of Duisburg-Essen Thea-Leymann-Straße 9 45127 Essen, Germany