
Andr�es Kecskem�ethy

M c c
c c
BILE

Version 1.3

User's Guide

Alle Rechte vorbehalten
Nachdruck, auch auszugsweise, verboten

Kein Teil dieses Werkes darf ohne schriftliche Einwilligung des Autors in irgendeiner
Form, auch nicht zum Zwecke der Unterrichtsgestaltung, reproduziert, oder unter

Verwendung elektronischer Systeme vervielf�altigt oder verbreitet werden.

c
1993, 1994, 1995, 1996, 1997, 1998, 1999 Andr�es Kecskem�ethy, Institut f�ur Mechanik
und Getriebelehre, Technische Universit�at Graz

Important Notice:

BY OPENING THE SEALING OF THE SOFTWARE ENVELOPE, OR BY LOAD-
ING THE SOFTWARE ON YOUR MACHINE, WHICHEVER APPLICABLE, YOU
ACKNOWLEDGE THE LIMITED WARRANTY AND DISCLAIMER SPECIFIED BE-
LOW AND CONSENT TO ALL THE CONDITIONS MADE THEREIN. IF YOU DO
NOT FULLY APPROVE THE TERMS UNDER WHICH THIS SOFTWARE IS LI-
CENSED, DO NOT OPEN THE SOFTWARE ENVELOPE AND RETURN IT INTACT
TOGETHER WITH THE WRITTEN MATERIAL HANDED OVER TO YOU, OR DO
NOT LOAD THE SOFTWARE ON YOUR MACHINE, AND DELETE ALL ITEMS
RELATED TO THIS SOFTWARE FROM YOUR MACHINE, FOR A FULL REFUND
OF THE PURCHASE PRICE.

Limited Warranty and Disclaimer

YOU ACKNOWLEDGE THAT THE SOFTWARE MAY NOT SATISFY ALL YOUR
REQUIREMENTS OR BE FREE FROM DEFECTS. BY THE PRESENT LIMITED
WARRANTY IT IS WARRANTED THAT THE MAGNETIC MEDIA ON WHICH
THE SOFTWARE IS RECORDED IS FREE FROM DEFECTS IN MATERIALS AND
WORKMANSHIP UNDER NORMAL USE FOR 90 DAYS FROM PURCHASE. HOW-
EVER, THE SOFTWARE AND THE ACCOMPANYING WRITTEN MATERIALS
ARE LICENSED AS IS. ALL IMPLIED WARRANTIES AND CONDITIONS (IN-
CLUDING ANY IMPLIED WARRANTY OF MERCHANTIBILITY OR FITNESS FOR
A PARTICULAR PURPOSE) ARE DISCLAIMED AS TO THE SOFTWARE AND AC-
COMPANYING WRITTEN MATERIALS AND LIMITED TO 90 DAYS AS TO THE
MAGNETIC MEDIA. YOUR EXCLUSIVE REMEDY FOR BREACH OFWARRANTY
WILL BE THE REPLACEMENT OF THE MAGNETIC MEDIA OR REFUND OF
THE PURCHASE PRICE. IN NO EVENT WILL ANY OFFICER OR EMPLOYEE
OF THE TECHNICAL UNIVERSITY OF GRAZ OR THE DEVELOPER OF MOBILE
BE LIABLE TO YOU FOR CONSEQUENTIAL, INCIDENTAL OR INDIRECT DAM-
AGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS IN-
TERRUPTION, LOSS OF BUSINESS INFORMATION, AND THE LIKE), WHETHER
FORESEEABLE OR UNFORSEEABLE, ARISING OUT OF THE USE OR INABIL-
ITY TO USE THE SOFTWARE OR ACCOMPANYING WRITTEN MATERIALS, RE-
GARDLESS OF THE BASIS OF THE CLAIM AND EVEN IF THE DEVELOPER OF
MOBILE OR AN OFFICIAL OR EMPLOYEE OF THE TECHNICAL UNIVERSITY
OF GRAZ HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Contents

