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Heinrich Hencky: On the form of the law of

elasticity for ideally elastic materials1

The law of elasticity for finite deformations. How do different states

of stress and deformation superimpose in simple cases? The expres-

sion for elastic work and the theory of tension and compression of

rubberlike elastic bodies.

Introduction

We call ideally elastic a material which does not lose stored energy under
arbitrarily large deformations and thus returns to its original state after
unloading. It is not important that such an idealized elastic cycle does
not actually exist and our ideally elastic material must therefore remain
an ideal. Like so many mathematical and geometric concepts, it is a useful
ideal, because once its deducible properties are known it can be used as a
comparative rule for assessing the actual elastic behaviour of physical bodies.
The theory of elastic deformations, which has already been developed to a
certain degree, will be useful for this task [4, p.563-576]. Only one important
aspect of the classical theory of finite deformations (c.f. [5, p. 51-54] as well
as the references there) needs to be reconsidered: although it is correct to
assume that the elastic energy is given through a function depending only
on the rotational invariants2 of the deformation tensor, it is not appropriate
to base the entire approach to the problem on this formal insight.
We will first show that it is possible to provide the law of elasticity in a direct
way free of any arbitrariness. Furthermore we will see that, even in simple
cases, the elastic energy is governed by laws too complex to be approached
directly, in contrast to infinitesimal deformations.

1 The law of elasticity for the ideally elastic body

If we consider a volume element whose position and orientation are deter-
mined by the deformation, we can interpret its change under a deformation
as a dilation of the three mutually orthogonal edges of the volume element,
a translation of the center of mass and a finite rotation about a particular
axis. This holds for finite deformations as well. However, there is an essen-
tial difference to the infinitesimal case, where the particle must actually pass
through the specified changes of state. In finite deformations, only the final
state is considered, while the intermediary states are not. This difference is
especially important to the computation of the elastic energy.

1German: Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen [1]
2The rotational invariants are the principal invariants of the Finger tensor B = FFT or the right
Cauchy-Green tensor C = FTF .
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While the edges of the parallelepiped mentioned above are pairwise orthogo-
nal before and after the deformation, they are rotated against their original
orientation by a finite angle. We denote these three principal directions of
strain with the indices 1, 2 and 3 here and throughout. Note that those
directions refer to a material particle and not a fixed spatial direction.
Furthermore, we denote by dx the length of the arc element in the unde-
formed state and by dx the length of the same element after the deformation,
while dV and dV denote the corresponding volume elements. We find

dV = dx1 dx2 dx3 and dV = dx1 dx2 dx3 .

The three principal strains are defined by the following equalities:3

e1 =
dx1 − dx1

dx1
; e2 =

dx2 − dx2

dx2
;

e3 =
dx3 − dx3

dx3
.

To shorten notation we will use the index i for all three principal directions,
meaning i is one of the indices 1, 2, 3. Then we can write the above definitions
of the strain as

ei =
dxi − dxi

dxi
. (1a)

We can now easily compute the ratio of the deformed length to the initial
length4,

dxi
dxi

=
1

1− ei
, (1b)

while the ratio of the volume in the deformed state to the initial volume is5

dV

dV
=

1

(1− e1) (1− e2) (1− e3)
. (1c)

If we consider an element, cut out of the deformed body along the principal
directions of strain in the final state of equilibrium, we must apply the three
principal stresses6 S1, S2 and S3 to the principal directions. Of course those
stresses refer to the final state. While in the field of material testing one might
consider stresses referring to the initial state, we must, from the theoretical
point of view, protest against such a conceptional abomination7. We will

3Hencky introduces what is known today as Swainger’s strain tensor 11 − V −1, where V =
√
FFT is

the left Biot stretch tensor.
4The quantities given by λi = dxi

dxi

= 1
1−ei

are the principal stretches, i.e. the eigenvalues of V .

Therefore ei = 1− 1
λi

are the eigenvalues of 11− V −1.
5Note that dV

dV = detF for the deformation gradient F .
6The stresses Si are the principal Cauchy stresses.
7German: Unbegriff
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give a relation between Si and ei such that the transition to the infinitesimal
case yields Hooke’s law in the form commonly used in engineering.
Let G denote the shear modulus, m the lateral contraction number8, which
loses its meaning in the case of finite deformations, and define k by9

k =
m+ 1

3 (m− 2)
. (2a)

By writing

e =
1

3
· (e1 + e2 + e3) (2b)

and

S =
1

3
· (S1 + S2 + S3) (2c)

we can state Hooke’s law as

Si = 2G {ei + (3k − 1) · e} (2d)

for the three principal stresses. Summation of these three equations yields

S = 2Gk · 3 e . (2e)

The left hand term of this equality is the hydrostatic part of the stress, which
must be proportional to the change of volume in an isotropic material.
For finite stretches, however, the term 3e no longer denotes the change of
volume, and thus the approach loses its mechanical meaning. Furthermore,
while ei attaining the value 1 means an infinite deformation of the element,
the corresponding stress does not become infinite, again contradicting me-
chanical reasoning. This contradiction can not be circumvented by choosing
another definition of strain, as one can readily check.
If we want to preserve the simple form of the law of elasticity with only two
elasticity parameters as well as to avoid the aforementioned contradictions,
there is only one possible ansatz, which is the following:

Si = 2G · ln
{

dxi
dxi

·
(

dV

dV

)k−1/3
}

. (3a)

By summation of the three principal stretches we obtain the hydrostatic
part10, given by

S = 2Gk · ln
{

dV

dV

}

. (3b)

8The Querkontraktionsziffer (or Poisson number) m is the inverse of Poisson’s ratio: m = 1
ν
.

