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1 Introduction

The sum of squared logarithms inequality (SSLI) arose as scientific issue in 2012
while proving the optimality result [7]
inf [lsym Y|> = |llog VFTF|?. (1)

Y eRnxn
ep(V)=QTF

inf |lsymLog @"F|> = inf

QeS0(n) QeS0(n)
Here Y = Log X denotes all solutions of the matrix exponential equation exp(Y) = X,
|| || denotes the Frobenius matrix norm, and sym X := (X + XT). The optimal ro-
tation in (1) is given by the orthogonal factor of F = R- U = R-V/FT F in the polar
decomposition of F [1]. Thus (1) is a fundamentally new characterization of the
polar decomposition.
For n = 3, the SSLI-inequality can be written as follows: let x1, X, x3, y1, 2, y3 > 0 be
positive real numbers such that

xtx+x < yi+yt+ys,
xixetxixatxxs < yiyatyiytyys,
X1XX3 = Y1)2)3.

Then the sum of their squared logarithms satisfy the following inequality:
(logx1)* + (log 2)* + (log x3)* < (logy1)? + (log y2)* + (log y3) -

In 2013 Birsan, Neff and Lankeit in [2] found a proof for n € {2,3}. In 2015, Neff
and Pompe [8] proved the SSLI for n = 4, based on a new idea that supports more
functions than only log but did not extend to higher dimensions without further com-
plications. This line of thought has been recently taken up in [9] to yield a complete
classification for arbitrary n.

For arbitrary n the SSLI can be stated as follows

Theorem (Sum of squared logarithms inequality) For all natural numbers n and all
positive numbers xi, X3, ..., Xp, Y1, Y2, -, ¥n > 0 such that

Z Xiy Xy o X, < Z Yi¥i i forallke{l,.. ,.n—1}

<< <<k
and X1 X Xg = V1YY
n n
it follows 2:(Iogx,-)2 < Z(Iogy,-)2.
i=1 i=1

Replacing the assumption x; X ... X, = Y1 yo ... Yo by x1 %0 ... X, < y1 ¥ ... y,, easily ad-
mits counterexamples.

The general proof of the theorem was found in May 2015 [3] after P. Neff offered
one ounce of fine gold [5] for a solution to the problem on the internet platform
MathOverflow.

2 Elementary symmetric polynomials

For given (complex) numbers zi, ..., z, the elementary symmetric polynomials
ey 1= Z Z, 2, ... Zj,
h<. . <ik

are the coefficents of the normalized polynomial h with the roots z, ..., z,, i.e.

h(t)=(t—2z) .- (t—z)=t"—et" '+ et 2+ .+ (-1),.
The function mapping the roots onto the coefficients is invertible: The fundamen-
tal theorem of Algebra guarantees the existence of a unique inversion ¢: R} — M.
This function ¢ is even continous and, at all vectors of coefficients corresponding to
different roots, differentiable.
For all z € M let f(z) = Y"1 ,(log z)? note that f(z) € R. We can restate the SSLI
in terms of f:
If e, ..., €y &, ..., & > 0 are positive real numbers with

e <& forall ke {l,..,n—1} and en = &,

then f(p(el, . e,,)) < f(gﬁ(él, én))A

3 Sketch of proof

The main idea of the proof has already been pursued in prior attempts to prove the
inequality: instead of directly working with the function f(z) := 3_7_, (log z)? on the
set M of roots, we consider the composition f o ¢ which depends on the elements
e € T of asuitable set of coefficients T C R’l. Of course, we have to choose T in a
way such that (f o ¢)(e) € Rforalle e T.
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The proof of the SSLI can now be divided into two steps:

1.) We show that M >0.
E)ek

2.) We find a path v: [0, 1] = ¢(T) with v(0) = x, v(1) = y
such that dd—sek(q(s)) >0 forallse(0,1)and k€ {1,...,n—1}
d
as well as Ee,,(w(s)) =0 forallse(0,1).

We show 1.) for all e such that ¢(e) has no multiple roots. Instead of chosing the
path required in 2.) in the set of roots ¢(T) as in prior attemps, we operate on the
set of coefficients: Consider the path e* = (¢f, ..., e5) C R’ for s € [0, 1] with

& = (I—=s)ealx) +sey).

Then € = e(x) and e! = e(y) as well as ex(x) < ex(y) forall k € {1,...,n 1} and
en(x) = ea(y). The special thing is: although the roots corresponding to € und e,
given by xi, ..., x, und y1, ..., y,, are positive reals, the roots of e° are possibly complex
numbers! Furthermore e° has multiple roots only at finitely many s and 1.) applies to

the rest.

4 Application to nonlinear elasticity

Let U € Sym™(n), where Sym™(n) C R™" denotes the set of positive definite sym-
metric n X n-matrices. Then U is orthogonally diagonalizable with real eigenvalues
A,y Ay > 0. The k-th invariant /(U) of U is defined as the k-th elementary
symmetric polynomial of the vector A(U) = (Ay, ..., A), i.e. (V) := ex(MU)).

Since [|log U[|> = Y74 (log /\,-(U))Z, the SSLI can be equivalently expressed in terms
of these invariants of positive definite symmetric matrices.

Theorem Let U, U € Sym*(n). If i(U) < k(U) for all k € {1,..,n — 1} and
det U = det U, then ||log U||> < ||log U||%, where log is the principal matrix logarithm
on Sym™(n) and || . || denotes the Frobenius matrix norm.

The theorem can be applied directly to the quadratic Hencky energy
3 A
Wi(F) = pu||dev,log U|* + % [tr(log U)* = p|llog U] + E[Iog(det U))?,

which was introduced into the theory of nonlinear elasticity in 1929 by H. Hencky
[4, 8], cf. [6]. Here, F € GL*(n) is the deformation gradient, GL*(n) is the set of
invertible n X n-matrices with positive determinant, U = V' FTF is the right stretch
tensor and dev,log U = log U — i tr(log U) - 1 is the deviatoric part of the Hencky
strain tensor log U.

In terms of the quadratic Hencky energy, the theorem can be stated as follows:

Corollary Let F,F € GL*(n) with U = VFTF and U = VFTF._Ifdet U = det U
and I (U) < I (V) for all k € {1,...,n— 1}, then Wy (F) < Wy(F).

According to this corollary Wy satisfies a version of Truesdell's empirical inequalities
[10, pages 158, 171].
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