1 Preface 1

1.1 What is M a aa aBILE? . 1

1.2 Intended Audience . 1

1.3 Scope of M a aa aBILE 1.3 . 2

1.4 Scope and Organization of this Manual . 2

1.5 File Hierarchy of the M a aa aBILE Package . 3

1.6 Compiler Issues . 4

1.7 Style and Symbol Conventions . 5

1.8 Acknowledgements . 7

2 Overview 10

2.1 Structure of M a aa aBILE . 10

2.2 Example: Analysis of a Simple Pendulum 12

2.2.1 Dissection and Re-Assembly of the System 12

2.2.2 Calculating Dynamic Properties . 14

2.2.3 Automatic Integration of Dynamical Equations 16

2.3 Summary . 18

3 Basic Mathematical Objects 19

3.1 The Universal Neutral Element MoNullState 21

3.2 The Basic Scalar Types MoReal and MoAngle 22

3.3 Vectors and Matrices . 23

3.3.1 Vectors . 23

3.3.2 Matrices . 24

3.4 Kinetostatic State Objects . 27

3.4.1 Scalar Kinetostatic State Objects (\MoStateVariable") 28

3.4.2 Spatial Kinetostatic State Objects (\MoFrame") 32

4 Basic Kinetostatic Transmission Elements 35

i

4.1 Overview of Supplied Kinetostatic Transmission Elements 35

4.2 Generic Properties of Kinetostatic Transmission Elements 36

4.2.1 Model of a Kinetostatic Transmission Element 37

4.2.2 Invoking Motion and Force Transmission 39

4.2.3 Selection of Motion and Force Transmission Subtasks 40

4.3 Basic Transmission Elements: Links, Joints and Chains 43

4.3.1 The Object \MoRigidLink" . 44

4.3.2 The Object \MoElementaryJoint" 46

4.3.3 The Object \MoMapChain" . 48

4.3.4 A simple example . 49

4.4 Force and Mass Elements . 51

4.4.1 Force Elements . 51

4.4.2 Mass Elements . 53

4.5 Example: Modeling of the Inverse Dynamics of a SCARA robot 54

5 Objects for Closure of Loops 57

5.1 Basic Methods for Formulating Loop Closure Conditions 58

5.1.1 Example: Inverse Dynamics of a Spatial Shaker Mechanism 60

5.2 Measurement Objects . 64

5.2.1 Basic Properties of Measurements 64

5.2.2 Self-Recon�guring Measurements 66

5.2.3 Lists of Measurements . 68

5.2.4 Spatial Measurements . 68

5.2.5 Scalar Measurements . 71

5.2.6 Constructing Measurements with Di�erent Numbers of Frames . . . 74

5.2.7 Optimizing Performance by Speci�cation of Active Branches 77

5.2.8 Interlinking Measurements . 79

5.3 Objects for Solving Constraints . 81

5.3.1 Implicit Solvers . 82

5.3.2 Explicit Solvers . 82

ii M a aa aBILE 1.3 User's Guide

5.4 Examples . 83

5.4.1 Body Assembly of a Spatial Four-bar Mechanism 83

5.4.2 Joint Assembly of a Shaker Mechanism 87

5.4.3 Segment Assembly of a Shaker Mechanism 90

6 Generating and Solving Dynamic Equations 94

6.1 The class MoEqmBuilder . 94

6.2 Generating Ordinary Di�erential Equations in State-Space Form 97

6.2.1 The Class MoMechanicalSystem . 98

6.3 Solving the Di�erential Equations . 99

6.4 Example: Dynamics of a Triple Pendulum 100

7 Graphic Rendering and Animation 103

7.1 Creating a Graphics Interface . 103

7.2 Importing Inventor Files . 107

7.3 Prescribing Motion by Sliders . 107

7.4 Realizing Autonomous Animations . 110

7.5 Further Animation Capabilities . 111

8 M a aa aBILE for PC 112

8.1 Installation . 112

8.2 M a aa aBILE for PC with Open Inventor Graphic Interface 113

8.3 M a aa aBILE for PC with OpenGL Graphic Interface 117

8.4 M a aa aBILE for PC with Graphic User Interface 120

M a aa aBILE 1.3 User's Guide iii

List of Figures

2.1 Objects in multibody systems . 11

2.2 Modeling of a simple pendulum . 12

2.3 Graphic representation of the pendulum example 18

3.1 The two types of algebraic scalar objects in M a aa aBILE 22

3.2 Class hierarchy for the di�erent types of matrices in M a aa aBILE 25

3.3 State subentries of state objects . 28

3.4 State objects as connectors between transmission elements 29

3.5 Structure of a scalar variable (generalized coordinate). 29

3.6 Components of a moving frame . 33

4.1 Hierarchy of kinetostatic transmission elements of M a aa aBILE (excerpt) . . . 36

4.2 Model of a kinetostatic transmission element 38

4.3 Terms and computational steps involved in the transmission of motion and
forces . 40

4.4 Model of a rigid link. 44

4.5 Model of an elementary joint. 47

4.6 A Simple Manipulator . 50

4.7 Elementary force element attached to a scalar measurement object 52

4.8 Model of a mass element. 53

4.9 Modeling of the inverse dynamics of a SCARA robot 55

5.1 Comparision of tree-type and closed-loop systems 57

5.2 Three basic methods for modeling loops in M a aa aBILE 59

5.3 Analysis of a shaker mechanism . 61

5.4 Example of a \chord" . 65

5.5 Example of a measurement for a moving object 67

5.6 A spatial measurement . 69

5.7 Basic form of a scalar measurement . 72

5.8 Geometric entities involved in the measurements between points and planes 73

iv

5.9 Entities of interest for the topological types of measurement 74

5.10 Types of measurements based on number of frames 76

5.11 Measurement Object for Complementary Variable 80

5.12 Modelling of the spatial Four-bar mechanism 84

5.13 Modeling of the Dynamics of a Shaker Mechanism 87

5.14 Modelling of the Shaker (explicit solution) 90

6.1 Model of the inverse dynamics of a multibody system. 95

6.2 Modelling of the TriplePendulum . 101

7.1 Basic structure of the M a aa aBILE-Inventor interface 103

7.2 Overview of the Inventor interface for M a aa aBILE 106

7.3 An example of the use of slider widgets . 108

8.1 Setting a environment variable and a path 113

8.2 Generate a new Project . 114

8.3 Setting the path to header- and library �les 117

8.4 Start of a model with Open Inventor . 118

8.5 Start of a model with OpenGL . 120

8.6 Interactive models . 121

M a aa aBILE 1.3 User's Guide v

List of Tables

1.1 Header �les for the basic mathematical objects 8

1.2 Header �les for the basic kinetostatic transmission elements 8

1.3 Header �les for constraint generation and solution 9

1.4 Header �les for generation and solution of equations of motion 9

1.5 Header �les for animation . 9

1.6 Container header �les . 9

2.1 Iconic representation of the elementary objects of M a aa aBILE 13

3.1 Overview of the basic mathematical objects of M a aa aBILE 19

3.2 Precedence of operators in M a aa aBILE . 20

3.3 Objects that are not automatically initialized in M a aa aBILE 21

3.4 Overview of operations for objects of type MoAngle 23

3.5 Overview of operations for objects of type MoVector 24

3.6 Properties of the di�erent types of three-dimensional matrices 25

3.7 General operations for objects of type MoMatrix 26

3.8 Special operations for objects of type MoInertiaTensor 27

3.9 Special operations for objects of type MoRotationMatrix 27

3.10 Special operations for objects of type MoXRotationMatrix, MoYRotation-
Matrix and MoZRotationMatrix . 27

3.11 Subentries for scalar kinetostatic state objects of type \MoStateVariable" 30

3.12 Subentries for kinetostatic state objects of type \MoFrame" 33

4.1 Selection of kinetostatic transmission elements in M a aa aBILE 37

4.2 Types of motion and force invocation . 40

4.3 Meaning of the terms in Fig. 4.3 . 41

4.4 Possible values for the motion subtask selection parameter 42

4.5 Possible values for the force subtask selection parameter 42

5.1 Geometric types of measurement objects 66

vi

5.2 Basic formulas for spatial measurements (kinematics) 70

5.3 Basic formulas for spatial measurements (statics) 71

5.4 Elements of the array `state' for spatial measurements 71

5.5 Basic geometric types of scalar measurements 73

5.6 Types of measurements involving di�erent numbers of frames 75

5.7 Optional parameters for performance optimization of measurement objects 78

7.1 Default rendering geometry for the basic M a aa aBILE objects 105

7.2 Importing Inventor �les into a M a aa aBILE model 107

M a aa aBILE 1.3 User's Guide vii

viii M a aa aBILE 1.3 User's Guide

1 Preface

1.1 What is M b b
b b
BILE?

M a aa aBILE is an object-oriented programming package designed for the modeling of multi-
body systems. Its main features are

� Intuitive representation of mechanical entities as objects capable of transmitting
motion and force across the system.

� Direct modeling of mechanical systems as executable programs, allowing the user
to imbed the resulting modules in exisisting libraries.

� Open, building-block system design, making it possible to extend the provided li-
brary in any direction.

� Scalable approach, treating all mechanical systems in a uni�ed manner.

� Responsibility-driven client-server implementation, simplifying the task of invoking
the required functions and of implementing own costumized modules.

� Portable and e�cient implementation, based on the object-oriented programming
language C++.

� Built-in interfaces for three-dimensional graphic libraries for animation with direct
user feed-back. User interaction includes click-and-drag features for on-line kine-
matics, statics and dynamics (this last feature may depend on system complexity
and computer resources).

1.2 Intended Audience

This manual is addressed to users with a certain amount of experience with the modeling
and simulation of mechanical systems.

Some familiarity with the C++ programming language is needed to understand and to
apply the concepts described below. However, it is not necessary to master all of the
many possibilities of the programming language C++ just to generate a M a aa aBILE model.
This is necessary only for developers planning to extend the M a aa aBILE package.

From the theoretical point of view, some acquaintance is required with the basic concepts
of kinematic and dynamic analysis of spatial mechanical systems. This knowledge is
only necessary at a very abstract level, such as for deciding in which sequence a set of
mechanical components needs to be traversed, which kind of closure conditions arise in
a chain forming a closed loop, which set of variables to use as independent generalized
coordinates of a subsystem etc.

M a aa aBILE 1.3 User's Guide 1

Section 1.3: Scope of M a aa aBILE 1.3

1.3 Scope of M b b
b b
BILE 1.3

M a aa aBILE 1.3 represents the entry-level library for the modeling of multibody systems. It
covers the following topics:

� Basic mathematical objects and related operators for calculations in spatial dynam-
ics: scalars, vectors, matrices, orthogonal transformations, elementary transforma-
tions, inertia tensors.

� Elementary building blocks for multibody systems: reference frames, angular and
linear variables, elementary joints (prismatic and revolute), rigid links, elementary
measurements mapping spatial motion to scalar quantities and tuples thereof, ob-
jects for creating composite chains of transmission elements.

� Elementary force elements (spring/damper, gravitation).

� Objects for the resolution of constraint equations, either in closed-form or iteratively.

� Objects for the generation of the equations of motion.

� Objects for the numerical integration of the dynamical equations.

More sophisticated (and also more e�cient) modeling techniques for multibody systems,
as for example sparse-matrix modeling of Jacobians, e�cient transmission of inertia prop-
erties, etc., will be included in the additional package M a aa aBILE 2.x, which is currently
under development. Further extensions, such as elasticity e�ects, hydraulics and control
theory, are also under development and will be included in M a aa aBILE 3.x.

1.4 Scope and Organization of this Manual

This manual describes the basic software implemented in M a aa aBILE 1.3 and its application
to multibody systems. Speci�cally, the de�nition, use, and application of the objects listed
above are described at a syntactical level and illustrated by several examples at a tutorial
level. The manual does not cover details of the language C++ and of the implementation
of the package M a aa aBILE. Readers interested in these topics are recommended to consult
the related literature and/or the program listings.

The manual is organized in two parts

� Part I of the manual gives an introduction to the objects of M a aa aBILE, describing
their functionality and illustrating their use by several examples. Moreover, some
theoretical background information has been inserted for readers interested in the
underlying computations of M a aa aBILE. These insertions are not essential for the use
of M a aa aBILE and can be skipped by the casual reader.

2 M a aa aBILE 1.3 User's Guide

Section 1.4: Scope and Organization of this Manual

� Part II of the manual comprises the so-called \M a aa aBILE Reference Sheets",
a collection of detailed syntax description pages for each entity introduced by the
M a aa aBILE package.

Part I is structured as follows:

� Chapter 2 gives a short overview of the capabilities of M a aa aBILE 1.3

� Chapter 3 describes the basic mathematical objects used in conjuction with the
modeling of multibody systems

� Chapter 4 is concerned with the basic mechanical modeling elements of M a aa aBILE
1.3, which are termed \kinetostatical transmission elements" and which constitute
the basis for all objects described lateron

� Chapter 5 is devoted to the problem of formulating and solving closed loops

� Chapter 6 describes the objects for generating and solving the dynamical equations
of multibody systems

� Chapter 7 gives an overview of the interface of the M a aa aBILE package for graphic
animation

In general, the material presented in each chapter builds upon the material contained in
the previous ones. The reader is encouraged to �rst browse the chapters in the provided
order and then to return to individual chapters to work on the details.

1.5 File Hierarchy of the M b b
b b
BILE Package

The software of M a aa aBILE is organized into several modules, each module representing a
particular group of modeling elements. For example, there are modules for joints, links,
generators of closed-form solutions, etc.

Each module in M a aa aBILE consists of two parts: a �le de�ning the interface of the module,
the so-called header �le, and a �le de�ning the executable portion of the module, the so-
called implementation �le. Header �les have the su�x \.h", while implementation �les
have the su�x \.C". Depending on which type of license you have purchased, you may
or may not possess the implementation �les. The header �les are shipped with every
license of M a aa aBILE. The header �les currently supplied with the M a aa aBILE software are
summarized in tables (1.1), (1.2), (1.3), (1.4), and (1.5). For ease of use, header �les
are also summarized by groups in the container header �les displayed in Table 1.6. By
including one of these container header �les, the user includes automatically all of the
header �les of the corresponding groups. This saves some typing, leading to slightly
longer compilation times, although program size is not a�ected.