9The parameter k can also be written as k = 1+ν

3(1−2ν) = K

2G
, where K is the bulk modulus.

10The hydrostatic part is given by

trS = 2Gk · ln(detF ) = K · ln(detF ) ,

where trS is the trace of the Cauchy stress tensor S.
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We can see that this equality relates the change of volume to the hydrostatic
tension or compression in the correct way.
If the ratios inside the logarithms are close to 1, the logarithms can be
expanded into power series whose higher order terms can be omitted, trans-
forming equations (3a) and (3b) into equations (2d) and (2e).
For applications it is often more comfortable to introduce the strains ei. We
obtain

Si = −2G · ln
{

(1− ei) · ((1− e1)(1− e2)(1− e3))
k−1/3

}

, (4a)

S = −2Gk ln{(1− e1)(1− e2)(1− e3)} . (4b)

The numbers ei can attain all values between negative infinity and 1, includ-
ing 0. If ei is negative infinity or 1 we obtain infinitely large values for the
stress, just as required by the mechanical meaning of the law of elasticity.
Thus equations (3) and (4) yield the desired law of elasticity for isotropic
materials.

2 Superimposing different states of strain and stress

We will now consider the following question: what happens if we apply an
additional load to an already stressed body, i.e. how do stresses and de-
formations superimpose? We can confine our considerations to the case of
homogeneous stress and deformation, and we will distinguish three different
states: State I is the non-loaded initial state, and if dx1, dx2, dx3 are lengths
of the sides of a rectangular parallelepiped which remains rectangular after
the first loading, ending in state II, this deformed parallelepiped will have
lengths dx1, dx2, dx3. According to our definition of strain = final length -

initial length : final length we will find

ei =
dxi − dxi

dxi

or, in a different notation,

dxi = dxi : (1− ei) . (5a)

If we now apply another deformation, our rectangular parallelepiped will
not remain rectangular. However, we can find a different rectangular par-
allelepiped dy1, dy2, dy3 in state I which is oblique-angled in state II, but
rectangular in state III with side lengths dy1, dy2, dy3. The values of strain
between states I and III are

e′i =
dyi − dyi

dyi
or dyi = dyi : (1− e′i) . (5b)
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If we denote the principal stresses in state II by Si and those in state III by
S ′

i, the same relations hold between Si and ei on the one hand and S ′

i and e′i
on the other hand, which are given by equations (4a) and (4b). Thus if the
lengths dxi and dyi are equal, we obtain

S ′

i − Si = 2G · ln
{

dyi
dxi

·
[

dV(ȳ)

dV(x̄)

]k−1/3
}

. (6)

If ei and e′i are finite, the term inside the logarithm on the right hand side
is not the transformation of II to III, not even if the difference II−III is
infinitesimal. Since the treatment of this general case would demand an
effort disproportionate to the obtainable practical results, we will assume
henceforth that the principal axes of stress and strain are parallel to the
axes of a fixed coordinate system. Then the material parallelepiped remains
constant and we obtain particularly simple rules for the superposition of
different stresses and deformations as well as for the performed work.
The side lengths of the volume element are

dx1, dx2, dx3 in state I,

dx1, dx2, dx3 in state II,

dx1, dx2, dx3 in state III,

while the transformations from I to II, I to III and II to III are

dxi = dxi : (1− ei) from I to II,

dxi = dxi : (1− e′i) from I to III,

dxi = dxi : (1−∆ei) from II to III.















(7a)

This implies

1−∆ei =
1− e′i
1− ei

. (7b)

Subtracting Si from S ′

i yields

S ′

i − Si = ∆Si = −2G · ln (1− e′i) ((1− e′1)(1− e′2)(1− e′3))
k−1/3

(1− ei) ((1− e1)(1− e2)(1− e3))k−1/3

and by using equality (7b) we obtain

S ′

i−Si = ∆Si = −2G· ln[(1−∆ei)·((1−∆e1)(1−∆e2)(1−∆e3))
1−1/3] . (8a)

Thus the difference ∆Si depends only on the second transformation and is
independent of the previous transformation. As mentioned above, this does
not hold in the general case, even if the ∆Si are infinitesimally small. In
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the latter case, the ∆ei are infinitesimal as well, and applying the series
expansion of the logarithm to equation (8a) yields

S ′

i − Si = ∆Si = 2G · {∆ei + (k − 1/3)(∆e1 +∆e2 +∆e3)} , (8b)

where the ∆Si take the role of the stress tensors themselves. In this special
case, and only in this special case, Hooke’s law is the incremental law11

corresponding to our law of elasticity.

3 The stored elastic energy

The last sentence will be useful for computing the elastic work. Again we
assume that the states II and III are infinitesimally close.
If xi are the coordinates of a single point in state I, its coordinates in states
II and III are given by xi + ui and xi + ui +∆ui, respectively.
Then equations (7a) take on the form

dxi = dxi

{

1 +
∂ui

∂xi
+

∂∆ui

∂xi

}

and

dxi = dxi

{

1 +
∂ui

∂xi

}

,

and comparison with equations (7a) and (7b) yields

1−∆ei =
1 + ∂ui

∂xi

1 + ∂ui

∂xi
+ ∂∆ui

∂xi

,

1−∆ei =
1

1 + (1− ei) · ∂∆ui

∂xi

.

