Übung Inverse Probleme

Blatt 9

Aufgabe 1

Für welche Elemente $x_0 \in L^2(0,1)$ erfüllt der Selbstfaltungsoperator $F: L^2(0,1) \to L^2(0,1)$,

$$[F(x)](s) := \int_{0}^{s} x(s-t)x(t)dt \qquad 0 \le s \le 1$$

eine η -Bedingung

$$||F(x) - F(x_0) - F'(x_0)(x - x_0)|| \le \eta ||F(x) - F(x_0)||, \quad \eta > 0,$$

für alle $x \in \overline{B_r(x_0)} \subset L^2(0,1), r > 0$?

Aufgabe 2

- (i) Seien X, Y reelle Hilberträume, $y \in Y$ fest und $A : X \to Y$ linear und stetig. Bestimmen Sie die Fréchet-Ableitung zu $F(x) := ||Ax y||_Y^2$.
- (ii) Für welche Funktionen u ist das Funktional $f(u) := \int_{0}^{1} u^{3}(x) dx$ definiert? Für welche u ist f Fréchet-differenzierbar und wie lautet die Ableitung? Identifiziert man die Ableitung wieder mit einer Funktion, in welchem Raum liegt diese dann?

Aufgabe 3

Man zeige: Der Sinus-Operator [Fx](t) := sin(x(t)) ist als Abbildung von $L^2(0,1)$ nach $L^2(0,1)$ nicht Fréchet-differenzierbar.

Homepage der Veranstaltung ist:

 $\verb|http://www.uni-due.de/mathematik/agroesch/LV_feldhordt_SS12.shtml| \\$

Termine und Räume:

		Zeit	Raum	
VL	Di	10-12	LE 103	Arnd Rösch
	Do	10-12	LE 103	
Üb	Мо	14-16	LE 103	Hendrik Feldhordt