In order to access the objects of a module, one must include the corresponding header �le
in the program. Including a header �le is accomplished by the directive

M a aa aBILE 1.3 User's Guide 3

Section 1.6: Compiler issues

#include <Mobile/module-name.h>

Failure in including the correct header �le will result in a large number of compiler errors,
such as

CC: "Example.C", line 62: error: MoElementaryJoint R1 : MoElementaryJoint is not a type name (1314)

CC: "Example.C", line 63: error: MoElementaryJoint R2 : MoElementaryJoint is not a type name (1314)

CC: "Example.C", line 64: error: MoElementaryJoint R3 : MoElementaryJoint is not a type name (1314)

As shipped from factory, the M a aa aBILE package is organized in the following directories

directory name description
$MOBILE HOME DIR/Mobile header �les
$MOBILE HOME DIR/src implementation �les (not always available)
$MOBILE HOME DIR/lib run-time libraries (e. g., libmobile.a)
$MOBILE HOME DIR/bin utility programs
$MOBILE HOME DIR/examples examples and test-�les
$MOBILE HOME DIR/Inventor Inventor graphics library

The environment variable $MOBILE HOME DIR should point to the home directory of the
M a aa aBILE package. This directory is set by the system administrator during installation
of M a aa aBILE. A typical value of $MOBILE HOME DIR is \/usr/people/mobile". However,
there might be a di�erent setting on your system. Please consult your system manager for
obtaining information about the location of the M a aa aBILE home directory. Depending on
which shell you are using, setting the value of the environment variable $MOBILE HOME DIR

takes on the form (assuming the home directory for M a aa aBILE is /usr/people/mobile)

Korn shell (ksh): export MOBILE_HOME_DIR=/usr/people/mobile

C shell (csh): setenv MOBILE_HOME_DIR /usr/people/mobile

You can check the value of the environment variable $MOBILE HOME DIR by typing

echo $MOBILE_HOME_DIR

1.6 Compiler Issues

M a aa aBILE is written in standard C++ Version 2.0. In order to obtain a running program
of a M a aa aBILE model, one must compile it using the C++ compiler installed in the system.
A typical compiler invocation on a UNIX system has the following appearance:

CC filename.C -I$MOBILE_HOME_DIR -L$MOBILE_HOME_DIR/lib/ -lmobile -ofilename

Here, filename.C is the program containing the model and CC is the command for invok-
ing the C++ compiler. The character strings following -I and -L instruct the compiler

4 M a aa aBILE 1.3 User's Guide

Section 1.7: Style and Symbol Conventions

where to look for the header �les and the libraries of the M a aa aBILE package. Note that
we are using here the environment variable $MOBILE HOME DIR de�ned above. The argu-
ment -lmobile instructs the compiler to load the M a aa aBILE library libmobile.a. The
argument -ofilename instructs the compiler to create an executable program with the
name \filename" containing the model. Executing this �le will run the model.

Another technique for compiling M a aa aBILE models is to use the UNIX tool make. Instead
of de�ning compiler invocation parameters anew for each model, one can also lay down
the compilation rules in a �le named Makefile, and locate this �le in the directory in
which the M a aa aBILE model is placed. Compilation is then automatically accomplished by
the command

make filename

Examples of appropriate Makefile settings for M a aa aBILE models can be found in

$MOBILE_HOME_DIR/examples/Makefile
$MOBILE_HOME_DIR/examples/Inventor/Makefile

A Makefile template that is suitable for full M a aa aBILE models including Inventor and
NAG capabilities is included under

$MOBILE_HOME_DIR/examples/Makefile-Inventor-NAG-Template

Instructions for generating, compiling and executing Mobile models on Windows PC (98
or NT) are more elaborate. The reader is referred to Chapter 8 for corresponding details.

1.7 Style and Symbol Conventions

Throughout this manual, the following syntactical and lexicographic conventions are used:

� Program listings, examples and outputs are rendered in small courier font. For
example, a program fragment describing a simple pendulum, and calculating and
printing the position of its center of mass is:

#include <Mobile/MoMapChain.h>
#include <Mobile/MoRigidLink.h>
#include <Mobile/MoElementaryJoint.h>
main() {
MoFrame K1, K2, K3 ;
MoVector v(1,0,1) ; MoAngularVariable beta;
MoElementaryJoint R1(K1,K2,beta) ; MoRigidLink L1(K2,K3,v) ;
MoMapChain Pendulum ; Pendulum << R1 << L1 ;
beta.q = PI/2 ; Pendulum.doMotion();
cout << "Position = " << K3.R * K3.r << "\n";
}

M a aa aBILE 1.3 User's Guide 5

Section 1.7: Style and Symbol Conventions

After compiling the program, one can execute the code and obtain the result like
this

$ Pendulum
$ Position = (0.0 , 1.0 , 1.0)
$ _

� Class names and keywords in syntax descriptions are typed in courier font,
as for example in

MoVector name ;

Class names and keywords, must be typed exactly as shown.

� Identi�ers, i. e. variable names, are printed in slanted courier font. You can replace
the names by any character string allowed as an identi�er.

� Types of arguments passed to functions are typeset in <italic courier> enclosed
by angle brackets. Replace these entries by a permissible identi�er or variable value
of the type indicated.

� Optional parameters are enclosed in square brackets, as in [ArgumentType]. Op-
tional parameters can be left out, in which case they are given previously de�ned
default values. In M a aa aBILE, optional parameters are not used very frequently. In-
stead, one will �nd several de�nitions of function calls which di�er in the type of
the arguments. This mechanism is known as \polymorphism".

� Alternative choices are characterized by a vertical bar `|' separating the corre-
sponding items. An example is

MoElementaryJoint name (<MoFrame>, <MoFrame>,
<MoLinearVariable>,
xAxis | yAxis | zAxis)

Here, one of the three choices xAxis, yAxis, zAxis should be typed as the fourth
argument of this constructor.

� Variable number of arguments are indicated by ellipses \...". These indicate
that the last pattern can be repeated an arbitrary number of times. For example, a
chain of transmission elements might be de�ned like this:

MoMapChain name ;
name << map1 [<< map2 ...] ;

� Overloaded operators, functions, constructors and member data are indi-
cated explicitly in the reference sheets using the C++ syntax for class de�nition.
This assumes some familiarity of the reader with C++. However, this knowledge is
limited to recognizing the type and number of arguments passed to the functions or
included in the data de�nition.

Note that typewriter font is always to be used verbatim.

6 M a aa aBILE 1.3 User's Guide

Section 1.8: Acknowledgements

1.8 Acknowledgements

This work was supported by the Laboratory of Mechatronics (Fachgebiet Mechatronik)
at the Gerhard-Mercator-University of Duisburg. The author thanks the head of the
Department, Prof. Dr.-Ing. habil. M. Hiller, for his support during the development of
this software. Credits are also due to Mr. Thorsten Krupp for much of the coding of the
package, to Mr. Christian Schuster for the porting of M a aa aBILE to PCs, as well as to Mr.
Martin Schneider for many valuable suggestions and bug reports.

M a aa aBILE 1.3 User's Guide 7

Section 1.8: Acknowledgements

module functionality

MoConfig.h hardware platform and operating system con�guration �le
MoVersion.h version number of current M a aa aBILE installation
MoReal.h
oating point numbers
MoRealStack.h stacks of
oating point numbers
MoAngle.h basic properties of angles
MoNullState.h generic zero state
MoAxis.h objects for selection of axes
MoStateVariable.h linear and angular scalar variables
MoVariableList.h lists of variables
MoVector.h three-dimensional vectors
MoVectorStack.h stacks of three-dimensional vectors
MoFrame.h kinetostatic state of a spatial reference frame
MoFrameList.h lists of frames
MoMatrix.h generic three-dimensional matrices
MoInertiaTensor.h rigid-body inertia matrices
MoRotationMatrix.h orthogonal matrices representing general rotations
MoXYZRotationMatrix orthogonal matrices representing elementary rotations
MoOutputGenerator.h printing of intermediate values

Table 1.1: Header �les for the basic mathematical objects

module functionality

MoRigidLink.h rigid connections between reference frames
MoElementaryJoint.h revolute or prismatic joint aligned with coordinate axis
MoElementaryScrewJoint.h screw joint aligned with coordinate axis
MoCylindricalJoint.h cylindrical joint aligned with coordinate axis
Mo3DTranslationalJoint.h joint realizing general spatial translation
MoSphericalJoint.h joint realizing spherical motion
MoFloatingBodyJoint.h joint realizing general spatial motion
MoInstantaneousScrew.h computation of instantaneous screws
MoMapChain.h chains of kinetostatic transmission elements
MoConstantWrench.h force element applying constant force and/or moment
MoLinearSpringDamper.h linear spring-damper force element
MoMassElement.h application of inertia properties of rigid body
MoConstantStepDriver.h generation of constant velocity motion

Table 1.2: Header �les for the basic kinetostatic transmission elements

8 M a aa aBILE 1.3 User's Guide

Section 1.8: Acknowledgements

module functionality

MoChord3DOrientation.h relative orientation between two frames
MoChord3DPosition.h relative vector between two frame origins
MoChord3DPose.h relative pose between two frames (union of both above)
MoChordPlanePlane.h cosine of angle between two planes
MoChordPlanePoint.h distance from a plane to a point
MoChordPointPlane.h distance from a point to a plane
MoChordPointPointLinear.h linear distance between two points
MoChordPointPointQuadratic.h quadratic distance between two points
MoChordList.h lists of elementary measurements
MoConstraintSolver.h generic objects for the resolution of constraint equations
MoExplicitConstraintSolver.h generator of closed-form solutions for scalar constraint
MoImplicitConstraintSolver.h generator of iterative solutions for general constraints