From this we obtain the differential quotient of the additional displacement

∂∆ui

∂xi
=

∆ei
(1−∆ei)(1− ei)

,

and for an infinitesimal additional displacement we find

∂∆ui

∂xi
=

∆ei
1− ei

. (9)

All occurring functions refer to the initial positions. We will denote the work
with respect to the unit of the volume element in state I by Aa, while the

11Hooke’s law is obtained as a first order approximation.
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work with respect to the volume element in state II will be denoted by Ae.
Then the elastic energy of the element dx1 dx2 dx3 will increase by12

∆Aa · dx1 dx2 dx3 = S1 · dx2 dx3 · ∂∆u1

∂x1

· dx1

+ S2 · dx3 dx1 · ∂∆u2

∂x2

· dx2 + S3 · dx1 dx2 · ∂∆u3

∂x3

· dx3 ,

and using equations (7a) we obtain

∆Aa =
1

(1− e1)(1− e2)(1− e3)

{

S1(1− e1) ·
∂∆u1

∂x1

+S2(1− e2) ·
∂∆u2

∂x2

+ S3(1− e3) ·
∂∆u3

∂x3

}

.

According to equation (4b), we find

(1− e1)(1− e2)(1− e3) = e−S/K ,

where K = 2Gk denotes the elasticity modulus of uniform expansion or
compression (on all sides)13, and using equation (9) we can compute the
increase of work:

∆Aa = eS/K · [S1∆e2 + S1∆e2 + S3∆e3] .

Equation (8b) allows us to change the last expression to an even more familiar
form. We can invert these equations and, with14 E = 2G(1+1/m), we obtain

E ·∆e1 = ∆S1 −
1

m
(∆S2 +∆S3) ,

E ·∆e2 = ∆S2 −
1

m
(∆S3 +∆S1) ,

E ·∆e3 = ∆S3 −
1

m
(∆S1 +∆S2) .

We substitute the ∆s by total differentials. It is easy to see that we obtain
the familiar expression for work, since

S1 de1 + S2 de2 + S3 de3 =
1

2
· dJ ,

where

J = S2
1 + S2

2 + S2
3 −

2

m
(S1S2 + S3S1 + S2S3) . (10a)

12A typographical error was corrected: The index i was changed to 1.
13The parameter K denotes the bulk modulus.
14Young’s modulus is denoted by E.
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Thus we finally obtain the energy with respect to state I,

Aa =
1

2E
·
∫

eS/K · dJ , (10b)

while the energy with respect to state II, i.e. to the unit volume in state II,
computes to

Ae =
1

2E
· e−S/K ·

∫

eS/K · dJ . (10c)

There are only two cases where it is possible to directly compute the energy
for state II, that is if either S is constant or the material resists any change
of volume. In those two cases the energy density with respect to the volume
unit in the final state15 is 16

Ae =
1

2E
· J . (10d)

For constant S, the energy density with respect to the volume unit in the
initial state is

Aa =
eS/K

2E
· J ,

and for infinitely large K we find

Aa =
1

2E
· J ,

which was to be expected.
All these propositions hold only if the principal axes of deformation do not
rotate, although in that case they hold for cylindrical coordinates and po-
lar coordinates as well. We have not yet discussed the boundaries for the
integrals of work. We must think of the Si and ei as functions in only one
parameter, which we can interpret as the intensity of loading. Then the in-
tegral is to be taken from 0 to a given value for this parameter. A different
sequence of loading will generally result in a different amount of work17.

4 The experiment of tension and compression18 for a

cylindrical rod of an ideally elastic material

In “Elastizität und Festigkeit” [6], Bach describes the results of his experi-
ments with rubber. His conclusion is that the elasticity modulus of rubber

15“Final state” most probably refers to state II.
16A typographical error was corrected: The number of the equation of was changed from (10c) to (10d).
17Hencky realizes that his law of elasticity is not hyperelastic. In today’s notation his law can be written

as
σ = 2G logV + Λ tr[logV ] · 11 ,

where G and Λ are the two Lamé parameters and σ denotes the Cauchy stress.
18German: Zug- und Druckversuch
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increases19 with extension and decreases with reduction, where stresses and
extensions are defined as above. Since we assume fixed elastic constants,
this can only be seen as pseudo-changes20. To explain this phenomenon we
will apply our equations to a very long cylindrical rod to which tension or
compression is applied.
We choose a cylindrical coordinate system for this uniaxial state of stress.
All functions are given with respect to the final state.
We denote by r = r̄− u the distance of a point to the axis and by z = z̄−w
the original position of a point in direction of the axis.
Then

dr = dr ·
(

1− ∂u

∂r̄

)

,

dz = dz ·
(

1− ∂w

∂z̄

)

,

r · dϕ = r̄ dϕ ·
(

1− u

r̄

)

.

Since for an infinitely long rod any cross section can be considered as po-
sitioned in the middle, ∂w

∂z̄
must be independent of r̄ for symmetry reasons

and will be denoted by λ. For u = −r̄ ·x, where x is a constant unknown for
now, we find

∂u

∂x̄
= −x and

u

r̄
= −x .

We will now identify the indices 1, 2, 3 in equation (4a) with r, ϕ and z. We
find Sr = Sϕ and er = eϕ = −x, ez = λ. On the boundary, and hence on
the whole cylinder, the condition Sr = Sϕ = 0 must hold, which implies

(1 + x)k+2/3 · (1 + x)k−1/3 · (1− λ)k−1/3 = 1 ,

thus after some transformations the ratio x computes to

x = −1 + (1− λ)−
k−1/3
2k+1/3 .

