Übung Inverse Probleme

Blatt 7

Aufgabe 1

Seien X, Y separable Hilberträume über $\mathbb{R}, A \in \mathcal{L}(X, Y)$ und $y \in Y$. Wir bezeichnen mit

$$L(y) = \{x \in X \mid A^*Ax = A^*y\}$$

die Lösungsmenge der Normalgleichung für $y \in Y$. Zu zeigen ist

- (i) $L(y) \neq \emptyset \iff y \in \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp}$
- (ii) L(y) ist abgeschlossen und konvex.

Hinweis: Benutzen Sie für (i) die Aufgabe 3 der 6. Übung.

Aufgabe 2

Bestimmen Sie die Pseudoinverse von folgenden rechteckigen Matrizen

- (i) $A := (1, ..., 1) \in \mathbb{R}^{1 \times m}$
- (ii) $A \in \mathbb{R}^{n \times m}$, $n \geq m$, A orthonormal $(A^T A = I)$
- (iii) $A \in \mathbb{R}^{n \times m}$, $n \geq m$, A diagonal, aber die Diagonalelemente sind nicht notwendig von Null verschieden

Aufgabe 3

Bestimmen Sie die Pseudoinverse von folgenden Operatoren

(i)
$$A: L^2(a,b) \to \mathbb{R}, Af := \int_a^b f(x)dx$$

- (ii) $A: L^2(a,b) \to \mathbb{R}^n$, $(Af)_i := (f,v_i)_{L^2(a,b)}$, $i = 1,\ldots,n$. Dabei sei v_1,\ldots,v_n ein Orthonormalsystem in $L^2(a,b)$.
- (iii) $A: L^2(a,b) \to L^2(a,b), (Af)(x) := g(x)f(x), g \in C[a,b] \setminus \{0\}$

Homepage der Veranstaltung ist:

http://www.uni-due.de/mathematik/agroesch/LV_feldhordt_SS12.shtml

Termine und Räume:

		Zeit	Raum	
VL	Di	10-12	LE 103	Arnd Rösch
	Do	10-12	LE 103	
Üb	Mo	14-16	LE 103	Hendrik Feldhordt