Table 1.3: Header �les for constraint generation and solution

module functionality

MoEqmBuilder.h generation of mechanical equations of motion
MoDynamicSystem.h generation of space-state form of dynamical equations
MoAdamsIntegrator.h numerical integration based on Adams-Bashford-Moulton method
MoBDFIntegrator.h numerical integration based on Gear's BDF method
MoExplicitEulerIntegrator.h integration based on Euler method
MoRungeKuttaIntegrator.h numerical integration based on 4th order Runge-Kutta method
MoStaticEquilibriumFinder.h computation of stationary point

Table 1.4: Header �les for generation and solution of equations of motion

module functionality

Inventor/MoScene.h viewer and editor window for 3D motion animation
Inventor/MoWidget.h slider and push button widgets

Table 1.5: Header �les for animation

module functionality

MoBase.h all of Table 1.1
MoBasicKTE.h all of Table 1.2
MoConstraints.h all of Table 1.3
MoDynamics.h all of Table 1.4
Inventor/MoGraphics.h all of Table 1.5

Table 1.6: Container header �les

M a aa aBILE 1.3 User's Guide 9

2 Overview

This chapter is devised as an introduction to the capabilities of M a aa aBILE. The reader will
be guided through the process of modeling the dynamics of a simple example, starting
from the basic topological structure and ending with the generation of an animation. The
intention is to display the fundamental ideas underlying the M a aa aBILE philosophy together
with a desription of the basic modeling steps. It is thus not necessary to understand all
the underlying mechanisms at this point. The details are discussed in the subsequent
chapters.

2.1 Structure of M b b
b b
BILE

One of the main features of M a aa aBILE is that it allows the user to model mechanical sys-
tems as executable programs that can be used as building blocks for other environments.
This is achieved by representing each real-world component by a dedicated object that
is capable of performing some well-de�ned set of actions upon request. The objects of
M a aa aBILE are roughly organized in three categories:

(a) basic mathematical objects, which provide the algebraic resources for performing
the typical multibody calculations,

(b) kinetostatic state objects, which are used to store and retrieve kinematic or
load-related information at speci�c locations of the multibody system

(c) kinetostatic transmission elements,which transmit the information stored with
the kinetostatic state objects from one location of the system to the other

Each transmission element supplies, in analogy to its real-world counterpart, two basic
operations:

(I) the transmission of motion and

(II) the transmission of forces.

In M a aa aBILE, these two operations are realized as virtual functions , \doMotion()'' and
\doForce()", respectively, that are shared by all kinetostatic transmission elements.

Kinetostatic state objects serve as input and output variables for the various types of
kinetostatic transmission elements. There exist two basic types of kinetostatic state ob-
jects:

(a) spatial kinetostatic state objects, or reference frames, which can be imagined
as interconnection junctures between pairs of kinetostatical transmission elements,
and

10 M a aa aBILE 1.3 User's Guide

Section 2.1: Structure of M a aa aBILE

(b) scalar kinetostatic state objects, which represent actuator or sensor data used
to drive the motors of the joints or to store scalar data extracted from the system
by measurements.

The overall picture of the approach is illustrated in Fig. 2.1. Prior to system assem-
bly, reference systems are \
oating" in space and possess no mutual relationship. Scalar
variables resemble \wires" waiting to be plugged into appropriate places of the kineto-
static transmission elements in order to generate the desired motion. After assembly,
the reference systems become attached at speci�c points of the transmission elements,
interconnecting them by pairs, while the scalar variables accomplish the task of inducing
motion at selected joints of the system. The assembly of a mechanical system thus con-
sists in connecting the inputs and outputs of the kinetostatic transmission elements in
appropriate order such that the resulting chains resemble the original system.

transmission elements actuator variables reference frames

Figure 2.1: Objects in multibody systems

The modeling of mechanical systems by kinetostatic transmission elements mirrors the
client-server paradigm of object-oriented programming. In this setting, objects represent
individuals that are endowed with speci�c \responsibilities". These responsibilities are
chosen in such a way that the correct functioning of the overall society is warranted.
However, the particular manner in which each object ful�lls its responsibility is left as
a matter of taste. In M a aa aBILE, the responsibilities of the mechanical elements are to
provide the aforementioned virtual transmission functions. For this functions, it does not
matter how an object realizes its task. What matters is only that it does it.

M a aa aBILE 1.3 User's Guide 11

Section 2.2: Example: Analysis of a Simple Pendulum

2.2 Example: Analysis of a Simple Pendulum

The following analysis of a simple mathematical pendulum shall illustrate the basic steps
involved in the modeling of a mechanical system with M a aa aBILE. The objective is to gen-
erate the dynamical equations, then solve these, and �nally animated the ensuing motion.
All of this shall be accomplished by building a hierarchy of objects that provide more
and more complex services by delegating sub-responsibilities to other, already existing
objects.

2.2.1 Dissection and Re-Assembly of the System

The regarded system can be interpreted to consist of a massless link which can rotate
about a �xed hinge at one end and to which a point mass is attached to the other end
(see Fig. 2.2).

m

l

pg

a) system structure

K0

M

K1

K2

l

R

phi

b) iconic model

Figure 2.2: Modeling of a simple pendulum

In order to model the system, it is �rst necessary to dissect it into simple pieces. Such
pieces can be those shipped with the M a aa aBILE library or any other object de�ned by the
user. The elementary objects of the M a aa aBILE library are shown in Table 2.1

In the present example, the modeling is based on the following building blocks

� an elementary rotation about an axis,

� a translation within a rigid link, and

� a mass element attached to a particular location of the system.

12 M a aa aBILE 1.3 User's Guide

Section 2.2: Example: Analysis of a Simple Pendulum

icon M a aa aBILE-object

MoFrame

MoStateVariable

MoRigidLink

MoElementaryJoint (revolute)

MoElementaryJoint (prismatic)

MoSphericalJoint

MoChord

MoMassElement

MoLinearSpringDamper

Table 2.1: Iconic representation of the elementary objects of M a aa aBILE

The M a aa aBILE modeling for the system consists in de�ning and assembling these pieces

MoFrame K0 , K1 , K2 ; // frames at the endpoints of transformations

MoAngularVariable phi ; // angular variable describing rotation

MoVector l ; // vector for displacement within the link

MoElementaryJoint R (K0, K1, phi) ; // object modeling the revolute

joint MoRigidLink rod (K1, K2, l) ; // object modeling the rigid

link MoReal m ; // scalar mass value MoMassElement

Tip (K2, m) ; // generates a point mass attached to K2

MoMapChain Pendulum ; // this object holds the concatenation ...

Pendulum << R << rod << Tip ; // ... of the previously defined elements

The basic constituents of this program are the objects \R", \rod", and \Tip" of type
MoElementaryJoint, MoRigidLink and MoMassElement, respectively. The arguments
passed to these objects correspond to their inputs and outputs. For example, K0 and K1

are the input and output frames of the revolute joint R, respectively, and phi is the cor-
responding rotation variable (among others the angle, as explained below). Accordingly,
K1 and K2 are the input and output frames of the rigid connection rod, while l is the
corresponding vector separating them. The mass element is modeled by a scalar value
representing the mass attached to reference frame K2. The three pieces are assembled as
a composite system termed \Pendulum" by making use of the shift operator \<<".

Note that the name of the objects in this program is immaterial. Also, the sequence of
de�nition of the objects is of no importance. It is only important to put them in correct

M a aa aBILE 1.3 User's Guide 13

Section 2.2: Example: Analysis of a Simple Pendulum

sequence into the composite chain. Moreover, the values of the components vectors and
variables are not de�ned at this point. Only the topological structure is memorized
during the de�nition of the objects. This is due to the fact that variables are passed
\by reference" in the constructors of M a aa aBILE. Thus, only addresses of the arguments
are stored, in contrast to the \pass by value" technique, in which the actual value of
the variables is employed. In M a aa aBILE, values are re-read each time a motion or force
traversal of the system is carried out during simulation. This gives a certain degree of
symbolic capabilities to models established with M a aa aBILE.

The mass property is de�ned as an additional transmission element (named \Tip"). At
�rst sight, this seems redundant: why aren't mass properties de�ned directly for the
link? The background is that many mechanical systems can be modeled as massless
skeletons for which mass-endowed parts occur only at discrete locations. In this case, a
lot of redundant calculations would be carried out if these masses are set numerically to
zero. For this reason, properties of motion and force transmission have been separated in
M a aa aBILE from inertia features. The user �rst models a massless sca�olding representing
the overall interconection structure of the system and attaches to it subsequently the mass
elements at desired places.

2.2.2 Calculating Dynamic Properties

The code discussed above represents only a basic skeleton describing the kinematics and
statics of the system. Based on this model, further computations can be performed. One
example is the generation of the equation of motion, which is discussed next.

Theoretical background: Equation of motion for a one-degree-of-freedom system

The system at hand has only one degree of freedom, and no damping e�ects occur. Thus, the dynamics
of the system are governed by the scalar equation of motion

m(�) ��+ b(�; _�) = Q(�) :

Here, m(�) is the generalized mass , b(�; _�) is the generalized Coriolis and centrifugal force and Q(�)
is the generalized applied force of the system.

Equations of motion are generated in M a aa aBILE by objects of type MoEqmBuilder. These
\builder" objects take a mechanical model represented by a kinetostatic transmission
element and a set of variables acting as generalized coordinates, and compute the cor-
responding mass matrix and vectors of generalized Coriolis and applied forces from this
information. Further arguments can be passed to the builder of equations of motion that
describe the reference frame acting as the inertial frame and the upwards direction, i. e.,
the direction opposite to gravitation.

