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1 The relaxed micromorphic model
The relaxed micromorphic model [3–7] couples the macroscopic displacement u and a
micro-distortion field P ∈ R3×3 endowing the standard Mindlin-Eringen representation
with more geometric structure, reducing the curvature energy term to depend only on the
second order dislocation density tensor α = −CurlP :

W =µe ‖ sym (∇u − P )‖2 + λe
2
tr (∇u − P )2 + µc ‖ skew (∇u − P )‖2 (1)

+ µmicro ‖ symP‖2 + λmicro

2
( tr (P ))2 +

µeL
2
c

2
‖CurlP‖2 .

Here µe, µmicro, λe and λmicro are material parameters and Lc is a characteristic length scale.
Positive definiteness of the elastic energy is equivalent to the following simple relations for
the introduced parameters [7]:
µe > 0, µc > 0, 2µe + 3λe > 0, µmicro > 0, 2µmicro + 3λmicro > 0, Lc > 0. (2)

The kinetic energy is J = ρ
2 ‖u,t‖

2 + η
2 ‖P,t‖

2 , where ρ is the average macroscopic mass
density of the material and η is the micro-inertia density.
Comparing classical linear elasticity with our new relaxed model for Lc → 0 we offer an a
priori relation between µe, λe, µmicro and λmicro on the one side and λmacro and µmacro on the
other side that we callmacroscopic consistency condition (see [1] for the fully anisotropic
case) where µmacro and λmacro are defined through:

µmacro :=
µmicro µe
µmicro + µe

, 2µmacro + 3λmacro :=
(2µmicro + 3λmicro) (2µe + 3λe)

(2µmicro + 3λmicro) + (2µe + 3λe)
. (3)

For µmicro→∞ we recover the Cosserat micropolar model, which means that P ∈ so(3),
and for Lc→ 0 we obtain classical linear elasticity with µmacro, λmacro from (3).

2 Necessary and sufficient conditions for real wave propagation
The dynamical formulation is obtained defining a joint Hamiltonian and assuming stationary
action, therefore:

ρ u,tt =Div [2µe sym (∇u − P ) + 2µc skew (∇u − P ) + λe tr (∇u − P )1] ,
ηP,tt =2µe sym (∇u − P ) + 2µc skew (∇u − P ) + λe tr (∇u − P )1 (4)

− [2µmicro symP + λmicro tr (P )1]− µeL2
c Curl CurlP.

This system is a generalized tensorial Maxwell-problem for the micro-distortion P
coupled to balance of linear momentum.
In our study of wave propagation in micromorphic media we limit ourselves to the case of
plane propagating waves. We suppose that the space dependence of all introduced kine-
matic fields are limited to the component x1 of x which is the direction of propagation of the
wave. Therefore we look for solutions of (4) with real wavenumber k in the form:

u(x, t) = û ei(k x1−ω t) , û ∈ C3 , P (x, t) = P̂ ei(k x1−ω t) , P̂ ∈ C3×3 . (5)
With this ansatz, problem (4) can be analogously expressed as an eigenvalue-problem, see [8]:

det
(
B1(k)− ω2 1

)
= 0, det

(
B2(k)− ω2 1

)
= 0, (6)

det
(
B3(k)− ω2 1

)
= 0, det

(
B4(k)− ω2 1

)
= 0,

where B1(k), B2(k), B3(k) and B4(k), which are the blocks of the acoustic tensor, are real
symmetric matrices depending on the material coefficients. Therefore, the resulting eigenval-
ues ω2 are real. Obtaining real wave velocity ω/k is tantamount to having ω2 ≥ 0 for
all solutions of (6).
Sylvester’s criterion states that a Hermitian matrix M is positive-definite if and only if the
leading principal minors are positive. Hence, considering the bulk moduli κe = 2µe+3λe

3 and
κmicro =

2µmicro+3λmicro

3 , it is possible to prove the following proposition.
Proposition. The dynamic relaxed micromorphic model (4) admits real wave velocity
ω/k if and only if

µc ≥ 0, µe > 0, 2µe + λe > 0, (7)
µmicro > 0, 2µmicro + λmicro > 0,

(µmacro > 0), 2µmacro + λmacro > 0,

κe + κmicro > 0, 4µmacro + 3κe > 0. �

In (7) the requirement µmacro > 0 is redundant, since it is already assumed that µe, µmicro > 0
and we note that the Cosserat couple modulus µc only needs to be non-negative for real
wave velocity ω/k. It is clear that positive definiteness of the elastic energy (2) implies
(7). The set of inequalities (7) is already implied by:
µe > 0, µmicro > 0, µc ≥ 0, κe + κmicro > 0, 2µmacro + λmacro > 0. (8)

3 A comparison: classical isotropic linear elasticity
The strain energy density W and the kinetic energy J for a classical Cauchy linear elastic
isotropic medium are

W = µmacro ‖ sym∇u ‖2 +
λmacro

2
( tr (∇u ))2 , J =

ρ

2
‖u,t‖2 , (9)

where λmacro and µmacro are the classical Lamé parameters, u ∈ R3 denotes the macroscopic
displacement and ρ is the average macroscopic mass density of the material. Positive
definiteness of the energy is equivalent to:

µmacro > 0, 2µmacro + 3λmacro > 0. (10)

The equations of motion in strong form, obtained by the classical least action principle read
ρ u,tt = Div[2µmacro sym∇u + λmacro tr(∇u )1]. Requiring real wave velocity ω/k is
equivalent to the strong ellipticity condition and holds if and only if:

µmacro > 0, 2µmacro + λmacro > 0, (11)
which is implied by positive definiteness (10).

4 A further comparison: the Cosserat model
In the isotropic hyperelastic case the elastic energy density and the kinetic energy of the
Cosserat model read:

W = µmacro ‖ sym (∇u )‖2 + µc ‖ skew (∇u − A)‖2 + λmacro

2
( tr (∇u ))2 (12)

+
µmacroL

2
c

2
‖CurlA‖2, J =

ρ

2
‖u,t‖2 +

η

2
‖A,t‖2 ,

where A ∈ so(3). Positive definiteness of the elastic energy is equivalent to the following
simple relations for the introduced parameters

µmacro > 0, 2µmacro + 3λmacro > 0, µc > 0, Lc > 0. (13)

The dynamical equilibrium equations are:

ρ u,tt =Div [2µmacro sym (∇u − A) + 2µc skew (∇u − A) + λmacro tr (∇u − A) 1] ,
ηA,tt = − µmacroL

2
c Curl CurlA + 2µc skew (∇u − A) .

The necessary and sufficient condition for real wave velocity ω/k is [8]:

µmacro > 0, 2µmacro + λmacro > 0, µc ≥ 0, (14)
which is implied by the positive-definiteness of the energy (13). In [2] it is shown that strong
ellipticity for the Cosserat-micropolar model holds if and only if:

2µmacro + λmacro > 0, µmacro + µc > 0. (15)

Here, we note that the Cosserat couple modulus µc may even be negative. We conclude
that for micropolar material models (and therefore also for micromorphic materials), strong
ellipticity (15) does not imply real wave velocity ω/k (14), while the reverse is true.
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