According to equation (2a),

1

m
=

k − 1/3

2k + 1/3

and thus expanding x into a series yields

x =
1

m
· λ+

1

m
·
(

1

m
+ 1

)

· λ
2

2
+ . . . ,

19Note that Bach uses the term modulus to describe the inverse of the quantities known as modulus
today.

20German: scheinbare Änderungen
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from which we conclude thatm loses its meaning as the contraction coefficient
once λ is no longer very small. The stress Sz computes to Sz = 2G · ln 1+x

1+λ
.

We insert the value of x, and with21 E = 2G (1 + 1/m) we obtain

Sz = −E · ln(1− λ) (11a)

or, inside the convergence radius 1 > λ > −1,

Sz = E ·
(

λ+
λ2

2
+

λ3

3
+ . . .

)

. (11b)

If we extend some piece to twice its initial length, i.e. λ = 1/2, the elastic
modulus determined through common means increases to around 1.4 times
its original value. For negative values of λ we obtain a good correspondence
to experimental results as well.
We can compute the elastic energy using equation (10b). With

3 ·K =
Em

m− 2

we find

Aa =
1

E
·
∫

eSz/3K · Sz · dSz .

By integrating from 0 to Sz we obtain

Aa = E · m2

(m− 2)2
·
{

1− eSz/3K ·
(

Sz

3K
− 1

)}

. (12)

For very small values of Sz/3K we can expand into series and obtain the
familiar value

Aa =
1

2E
· S2

z .

5 The uniform expansion of an elastic membrane

As a counterpart to the case considered above we will now assume Sr = Sϕ =
const. and Sz = 0. An example of such a state of stress is a thin plate being
extended uniformly in its plane. We will give all functions with respect to
the final state in this case as well and define

u = x · r̄ and w = −λ · z̄ ,

hence
∂w

∂z̄
= −λ ;

∂u

∂r̄
= x .

21A typographical error was corrected: 2G(1 + 1/m) was changed to E = 2G(1 + 1/m)
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Then the condition Sz = 0 yields

(1 + λ)((1− x)2(1 + λ))k−1/3 = 1 ,

which implies

λ = −1 + (1− x)−
2k−2/3
k+2/3 .

The exponent can be easily expressed in terms of m, we find

2k − 2/3

k + 1/3
=

2

m− 1
.

The stress Sr computes to Sr = Sϕ = 2G ln[(1−x)k+2/3(1−x)k−1/3(1+λ)k−1/3]
or, after insertion of the value for λ obtained above and some transformations,

Sr = Sϕ = −E ·m
m− 1

· ln(1− x) . (13)

The energy density with respect to the undeformed volume element is

Aa =
1

E
·
∫

eS/K ·
{(

Sr −
1

m
· Sϕ

)

dSr +

(

Sϕ − 1

m
· Sr

)

dSϕ

}

=
2

E

(

1− 1

m

)

·
∫

e2Sr/3K · Sr dSr ,

and integrating from 0 to Sr yields

Aa =
E ·m(m− 1)

2(m− 2)2
·
{

1 + e2Sr/3K ·
(

2Sr

3K
− 1

)}

. (14)

We can use the above formulae for a small application. If we inflate a thin-
walled hollow sphere made from rubber, we can ignore the stress in the radial
direction for a first order approximation. Then we can apply the above
considerations, and we only have to find a relation between the excess inner
pressure and the stresses Sl in the elastic membrane. If hx is the thickness of
the membrane, Rx is the radius of the inflated hollow sphere, and h and R
are their respective initial values, then these quantities can be related with
the stretches by

x =
Rx − R

Rx
, −λ =

hx − h

hx

and

hx = h ·
{

R

Rx

}
2

m−1

,

and equation (13) yields

Sl =
E ·m
m− 1

· ln
{

Rx

R

}

.
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Then we can obtain the relation between the pressure and the radius of the
sphere from the equilibrium condition for a circular piece of the membrane
in radial direction:

p = 2E · h
R

· m

m− 1
· ln(Rx/R)

(Rx/R)
m+1

m−1

.

A range of simple special cases could be solved in this way. It would be
particularly interesting to examine vibrations of finite amplitude, but at this
point we will refrain from going into this in more detail. However, a com-
ment on our attitude towards empirical observations seems appropriate. One
could think that establishing a law of elasticity would be a matter of empir-
ical research. This, however, is a misconception since there is no physical
body which does not, for sufficiently large strains, exhibit plastic behaviour
or change its original connectedness through countless microscopic fissures.
While it is certainly a matter of empirical observation to determine how
actual materials compare to the ideally elastic body, the law itself acts as
a measuring instrument which is extended into the realm of the intellect,
making it possible for the experimental researcher to make systematic obser-
vations.
In this sense, whenever the strength of materials is considered beyond the
scope of Hooke’s law, experimental researchers require the assistance of the
theorist as much as they require the help of craftsmen building their in-
struments in order to keep track and remain in control of their acquired
observations22.

Summary

A law of elasticity valid for finite deformations is deduced. In doing so we
show that the effect of an additional loading is independent of the already
existing stress if the principal axes of the deformation remain aligned with
the original axes of the coordinate system. We obtain a simple expression for
the elastic energy as well as a simple theory for the tensile test of rubberlike
materials, where the effect of permanent deformations and small fissures is
ignored.