For the pendulum example derived above, the corresponding code has the following ap-
pearing:

14 M a aa aBILE 1.3 User's Guide

Section 2.2: Example: Analysis of a Simple Pendulum

#include <Mobile/MoBase.h> // these are the header files ...
#include <Mobile/MoMapChain.h> // ... containing definitions ...
#include <Mobile/MoElementaryJoint.h> // ... for the objects ...
#include <Mobile/MoRigidLink.h> // ... used below ...
#include <Mobile/MoMassElement.h> // ...
#include <Mobile/MoEqmBuilder.h>
void main () {

// define the mechanical system (see previous section)
MoFrame K0 , K1 , K2 ;
MoAngularVariable phi ;
MoVector l ;
MoElementaryJoint R (K0, K1, phi) ;
MoRigidLink rod (K1, K2, l) ;
MoReal m ;
MoMassElement Tip (K2, m) ;
MoMapChain Pendulum ;
Pendulum << R << rod << Tip ;

// create a list of generalized coordinates
MoVariableList vars ;
vars << phi ;

// create an object for generation of the equation of motion
MoEqmBuilder Dynamics (vars , Pendulum , K0 , yAxis) ;

// set the numerical values for the configuration to solve
l = MoVector (0 , -1 , 0) ;
m = 1 ;

phi.q = 0 ;

// carry out the analysis
for (int i = 0 ; i++ < 18 ; phi.q += PI/18.0) {

Dynamics.buildEquations() ;
Dynamics.printMass() ;
Dynamics.printForce() ;

}
}

Note that this is now an executable program. The object \Dynamics" is now capable
of generating the equations of motion upon request. This occurs in the program by
appending \.buildEquations()", \.printMass()" and \.printForce()" to the object's
name. The invocations can be repeated as many times as required, without having to
look again into the details of the once modeled object. Moreover, parameters, as well as
variables of the transmission elements, such as l and m, and phi, can be basically treated
as symbols, i. e., they can be assigned actual numerical values at arbitrary locations in
the program.

The variable phi is a representative of a special set of objects in M a aa aBILE termed \scalar
kinetostatic state objects". These objects comprise information about position, velocity,
acceleration and force of a relative displacement. The subentries can be addressed by

M a aa aBILE 1.3 User's Guide 15

Section 2.2: Example: Analysis of a Simple Pendulum

appending \.q", \.qd", \.qdd" and \.Q" to the name of the scalar kinetostatic state
object. Thus, the entry phi.q above addresses the position of the variable phi. This
entry is for rotational variables an angle, which di�ers from the other scalar quantity, the
real number , in that it contains also the sine and the cosine of the angle. This angle is
�rst initialized to the value zero and then incremented within the loop in steps of in 18
steps of 10�.

Note that the object \Pendulum" does not come into play within the loop anymore.
This object is now controlled by the object \Dynamics". The object Dynamics, in turn,
generates the equations of motion of its subordinate objects (here: Pendulum). In doing
this, it acts as a (responsible, but lazy) master that invokes the corresponding transmission
functions of its subordinates in order to accomplish the overall transmission behaviour
for the complete system. Such a \delegation" of responsibility is typical for the object-
oriented approach. M a aa aBILE makes heavy use of responsibility delegation in the modeling
of mechanical systems.

2.2.3 Automatic Integration of Dynamical Equations

Once generated, models of mechanical systems can be passed to further objects capable
of performing numerical analysis. Examples hereof are eigenvalue analysis or the determi-
nation of the equilibrium con�guration of the system. Below we reproduce a program in
which the equation of motion of the pendulum is numerically integrated and the ensuing
motion is animated via a realistic three-dimensional graphic model.

#include <Mobile/MoBase.h>
#include <Mobile/MoMapChain.h>
#include <Mobile/MoElementaryJoint.h>
#include <Mobile/MoRigidLink.h>
#include <Mobile/MoMassElement.h>
#include <Mobile/MoAdamsIntegrator.h>
#include <Mobile/Inventor/MoScene.h>

void main () {

// definition of mechanical system (see previous section)
MoFrame K0 , K1 , K2 ;
MoAngularVariable phi ;
MoVector l ;
MoElementaryJoint R (K0, K1, phi) ;
MoRigidLink rod (K1, K2, l) ;
MoReal m ;
MoMassElement Tip (K2, m) ;
MoMapChain Pendulum ;
Pendulum << R << rod << Tip ;

// dynamic equation
MoVariableList vars ;
vars << phi ;

16 M a aa aBILE 1.3 User's Guide

Section 2.2: Example: Analysis of a Simple Pendulum

MoMechanicalSystem Dynamics (vars , Pendulum , K0 , yAxis) ;

l = MoVector (0 , -1 , 0) ;
m = 1 ;
phi.q = phi.qd = 0 ;

// numerical integrator
MoAdamsIntegrator dynamicMotion (Dynamics) ;
MoReal dT = 0.1 ;
MoReal tol = 0.01 ;
dynamicMotion.setTimeInterval(dT) ;
dynamicMotion.setRelativeTolerance(tol) ;

// animation
MoScene Scene (Pendulum) ; // interface for 3D-rendering
Scene.makeManipulator (R) ; // create shape for revolute joint
Scene.makeShape (R, rod) ; // create shape for rigid link

Scene.addAnimationObject (dynamicMotion) ;
Scene.setAnimationIncrement (0.0) ; // animate as fast as possible

Scene.show() ;
MoScene::mainLoop() ; // move the scene

}

Note that the object \Dynamics" is now of type \MoMechanicalSystem". This type
is related to the type MoEqmBuilder described above, only that it maps the underlying
dynamical equations to a system of �rst order di�erential equations suitable for numerical
integration.

The de�nition of the graphical objects above employs the building blocks already employed
in the previous mechanic modeling. The object \Scene", of type MoScene, takes over the
responsibility of rendering the animation for the user. It is instructed about which parts to
render through the member function \makeShape". In the example above, the geometry
is supplied automatically by the scene object. However, it is also possible to supply
user-de�ned geometries by specifying a corresponding data �le as a second argument in
makeShape(). The member function \makeManipulator" produces in addition to the
graphical rendering a \manipulator" for the object (in this case the joint), through which
the user can directly move the joint. On a Silicon Graphics workstation, this manipulation
consists in dragging a cage around the joint. Fig. 2.3 shows the resulting graphics for the
example above. The graphical rendering is hardware dependent. In M a aa aBILE 1.3, the
hardware supported are HP 9000 Series 700 Workstations and Silicon Graphics Indigo
and Indy Workstations. The display in Fig. 2.3 stems from an SGI workstation.

The actual numerical simulation is carried out by an integrator of type Adams-Bashfort-
Moulton. After setting step size and error tolerance, the integrator object can be treated
as a kinetostatic transmission element that travels along the solution trajectory. Each time
the motion transmission function \doMotion" is invoked, the system moves one small step
along this trajectory. After each such step, the rendering function of the corresponding

M a aa aBILE 1.3 User's Guide 17

Section 2.2: Example: Analysis of a Simple Pendulum

Figure 2.3: Graphic representation of the pendulum example

graphical model of the pendulum is invoked, bringing eventually the motion of the system
to the screen.

There are also other routines for integration installed in M a aa aBILE. Examples hereof are
the explicit Euler method (MoExplicitEulerIntegrator) or the Runge-Kutta method
(MoRungeKuttaIntegrator). In M a aa aBILE, numerical integration, as well as other com-
putationally expensive numerical tasks, are solved using modules of standard numerical
libraries. Currently, there exist interfaces for the numerical libraries SLATEC, NAG and
IMSL. However, only the SLATEC routines are actually shipped with the M a aa aBILE soft-
ware. The libraries NAG and IMSL are liable to licenses which have to be purchased
by the user directly from the corresponding dealers. The user can freely choose between
these methods and attach them to the mechanical models without having to regard the
details of numerical algorithms.

2.3 Summary

The example discussed above displays some of the capabilities of the object-oriented
multibody modeling library M a aa aBILE. It can be appreciated that objects of M a aa aBILE
provide an intuitive and natural language for rapid prototyping of mechanical systems
that is also well-suited for devising hand-tailored programs for simulating systems. Hand-
tailored programs have the advantage of being open and easy to extend. Thus, once
created, models can be extended as the demands grow. This is the key for e�cient and
integrated approaches featuring code reusal and interdisciplinary procedures, as pursued
by this package.

18 M a aa aBILE 1.3 User's Guide

3 Basic Mathematical Objects

This chapter describes the basic mathematical objects currently shipped the M a aa aBILE
package. The objects introduced here cover the typical mathematical entities encountered
in the treatment of spatial kinematics and dynamics. These are

� linear and angular scalars,

� three dimensional euclidean vectors,

� transformation matrices,

� inertia tensors,

� linear and angular variables, and

� spatial reference frames.

Table 3.1 gives an overview of the classes for basic mathematical objects supplied with
the M a aa aBILE 1.3 software.

class Functionality
MoAngle Angles representing elements � 2 T 1 (the one-dimensional Torus).
MoAngularVariable Scalar state object storing motion and load state of a cyclic variable.
MoAngularVariableList List of linear variables.
MoFrame Spatial state object storing motion and load state of a reference frame.
MoFrameList List of spatial reference frames.
MoInertiaTensor Three dimensional inertia tensor.
MoLinearVariable Scalar state object storing motion and load state of a linear variable.
MoLinearVariableList List of angular variables.
MoMatrix Generic base class for three dimensional matrix.

MoNullState Object representing the universal neutral element.
MoReal Floating point numbers x 2 IR .
MoRealStack Stack of
oating point numbers.
MoRotationMatrix Base class for three-dimensional orthogonal matrices.
MoStateVariable Base class for scalar state objects.
MoVariableList Heterogeneous list of scalar state objects.
MoVector Three dimensional euclidean vector.
MoVectorStack Stack of three dimensional euclidean vector.
MoXRotationMatrix Elementary transformation matrix for rotation about the x-axis.
MoYRotationMatrix Elementary transformation matrix for rotation about the y-axis.
MoZRotationMatrix Elementary transformation matrix for rotation about the z-axis.
MoXYZRotationMatrix Base class for elementary rotation transformation matrices.

Table 3.1: Overview of the basic mathematical objects of M a aa aBILE

The above mentioned entities have been endowed with certain functions, operators and
data structures that make it possible to use them in an intuitive and mathematically fa-
miliar way. When using the operators, care must be taken to regard the correct precedence
of the latter. This precedence of operators is �xed by the C++ language. For convenience,
the precedence of operators used in M a aa aBILE is recollected in Table 3.2. Each block of

M a aa aBILE 1.3 User's Guide 19

operators listed within two horizontal lines constitutes a group. The precedence of groups
of operators is from top to bottom, and within each group operators are applied from left
to right.

Most of the operators de�ned in M a aa aBILE are in conformance to common usage in C++.
However, some of these are applied quite di�erently. For example, the operator for the
cross product of two vectors was chosen as the \modulus" operator \%", which is the
available operator most closely resembling the original mathematical symbol�. Moreover,
this operator has precedence over the + and � operators, so it conforms to common
usage. However, the operator for dyadic product of two vectors, chosen as \^", has a
lower precedence than the additive operators. Thus, expressions such as a � b+ c � d have
to be programmed with additional levels of parenthesis, i. e., as (a^b)+(c^d) for correct
expression evaluation.

[] subscripting pointer[expr]
() function call expr(expr list)
~ complement ~expr
- unary minus -expr
+ unary plus +expr
* multiply expr*expr
/ divide expr/expr
% modulo (remainder) expr%expr
+ add (plus) expr+expr
- subtract expr-expr
<< shift left expr<<expr
>> shift right expr>>expr
< less than expr<expr
<= less than or equal expr<=expr
> greater than expr>expr
>= greater than or equal expr>=expr
== equal expr==expr
!= not equal expr!=expr
& bitwise AND expr&expr
^ bitwise exclusive OR expr^expr
| bitwise inclusive OR expr|expr
&& logical AND expr&&expr
|| logical inclusive OR expr||expr
= simple assignment lvalue=expr
= multiply and assign lvalue=expr
/= divide and assign lvalue/=expr
%= modulo and assign lvalue%=expr
+= add and assign lvalue+=expr
-= subtract and assign lvalue-=expr
&= AND and assign lvalue&=expr
|= inclusive OR and assign lvalue|=expr
^= exclusive OR and assign lvalue^=expr

Table 3.2: Precedence of operators in M a aa aBILE

20 M a aa aBILE 1.3 User's Guide

Section 3.1: The Universal Neutral Element MoNullState

3.1 The Universal Neutral Element MoNullState

The mathematical entities used in M a aa aBILE stem from quite di�erent algebraic spaces. In
each of these spaces, there exists a unique \point" which represents some kind of \initial"
or neutral state, which is called the neutral point . For example, the neutral point of a
vector space is the origin or zero vector 0, while for transformation matrices it is the
identity matrix.

In M a aa aBILE, it is possible to reset any mathematical object to its value at the neutral
element by assigning to it the universal neutral element \MoNullState". The assignment
operator returns again a reference to the object MoNullState, so it is possible to concate-
nate this resetting operation even when the objects at both sides of the equal signs are
of di�erent types. This allows one to reset a whole bunch of objects in only one line of
code, as in:

#include <Mobile/MoBase.h>
main() {
MoAngle beta ;
MoZRotationMatrix Rot_z ;
beta = Rot_z = MoNullState ;

}

Here, the angle beta and the matrix Rot z are simultaneously reset to zero and the
identity, respectively.

Due to e�ciency issues, not all objects are automatically initialized in M a aa aBILE when
they are de�ned. The most volatile of them come into being with arbitrary values. Ta-
ble 3.3 gives an overview of the objects for which no automatic initialization is performed
at de�nition time. The table also exhibits the values that the objects will take upon as-

class value generated by MoNullState

MoAngle zero degrees
MoInertiaTensor MoZeroMatrix

MoRotationMatrix MoIdentityMatrix

MoVector MoNullvector

MoXRotationMatrix MoIdentityMatrix

MoYRotationMatrix MoIdentityMatrix

MoZRotationMatrix MoIdentityMatrix

Table 3.3: Objects that are not automatically initialized in M a aa aBILE

signment of the universal neutral element. All other objects of M a aa aBILE are initialized to
a de�nite value at de�nition time. The corresponding initialization values are described
in the M a aa aBILE reference sheets.

M a aa aBILE 1.3 User's Guide 21

Section 3.2: The scalar entities MoReal and MoAngle

3.2 The Basic Scalar Types MoReal and MoAngle

Scalar algebraic objects constitute the basis for the contruction of mathematical expres-
sions and of more involved composite elements. In the analysis of mechanical systems,
there are two types of scalar numbers(Fig. 3.1):

(a) linear coordinates, which are elements of the real line x 2 IR , and

(b) cyclic coordinates, which are elements on the real circle � 2 T
1 .

In M a aa aBILE, these two kinds of scalar algebraic objects are termed MoReal and MoAngle.
The distinction between linear and cyclic scalar coordinates is appropriate for two reasons

� by introducing cyclic coordinates, one can avoid repeated evaluation of trigonometric
expressions, thus reducing computational overhead,

� by introducing linear variables, unnecessary evaluation of trigonometric expressions
is avoided and the compiler can also make case selections based on the type of
motion (for example, recognition of prismatic and revolute joints based on the type
of the actuation variable)

IR

T 1

linear scalars (real line) angular scalars (real circle)

Figure 3.1: The two types of algebraic scalar objects in M a aa aBILE

The type MoReal is just an alias of the native type double of C++. Thus, all operations
de�ned for the double precision variables are also de�ned for the type MoReal.

The type MoAngle groups together the value of an angle, measured in radians, and its
sine and cosine. The operations de�ned for this type are displayed in Table 3.4.

An example of the use of angles is shown below.

#include <Mobile/MoAngle.h>
main(){
MoAngle beta1=0 , beta2 , beta3 ; // beta1 is defined, beta2 and beta3 not!
beta2 = 30 * DEG_TO_RAD ; // angle, sine and cosine of beta2 are set

22 M a aa aBILE 1.3 User's Guide

Section 3.3: Vectors and Matrices

Operator usage Action

angle = angle 7! angle assign an angle
angle = real 7! angle assign a scalar (the value of the angle is in radians)
angle + angle 7! angle add two angles
angle - angle 7! angle subtract two angles

-angle 7! angle change sign of an angle
angle+=angle 7! angle add and assign an angle
angle+=real 7! angle add and assign an angle (in radians)
angle-=angle 7! angle subtract and assign an angle
angle-=real 7! angle subtract and assign an angle (in radians)
angle = MoNullState 7! angle assign zero angle
angle . degrees() 7! real return value of angle in degrees
angle . radians() 7! real return value of angle in radians
angle . sine() 7! real return sine of angle (no computation)
angle . cosine() 7! real return cosine of angle (no compuation)

Table 3.4: Overview of operations for objects of type MoAngle

beta3 = beta1 - beta2 ; // carry out an algebraic operation
beta3 += 10 * DEG_TO_RAD ; // this also works
cout << beta3.degrees() << "\n" // print the value of the angle, ...

<< beta3.sine() << "\n" // its sine, ...
<< beta3.cosine() << "\n" ; // and its cosine to standard output.

cout << beta1 << "\n" ; // prints [0,0,1] to standard output.
}

3.3 Vectors and Matrices

The methodologies for the analysis and synthesis of spatial kinematics and dynamics build
substantially upon the notions of three-dimensional vectors and matrices. In M a aa aBILE,
three-dimensional vectors and matrices are thus given a particular attention. These ob-
jects are represented in M a aa aBILE by the classes MoVector and MoMatrix. Operations
concerning these classes have been designed such as to provide the user with an intuitive
interface and with optimized code that take best advantage of the three-dimensional case.

3.3.1 Vectors

Table 3.5 shows the operations de�ned for vectors. By making use of these operators,
not only one can write programs resembling common vectorial expressions, but it is also
guaranteed that the operations are carried out in the most e�cient way.

The components of each vector are represented by the member elements x, y, z of type
MoReal. One accesses these components by appending `.x', `.y' or `.z' to the name of
the vector.