22German: gewonnene Erfahrungen
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Heinrich Hencky: What circumstances effect

the hardening for ductile deformations of isotropic

solid bodies?1

We think of the material points of an elasto-plastic body as attached

to two interpenetrating grids, one of which has large shear modulus

and bulk modulus but exhibits stress states bound to the limit of plas-

ticity, while the other one stays ideally elastic with a very small shear

modulus and vanishing bulk modulus. By the example of the uniax-

ial stress state we show the form of the stress-tension-diagram for

our model. Furthermore we show how one must distinguish between

purely elastic, potentially elastic and lost energy in the elasto-plastic

case.

Introduction

The research on the strength of materials suggests that the so-called harden-
ing in plastic deformations is connected to the crystalline structure of quasi-
isotropic materials. At least the hardening is an experimental fact, thus it
is probably useful to consider the stress state of such a hardened material
under the assumption of total isotropy, undeterred by the fact that such an
ideally isotropic body does not exist.

1 The law of elasticity for an ideally elastic body

Before we are able to talk about deviations from ideally elastic behaviour,
we must first establish the law of elasticity for finite deformations. While
the assumption may be warranted that finite deformations are irrelevant be-
cause plastic deformation already takes place for very small displacements,
we must consider finite deformations to properly justify our approach.
There are two conditions we impose on our ideally elastic material. First we
require that the applied work is converted fully into elastic energy, which is
released without loss after the loading is removed.
This first condition is fulfilled if there exists an elastic potential, but it allows
for a number of different laws of elasticity. Thus we impose a second condi-
tion: if we apply a second loading to an already deformed body, it must not
be possible to obtain the first loading from the deformations resulting from
the additional loading.
This second condition is satisfiable only if the volume is constant, and it can
only be satisfied in a single way.

1German: Welche Umstände bedingen die Verfestigung bei der bildsamen Verformung von festen
isotropen Körpern? [2]
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It is this uniqueness of our law of elasticity which ranks our ideally elastic
material as a mathematical ideal which is independent of empirical observa-
tion. Of course, the usefulness of such mathematical ideals is a matter of
observation. The law of elasticity determines the relation between a stress
tensor and the eigenvalues of an affine transformation matrix. Since the
quantities used in the elementary theory of elasticity for the definition of
strain are not symmetric with respect to the reference state and the final
state2, they are not suitable for our purpose. Therefore, as a measure of the
elastic deformation, we introduce the

ln

{

final length

initial length

}

which agrees with the familiar measure of strain for very small deformations.
For now we will consider only cases in which the principal axes of the de-
formation do not change. Our fixed coordinate system refers to the initial
state. The side lengths of the volume element are

dx1, dx2, dx3 in state I,

dx1, dx2, dx3 in state II,

dx1, dx2, dx3 in state III.

We introduce the displacements ui (i = 1, 2, 3) and define

dxi = dxi

(

1 +
∂ui

∂xi

)

= dxi(1 + ei) = dxi · eεi , (1a)

dxi = dxi

(

1 +
∂ui

∂xi
+

∂δui

∂xi

)

= dxi(1 + ei + δei) = dxi · eε+δεi . (1b)

We obtain δεi =
∂δui

∂xi
for the conversion of the differentials as well as

dxi = dxi

(

1 +
δei

1 + ei

)

= dxi (1 + δεi) (1c)

for the transformation from II to III, which we assume to be infinitesimal.
The change of volume is given by3

dV

dV
= ∆ = (1 + e1)(1 + e2)(1 + e3) = eε1+ε2+ε3 . (1d)

The quantities ε are the logarithms of the affine ratios. The true physical
stresses, with respect to the final state, are denoted by Si. The mean stress
is

S =
1

3
{S1 + S2 + S3} . (2a)

2The strain measures do not satisfy the tension-compression symmetry e(λ−1) = −e(λ).
3Here, ∆ = detF .
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Without yet knowing the law of elasticity, we are now able to give the dif-
ferential of the performed work:

δA·dx1dx2dx3 = S1dx2dx3·
∂δu1

∂x1

·dx1+S2dx3dx1·
∂δu2

∂x2

·dx2+S3dx1dx2·
∂δu3

∂x3

·dx3 .

Here the work is given with respect to the undeformed state; some easy
computations yield

δA = ∆

{

S1 · δe1
1 + e1

+
S2 · δe2
1 + e2

+
S3 · δe3
1 + e3

}

= ∆ {S1 δε1 + S2 δε2 + S3 δε3} . (2b)

The occurrence of the change of volume in this expression is due to the fact
that the stress is not actually a tensor, but a tensor density. Thus the princi-
pal stresses are scalar densities. Since the eigenvalues of the transformation
matrix are true invariants, the law of elasticity cannot be expressed in terms
of the quantities Si. Instead we must provide an absolute invariant4

Ti = ∆ · Si (2c)

for which we can write down the law of elasticity in a linear form. With
ε = 1

3
(ε1 + ε2 + ε3) we find5

Ti = 2G · {εi + (3k − 1)ε} (3a)

and thus
T = 2Gk · 3ε = 3K · ε . (3b)

Then the law of superposition is linear as well:

δTi = 2G · {δεi + (3k − 1)δε} . (3c)

If we insert the values for δεi from equations (3c) into equations (2b), we
obtain a total differential δA and, by integrating, the stored elastic energy:6

2A =
1

2G
· {(T1 − T )2 + (T2 − T )2 + (T3 − T )2}+ 1

K
· T 2 , (4a)

2A =
∆2

2G
{(S1 − S)2 + (S2 − S)2 + (S3 − S)2}+ ∆2

K
· S2 (4b)

4Since Si denote the principal Cauchy stresses, the quantities Ti = det(F ) · Si are the principal

Kirchhoff stresses.
5At this point, Hencky introduces a law of elasticity which differs from the law he proposed in his 1928
article: instead of the Cauchy stress, he relates the Kirchhoff stress τ to the stretch tensor V and
obtains

τ = 2G logV + Λ tr[logV ] · 11 .