M a aa aBILE 1.3 User's Guide 23

Section 3.3: Vectors and Matrices

Operator usage Action

vector = vector 7! vector assign a vector
-vector 7! vector change sign of vector

vector + vector 7! vector add two vectors
vector - vector 7! vector subtract two vectors
vector * vector 7! real create inner product of two vectors
scalar * vector 7! vector multiply vector by scalar
vector % vector 7! vector create vector product (left times right)
vector+=vector 7! vector add and assign a vector
vector-=vector 7! vector subtract and assign a vector
vector%=vector 7! vector vector product and assign (left times right)
vector*=XYZrotation 7! vector transform by elementary rotation and assign
vector^=XYZrotation 7! vector transform by transpose of elementary rotation and assign
vector = MoNullState 7! vector assign zero vector

Table 3.5: Overview of operations for objects of type MoVector

The following program fragment shows some examples of the use of vectors.

#include <iostream.h>
#include <Mobile/MoVector.h>
main() {
MoVector v , u(0,0,1) , w = MoVector (1 , 1 , 0) ;
v = u + w ;
MoVector a = 3 * v ;
MoVector b = v % (v % w) + a % w + u ;
cout << b << ", " // prints to standard output: "(-4,2,3), "

<< a.y << ", " // prints to standard output: "3, "
<< u*w << "\n" ; // prints to standard output: "0<Newline>"

}

Note the di�erent ways in which a vector can be de�ned. Note also the way operator
precedence can be employed in order to reduce the number of parenthesis.

3.3.2 Matrices

Three-dimensional matrices come in di�erent \
avors" in M a aa aBILE: there are matrices
representing rotations and matrices respresenting inertia properties. Similarly to the
de�nition of angular and linear scalars, these two categories of objects, although they look
alike, di�er considerable in their inner structure: while rotational matrices are orthogonal,
inertia matrices are always positive de�nite. Thus, in M a aa aBILE special types of matrices
are introduced that take account of matrix structure and allowed operations for each type.

Fig. 3.2 displays the functional hierarchy for the matrices de�ned in the M a aa aBILE package.
In this hierarchy, types to the right support all operations that the types to the left do.
This hierarchy is only conceptual. It is not actually implemented in this manner. In
particular, the data of the three elementary rotation matrices is structured in a di�erent

24 M a aa aBILE 1.3 User's Guide

Section 3.3: Vectors and Matrices

manner than that of the other classes. Note that not all operations allowed for one type
apply also to the other.

MoMatrix MoRotationMatrix MoXRotationMatrix

MoInertiaTensor MoYRotationMatrix

MoZRotationMatrix

- -

- -

-

Figure 3.2: Class hierarchy for the di�erent types of matrices in M a aa aBILE

Table 3.6 displays the basic data structure of the di�erent types of matrices supported by
the M a aa aBILE package. Furthermore, the 3� 3 zero matrix MoNullMatrix and the 3� 3
identity matrix MoIdentityMatrix are de�ned.

class type of space structure of matrix

MoMatrix A 2 IR3� IR3 A =

0@ a11 a12 a13
a21 a22 a23
a31 a32 a33

1A
MoRotationMatrix A 2 SO(3) ATA = I3

MoXRotationMatrix A 2 Rot [x; �] A =

0@ 1 0 0
0 cos� � sin�
0 sin� cos�

1A

MoYRotationMatrix A 2 Rot [y; �] A =

0@ cos� 0 sin�
0 1 0

� sin� 0 cos�

1A

MoZRotationMatrix A 2 Rot [z; �] A =

0@ cos� � sin� 0
sin� cos� 0
0 0 1

1A

MoInertiaTensor A 2 f A : A � 0 g A =

0@ a11 a12 a13
a12 a22 a23
a13 a22 a33

1A

Table 3.6: Properties of the di�erent types of three-dimensional matrices

The generic set of operations for matrices is summarized in Table 3.7. These operations
are de�ned for all types of matrices. Specialized operations, which only make sense for a
particular type of matrix, are discussed further below.

M a aa aBILE 1.3 User's Guide 25

Section 3.3: Vectors and Matrices

Operator usage Action

matrix = matrix 7! matrix assign a matrix.
-matrix 7! matrix change of sign of a matrix.

real * matrix 7! matrix scale a matrix.
matrix * vector 7! vector multiply matrix times vector
vector * matrix 7! vector multiply vector by transpose of matrix

~ matrix 7! matrix transpose a matrix.

~ vector 7! matrix generate skew-symmetric matrix from vector
vector ^ vector 7! matrix generate dyadic product of two vectors

Table 3.7: General operations for objects of type MoMatrix

The two operators in Table 3.7 generating matrices from vectors are de�ned as

~
vector :

264 ax
ay
az

375 7!

0B@ 0 �az ay
az 0 �ax
�ay ax 0

1CA

vector
^

vector :

264 ax
ay
az

375

264 bx
by
bz

375 7!

0B@ ax bx ax by ax bz
ay bx ay by ay bz
az bx az by az bz

1CA

Note that the dyadic product operator used here corresponds to the bitwise exclusive
OR operator in native C++. Thus, it has a very low precedence over the additive opera-
tors, and the user must enforce, by additional levels of parentheses, the correct order of
evaluation.

The columns of matrices are accessible for types MoMatrix, MoRotationMatrix and Mo-

InertiaTensor though three members of type vector. These members are denoted by
e1, e2 and e3. One can access the column vectors of the aforementioned matrices by
appending e1, e2 and e3 to their name.

Another way of accessing the columns of a matrix for the types listed above is to use
the parenthetical expression matrix(index). Here, index is the index of the column to be
returned. Allowed index values are 1,2,3.

Columns are not de�ned for objects of type MoXRotationMatrix, MoYRotationMatrix
and MoZRotationMatrix. These represent elementary rotations about a coordinate axis
in a compact and e�cient manner. In fact, while behaving similarly to objects of class
MoRotationMatrix at the global level, these objects store internally just the sine and the
cosine of the corresponding rotation angle.

Table 3.8 shows the additional operations supported for inertia tensors. Note that the
generic operations de�ned in Table 3.7 also apply to inertia tensors. Also, note that the
product of two inertia tensors is not de�ned. This would not make any sense, as the
resulting units would not be compatible with any mechanical quantity.

The special operations supported for rotation matrices are listed in Table 3.9. Note again

26 M a aa aBILE 1.3 User's Guide

Section 3.4: State Objects

Operator usage Action

inertia + inertia 7! inertia add two inertia matrices
inertia+= inertia 7! inertia add and assign an inertia matrix
inertia - inertia 7! inertia subtarct two inertia matrices
inertia-= inertia 7! inertia subtract and assign an inertia matrix
inertia = MoNullState 7! inertia assign zero matrix

Table 3.8: Special operations for objects of type MoInertiaTensor

that these are in addition to those of Table 3.7. Now the addition of rotation matrices is
not supported, since it would destroy the property of orthogonality.

Operator usage Action

rotation * rotation 7! rotation multiply two rotation matrices
rotation *=rotation 7! rotation multiply (left times right) and assign
rotation = MoNullState 7! rotation assign identity matrix
rotation . normalize() 7! rotation normalize non-orthogonal matrix

Table 3.9: Special operations for objects of type MoRotationMatrix

The matrix types MoXRotationMatrix, MoYRotationMatrix and MoZRotationMatrix

support the same operations, plus the additional special operations listed in Table 3.10.
Note that it is possible to assign a linear or angular scalar to an elementary rotation ma-
trix. This sets the value of the rotation value, keeping the structure of the matrix �xed.
Note also that it is only possible to assign elementary matrices of the same type to each
other. For example, one can not \copy" an x-rotation to a y-rotation.

Operator usage Action

XYZrotation = angle 7! XYZrotation assign angle of rotation
XYZrotation = real 7! XYZrotation assign angle of rotation in radians

XYZrotation*=XYZrotation 7! XYZrotation multiply and assign same type matrix
XYZrotation = MoNullState 7! XYZrotation assign identity matrix

Table 3.10: Special operations for objects of type MoXRotationMatrix, MoYRotation-

Matrix and MoZRotationMatrix

3.4 Kinetostatic State Objects

Kinetostatic state objects represent entities for storing motion and force information at
di�erent places in a mechanism. For the modeling of mechanical systems, two types
of kinetostatic state objects are required: scalar kinetostatic state objects and spatial

kinetostatic state objects. Spatial kinetostatic state objects embody the junctures between
the mechanical components, while scalar kinetostatic state objects represent the \wires"
that pass information about desired motion or forces to the joints of the mechanism.

M a aa aBILE 1.3 User's Guide 27

Section 3.4: State Objects

Kinetostatic state objects enclose information about the motion and load state at a partic-
ular location of the mechanical system. The kinetostatic state consists of four basic items,
termed \kinetostatic state subentries" (see also Fig. 3.3): position, velocity, acceleration
and force.

kinematics

position

velocity

acceleration

statics

force

Figure 3.3: State subentries of state objects

Note thus that the notion of \kinetostatic state object" di�ers entirely from the term
\state variables" known from system dynamics. In system dynamics, state variables
are those appearing as �rst time derivatives in the state space form of the dynamical
equations. Here, we denote as kinetostatic state objects the collection of position, velocity,
acceleration and load information for a (scalar or spatial) variable in a mechanism.

State objects are designed as connectors that are placed between the kinetostatic trans-
mission elements (Fig. 3.4). By the connector paradigm, it is made possible to access the
information regarding kinematics and statics at any intermediate place of the multibody
system. In this setting, state objects can be viewed as standardized, dual-ported RAMs
allowing access both from the transmission elements and from the user. Hence, they allow
the user to easily exchange or assemble transmission elements by making changes at one
place independent of changes at another place. Note that the notion of kinetostatic state
objects plays a similar role as the concept of nodes in the �nite element method. There,
the latter are introduced to de�ne �nite elements independently of one another.