6The energy function obtained from Hencky’s new law of elasticity is known today as the quadratic

Hencky strain energy:

W (V ) = G ‖ dev3 logV ‖2 + K

2
[tr(logV )]2 .
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or finally, with respect to the deformation components,

2A = 2G · {(ε1 − ε)2 + (ε2 − ε)2 + (ε3 − ε)2}+ 9Kε2 . (4c)

If the principal axes of the deformation do not remain fixed, we can still use
the same expression to obtain formulae for the general spatial problem.
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Heinrich Hencky: The law of superposition for

a finitely deformed elastic continuum capable

of relaxation and its significance for an exact

derivative of the equations for the viscous fluid

in the Eulerian form1

A generally nonlinear law of superposition is deduced from the law

of elasticity for an ideally elastic material. Using the approach of

a relaxation in the Maxwellian sense we develop the basic equations

for the motion of viscous fluids from the finite deformation of an

initially elastic body. We show that that the Navier-Stokes equations

of hydrodynamics emerge as a special case for an infinitely large

shear modulus and an infinitely small relaxation time, where the

product of these two quantities remains finite, but that they must

fail for inhomogeneous flow states of real fluids if large velocities are

attained.

Introduction

Until a few decades ago the viscous liquid was interpreted, especially from
the physical point of view, as an elastic body, where the deviatoric part of
the strain energy is subject to a quick absorption by the thermal motion of
small particles [7, 8, 9] (c.f. [10, p. 102] including the references given there;
strangely enough, the Maxwellian theory is not even mentioned in [11]).
This derivation of the hydrodynamic equations has been developed in a

number of articles, R. Reiger in particular has repeatedly advocated the
Maxwellian interpretation. If, in the following, we have to criticize these
previous works for their accomplishment with respect to the theory of elas-
ticity, it is only to free the valuable ideas laid out in these works from their
obscuring ambiguities2. The existence of such ambiguities is shown by the
fact that the theory of relaxation, as opposed to the concept of Newtonian
friction, has had no influence on the development of hydrodynamics.
Another point, of course, is that the significance of the model of relaxation

has been overestimated at first. Experiments show that at least polycrys-
talline materials below their limit of elasticity are not subjected to relaxation,
and it is pointless3 to attribute to them an infinite relaxation time. Apart
from that, it seems premature to ignore such a prolific and original concept

1German: Das Superpositionsgesetz eines endlich deformierten relaxationsfähigen elastischen Kontin-
uums und seine Bedeutung für eine exakte Ableitung der Gleichungen für die zähe Flüssigkeit in der
Eulerschen Form [3]

2German: hindernde Unklarheiten
3German: zwecklose Spielerei
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of friction in viscous liquids. The Maxwellian conception yields an intu-
itively reasonable concept4 and establishes a mechanical transition from the
solid to the liquid continuum, the epistemological justification of which is
beyond doubt, and its deductions remain to be properly examined through
experiments.
Here, our aim is to show that even a purely theoretical analysis of Maxwell’s

concept4 of the viscous fluid is able to prove the necessity of revising the cur-
rently prevalent interpretation of friction for large flow rates.

1 The law of elasticity for an ideally elastic material

In one of the articles in the A.Föppl commemorative volume [12], L. Prandtl
considers a number of constructions which he divides into elastically determi-
nate and elastically indeterminate ones. By Prandtl’s definition, elastically
determinate constructs are those for which the changes induced by the appli-
cation of an additional loading are independent of already occurring stresses.
If, however, the deformation depends not only on the additional loading but
also on internal stresses of the system in the previous state, Prandtl calls the
construct elastically determinate.
The underlying concept of Prandtl’s distinction is that of an algebraic

group, since for an elastically determinate continuum the group of changes
of shape must be isomorphic to the group of changes of stress.
The law of elasticity requires a relation between the eigenvalues of a stress

tensor and those of a transformation matrix which is as simple as possible.
However, the solely considered pure deformations, i.e. those transformations
which can be expressed as three stretches along mutually orthogonal direc-
tions, do not form a transformation group; the pure deformations form a
group only if the principal axes of deformation do not rotate. The incre-
ments of stress, which in this special case are equal to the transformations,
must form an isomorphic group and are therefore independent of earlier in-
crements, thus we find an elastically determinate law of superposition in
Prandtl’s sense. If, however, the principal axes of deformation rotate, the
corresponding pure deformations lose their group properties5 and only an
elastically indeterminate law of superposition is possible.
Now, in setting up a law of elasticity for an ideally elastic material, we

require elastic determinacy to the greatest extent for epistemological reasons
(c.f. [13] for a more general explanation). Just like the rigid body, the ideally
elastic material is not a real material but an instrument of measurement and
comparison, therefore it must be left to the experiment to discover elastic
indeterminacies which can be avoided in the theory.
There are two reasons why elastic indeterminacy cannot be avoided com-

4German: Gedankenmodell
5German: Gruppencharakter
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pletely. The first one, the lack of group properties for pure deformations in
the general case, has already been discussed. The second reason is that the
stress tensor is not a true tensor of weight 0 but a tensor density (this was
first suggested by L. Brillouin, c.f. [14]).
In the elementary theory of elasticity, these issues have been neglected so

far under the reasoning that only very small deformations occur; it has been
overlooked that certain important geometrical relations, which could not
have been found through observation6 alone, are blurred and obfuscated by
the transition to the infinitesimal case, when they should actually constitute
the foundation of the mathematical theory of elasticity.
Since tensor densities obtain the transformation properties of tensors only

through multiplication with the determinant of the transformation, we must
distinguish the true physical stress Si from the reduced stress S ′

i = volume×Si

which a law of elasticity must relate to a function of the principal strains.
As we have shown in a number of earlier works [1, 2, 15], the conditions of

elastic determination mentioned above are satisfied if we measure the strain
by ln

{

final length

initial length

}

.

Denoting the principal strains by εi we can formulate the elastic energy
for finite deformations even for changing directions of the principal axes of
deformation:

(1) 2A = 2G · {(ε1 − ε)2 + (ε2 − ε)2 + (ε3 − ε)2}+ 9K · ε2 .
The law of elasticity corresponding to this approach, with

ε =
1

3
(ε1 + ε2 + ε3)

and
S ′

i = e3ε · Si ,

is

S ′

i − S ′ = 2G · {εi − ε}(2a)

S ′ = 3K · ε .(2b)

For very elastic bodies, e.g. rubber, this law has indeed been confirmed
through experiments.
As a distinction to other fields of physics we will henceforth assume isother-

mal changes of state, possibly generated heat will be thought of as automat-
ically dissipated.
The law we assumed is only the simplest of all possible laws, therefore one

should not think that the far reaching conclusions we will draw later on are
founded in the special form of these equations. In this regard we could also
have based our work on the law used in elementary elasticity which, for very
small deformations, can be obtained from equations (2) as well.

6German: Erfahrung
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2 The law of superposition for the ideally elastic

continuum

The transition towards an arbitrary system of coordinate axes not coinciding
with the principal axes involves some difficulties which do not occur in the
case of infinitesimal deformations. Under the assumption of an arbitrarily
oriented system we must therefore look for an analogy of equations (2a) and
(2b).
To participate in the advantages of tensor notation for the necessary com-

putations, it is by no means necessary to employ a skew coordinate system. It
suffices to number the coordinate directions and, unless otherwise indicated,
sum over indices occurring twice without writing an explicit summation sign.
We distinguish three different states:

state 0 with the coordinates x̊i = xi − ui ;

state I with the coordinates xi ;

state II, initially with the coordinates

x̄i = xi + δui = xi + vi δt ,

where

vi =
δui

δt
.

Thus the system is based on state I, while states 0 and II are derived from
it.
We must now aim to find a quantity which completely describes the given

state of deformation. Through total differentiation we obtain:

dx̊i =
∂x̊i

∂x1

· dx1 +
∂x̊i

∂x2

· dx2 +
∂x̊i

∂x3

· dx3 =
∂x̊i

∂xk

· dxk ,(3a)

as well as the identity:

dxi =
∂xi

∂xk
· dxk .

Using our summation convention we can now write:

dxi · dxi = dx2
i =

∂xi

∂xk
· ∂xi

∂xl
· dxk dxl ,

dx̊i · dx̊i = dx̊2
i =

∂x̊i

∂xk
· ∂x̊i

∂xl
· dxk dxl ,

where we sum over nine terms on each right hand side, and subtracting
these two quantities yields a measure of the pure deformation, eliminating
the rotational movement of the volume element which is not relevant to us.
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To define the tensor quantity ekl, which is characteristic of the pure defor-
mation7, we let

(3b) dx2
i − dx̊2

i = 2 · ekl · dxk dxl

and find:

2 · ekl =
∂xi

∂xk
· ∂xi

∂xl
− ∂x̊i

∂xk
· ∂x̊i

∂xl

or, after some computation:

(4a) 2 · ekl =
∂ul

∂xk
+

∂uk

∂xl
− ∂ui

∂xk
· ∂ui

∂xl
.

The eigenvalues of this tensor can be obtained from the cubic equation8:

(4b)

∣

∣

∣

∣

∣

∣

e11 − ei e12 e13
e21 e22 − ei e23
e31 e32 e33 − ei

∣

∣

∣

∣

∣

∣

= 0 .

There is a simple relation between these eigenvalues and the quantities εi
we used in equations (2). The conversion into the values ei can be easily
accomplished by means of the equation defining the ekl. We find:

(4c)







εi = ln

{

1√
1− 2 ei

}

2 εi = − ln(1− 2 ei) .

This form does not yet allow us to consider an arbitrary coordinate sys-
tem, we first need to express the relation in the form of a series converging
absolutely for all values of ei. We obtain:

(5a) 2 ei = 1− e−2εi =
1

1!
· (2εi)−

1

2!
· (2εi)2 +

1

3!
· (2εi)3 − . . .

On the other hand we can use equations (2) to express the quantities εi in
terms of S ′

i, namely:

(5b) 2εi =
1

G
· (S ′

i − S ′) +
2

3K
· S ′ .

By introducing the shortened notation:

(5c)











σ′

i =
1

G
· (S ′

i − S ′) and

σ′ =
2

3K
· S ′ ,

7Note carefully that ei does not denote the same quantity as in the previous article: here, ei =
1
2 (1− 1

λ2

i

)

are the eigenvalues of the strain tensor 1
2 (11− C−1).

8Here, the term |A| denotes the determinant of a matrix A.
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we obtain the important equality:

(6) 2 · ei =
1

1!
· (σ′

i + σ′)− 1

2!
· (σ′

i − σ′)2 +
1

3!
· (σ′

i + σ′)3 − . . .

which provides the basis for all further examinations. If we had chosen a
different law of elasticity, this relation would have become even more com-
plicated. Indeed, our choice was made such that the relation takes on the
simplest form possible.
For the transition from powers, such as e1i , e

2
i , e

3
i , referring to the princi-

pal axes to an arbitrary orientation of coordinates, our notation of indices
provides an easy method, which we will state without proof since it can be
found in any textbook on algebra.
For example, if e3i is given and emn is the tensor form of ei, then the general

tensor form of e3i can be represented as emi ei k ek n, where:

emi ei k ek n = em 1 e1 k ek n + em 2 e2 k ek n + em 3 e3 k ek n

= em 1 e1 1 e1n + em 1 e1 2 e2n + em 1 e1 3 e3n

+ em 2 e2 1 e1n + em 2 e2 2 e2n + em 2 e2 3 e3n

+ em 3 e3 1 e1n + em 3 e3 2 e2n + em 3 e3 3 e3n .

Using this simple pattern it is always possible to move on from the principal
axes of a tensor to the general component representation.
We now pass on to state II, meaning we subject state I to an affine spatial

transformation defined through the infinitesimal translation δui . We can
decompose the transformation matrix into a symmetric part, the change of
shape

(7a) fmn δ t =
1

2
·
{

∂ δun

∂xm
+

∂ δum

∂xn

}

=
1

2
·
{

∂vn
∂xm

+
∂vm
∂xn

}

δt

and an antisymmetric part, the rotation:

(7b) ωmn δ t =
1

2
·
{

∂ δun

∂xm
− ∂ δum

∂xn

}

=
1

2
·
{

∂vn
∂xm

− ∂vm
∂xn

}

δt .

Then fmn is the tensor of the deformation velocities and ωmn is the tensor
of angular velocities.
To find the corresponding changes to the tensor emn, we note that the

rotation of the element must remain without effect on the law of superposition
we are trying to find.
Thus the variational symbol refers to the change of shape of the material

element we put our focus on.
However, we must not write:

ei + δ ei = ei + fi δ t
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or:
emn + δ emn = emn + fmn · δ t ,

since the infinitesimal spatial transformation slightly changes the tensor emn

as well. When computing this change we must consider the fact that we
always compute the principal axes with respect to the final state and must
therefore transform the tensor in the opposite direction.
According to the rules of tensor calculus each index is considered a repre-

sentative of an ideal vector and is transformed as such. Then, if we introduce
the identity tensor gmn with the matrix representation

1 0 0
0 1 0
0 0 1 ,

we find

emn + δ emn = (ei k + fi k δ t) (gmi − fmi δ t) (gnk − fn k δ t)

and after computation:

(8a) δ emn = δ t (fmn − en i fim − emk fk n) .

From equations (6) and (8a) we finally obtain the desired law of superposition
for a previous finite deformation of the material with which we master every
problem in the theory of elasticity.











































2 · {fmn − en i fim − emk fk n}

=
1

1!
·
{

δ σmn
′

δ t
+ gmn ·

δ σ′

δ t

}

− 1

2!
·
{

δ

δ t
(σmi

′ · σi n
′) +

δ

δ t
(2 · σ′ · σmn

′) + gmn
δ

δ t
(σ′)2

}

+
1

3!
· {. . . } − . . .

(8b)

The deformation quantities emn occurring here are eliminated through the
series:







2 emn =
1

1!
(σmn

′ + gmn · σ′)− 1

2!
· (σmi

′ · σi n
′ + 2 · σ′ · σmn

′

+ gmn · σ′ 2) + . . .
(8c)

After this elimination, the change of the stress tensor is given as a function of
the tensor of deformation velocities and the tensor of velocity vectors. The

displacements ui, on the other hand, have disappeared from our formulae

completely.
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The validity of these formulae is not limited with respect to the size of the
σmn

′ .
If the σmn

′ can be considered very small compared to unity, for example
in the case of small elastic oscillations about a state of equilibrium, we can
ignore higher powers of σmn

′ and obtain the law of superposition in the
following simpler form:

δ σmn
′

δ t
=

∂ vm
∂ xn

+
∂ vn
∂ xm

+
2

3
· gmn ·

∂ vi
∂ xi

(9a)

δ σ′

δ t
=

2

3
· ∂ vi
∂ xi

.(9b)

Now these equations are, without further thought, applied to finite move-
ments and taken as a basis to deduce the equations of hydrodynamics for
the theory of relaxation [16].
The existence of such a linear law of superposition for arbitrarily large

movements is only possible if the pure deformations form a transformation
group. However, this is the case only if the principal axes do not rotate at
all.
We have yet to specify what is meant by variation of the stress state. The

stresses are given as positional functions of the time t for state I.
When forming the differential we must follow our axial trihedron9 attached

to the material particle and consider the rotation of the trihedron as well.
We therefore obtain:

(10)
δ σmn

′

δ t
=

∂ σmn
′

∂ t
+ vi ·

∂ σmn
′

∂xi
+ σn i

′ · ωim + σmk
′ · ωkm .

9German: Achsendreikant
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