The representation of state subentries di�ers from one type of kinetostatic state object
to the other. In the following, the characteristics of the state subentries is discussed
separately for scalar and spatial kinetostatic state objects.

3.4.1 Scalar Kinetostatic State Objects (\MoStateVariable")

A scalar kinetostatic state object comprises the information about position, velocity,
acceleration, and force related to one generalized coordinate (Fig. 3.5). This information
is \pre-wired" within the various kinds of transmission elements, so the user does not
need to bother about how to pass the di�erent types of information correctly.

As discussed in Section 3.2, two types of displacements may arise in kinematics, namely
angular and linear displacements. Accordingly, in M a aa aBILE there exist two types of scalar
kinetostatic state objects:

28 M a aa aBILE 1.3 User's Guide

Section 3.4: State Objects

kinematics

statics

state object state object

read/write read/write

invocation

user

doMotion(...)

doForce(...)

transmission
element

Figure 3.4: State objects as connectors between transmission elements

f�g =

8>>>><>>>>:
�
_�
��
Q�

9>>>>=>>>>;
position
velocity
acceleration
generalized force

Figure 3.5: Structure of a scalar variable (generalized coordinate).

� angular variables (class MoAngularVariable)

� linear variables (class MoLinearVariable)

These classes are derived from the generic class MoStateVariable, which collects their
common properties. The class MoStateVariable is abstract , i. e., it does not allow for
direct instantiation of objects. The only objects that can actually exist are those of
type MoLinearVariable or MoAngularVariable. However, pointers to objects of type
MoStateVariable are allowed. The use of these pointers is explained further below.

The position, velocity, acceleration and force subentries of scalar kinetostatic state objects
are accessed by apending \.q", \.qd", \.qdd" or \.Q" to the variable name, respectively.
The type of the corresponding state subentry is summarized in Table 3.11.

In some applications, a discerning between the two types of scalar kinetostatic state
objects is of no importance, and one may wish to collect both types of kinetostatic state
objects into one common list. For example, when generating the equations of motion or
resolving constraint equations of complex mechanisms, it does not matter whether the
input coordinates are linear or angular. In M a aa aBILE, this can be done by introducing an
array of pointers to their base class, MoStateVariable, and assigning to these pointers
the values of the addresses of existing scalar kinetostatic state objects.

An example is the following code fragment in which the addresses of two scalar kinetostatic

M a aa aBILE 1.3 User's Guide 29

Section 3.4: State Objects

state access of type of entry
subentry component angular case linear case

position variable.q MoAngle MoReal

velocity variable.qd MoReal MoReal

acceleration variable.qdd MoReal MoReal

force variable.Q MoReal MoReal

Table 3.11: Subentries for scalar kinetostatic state objects of type \MoStateVariable"

state objects of di�erent types, namely beta and s, are placed in the common array vars:

MoAngularVariable beta ;
MoLinearVariable s ;
MoStateVariable *vars[2] ;
vars[0] = &beta ;
vars[1] = &s ;

After declaring this array of pointers, one can access the state subentries of the concrete
kinetostatic state objects through the pointer dereferencing mechanism. For example,
the velocity, acceleration, and force components of both objects declared above can be
accessed as follows:

vars[0]->qd = vars[1]->qd = 1.0 ; // velocity subentries
vars[0]->qdd = vars[1]->qdd = 2.0 ; // acceleration subentries
vars[0]->Q = vars[1]->Q = 3.0 ; // force subentries

For accessing the position, it is necessary to know the exact type of kinetostatic state
object addressed by the pointer, as the type of this subentry depends on the type of the
state variable. This information is supplied by the member function \getType()". It
returns an object of type MoVariableType which can take on two values:

� PRISMATIC, for linear variables, and

� REVOLUTE, for angular variables.

The use of this function is illustrated in the following code fragment

#include <Mobile/MoVariableList.h>

main() {

MoAngularVariable beta ;
MoLinearVariable s ;
MoStateVariable *vars[2] ;
vars[0] = &beta ;

30 M a aa aBILE 1.3 User's Guide

Section 3.4: State Objects

vars[1] = &s ;

beta.q = 90.0 * DEG_TO_RAD ;
s.q = 1.0 ;

for (int i = 0 ; i < 2 ; i++)
switch (vars[i]->getType()) {

case PRISMATIC:
cout << ((MoLinearVariable*)vars[i])->q << "\n" ;
break;

case REVOLUTE:
cout << ((MoAngularVariable*)vars[i])->q << "\n" ;
break;

}
}

The abstract pointer to MoStateVariable has been cast here to the correct type of con-
crete pointer before accessing the position subentry of the state variable.

Note that direct creation of objects of type MoStateVariable has been made impossible
in M a aa aBILE by declaring the constructor as \protected". Thus, if the user mistakenly
types something like this

MoStateVariable anyvar ; // error, constructor is private

a compiler error will be issued, because the constructor of the class MoStateVariable is
not de�ned publicly.

A more elegant way of creating sets of heterogeneous scalar state variables is the use of
variable lists. Variable lists are created in M a aa aBILE as instances of class MoVariableList.
Variable lists support operations for appending additional items to the list, moving for-
wards and backwards within the list, and jumping to the beginning or the end of the list.
This functionality is realized through the operator \<<" and the functions \getNext()",
\getPrevious()", \rewind()" and \jumpToEnd()", respectively. Hereby, the lists of
variables adapt their storage requirements automatically, so the user does not need to be
concerned about implementation issues.

An example of the use of variable lists is the following code fragment. Here, the two
scalar variables beta and s are collected in the variable list \varlist", from where they
are retrieved further below in the program in order to print the value of their position
subentry.

MoAngularVariable beta ;
MoLinearVariable s ;
MoVariableList varlist ;
varlist << beta << s ;
beta.q = 90.0 * RAD_TO_DEG ;

s.q = 1.0 ;
MoStateVariable *p ;
varlist.rewind() ;
while (p=varlist.getNext()) // returns `0' at end of list

M a aa aBILE 1.3 User's Guide 31

Section 3.4: State Objects

switch (p->getType()) {
case PRISMATIC:

cout << ((MoLinearVariable *)p)->q ;
break;

case REVOLUTE:
cout << ((MoAngularVariable *)p)->q ;
break;

}

It is also possible to access individual entries of variable lists directly through indexing.
For convenience, two styles of indexing are supplied with the M a aa aBILE software:

� FORTRAN-style indexing, using parenthesis \()", and

� C-style indexing, using brackets \[].

With FORTRAN-style indexing, indices run from `1' to the number of entries in the list.
With C-style indexing, indices run from `0' to the number of entries in the list minus
one. For example, in the following program fragment, each line accesses exactly the same
element of varlist:

varlist(2)->qd = varlist[1]->qd = 1.0 ; // velocity subentries
varlist(2)->qdd = varlist[1]->qdd = 2.0 ; // acceleration subentries
varlist(2)->Q = varlist[1]->Q = 3.0 ; // force subentries

3.4.2 Spatial Kinetostatic State Objects (\MoFrame")

Spatial kinetostatic state objects store the motion and the load of a moving orthogonal
frame. Spatial kinetostatic state objects are represented in M a aa aBILE by objects of type
\MoFrame".

In M a aa aBILE, motions of frames are de�ned with respect to an implicitly assumed inertial
reference frame K0, which is at rest (see Fig. 3.6). This single moving frame is termed
below the actual frame, while the inertial frame is denoted as the �xed frame.

The motion of the actual frame comprises a rotational part and a translational part. The
translational part is determined by the radius vector r connecting the origin of the �xed
frame with the origin of the actual frame, as well as the velocity v and the acceleration
a of the origin of the moving frame with respect to the �xed frame. The rotational
part consists of the orthogonal matrix R representing the transformation of coordinates
from the moving frame to the �xed frame as well as the angular velocity ! and angular
acceleration _! of the moving frame with respect to the �xed frame.

The load at the frame is described by a moment � , measured with respect to the origin of
the actual frame, and a force f , both of which are assumed to be acting from the actual
frame onto the structure spanned between the actual frame and the �xed frame.

32 M a aa aBILE 1.3 User's Guide

Section 3.4: State Objects

t

K
_t

R

w
r

K0

fKg =

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

R

r
!

v
_!
a
�

f

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;

rotation
translation
angular velocity
linear velocity
angular acceleration
linear acceleration
torque
force

Figure 3.6: Components of a moving frame

In M a aa aBILE, all vectors are usually assumed to be decomposed in the actual frame.
Exceptions from this rule are stated explicitly.

The state subentries for spatial reference frames are accessed by appending the name
of the correspondent member element to the name of the frame. The identi�ers for the
member elements are recollected in Table 3.12.

state subentry access of type of entry
component

position: orientation frame.R MoRotationMatrix

translation frame.r MoVector

velocity: angular frame.ang v MoVector

linear frame.lin v MoVector

acceleration: angular frame.ang a MoVector

linear frame.lin a MoVector

load: moment frame.t MoVector

force frame.f MoVector

Table 3.12: Subentries for kinetostatic state objects of type \MoFrame"

For example, if K is an object of type MoFrame, the corresponding location of the origin
with respect to the �xed frame can be printed as

cout << K.R * K.r ;

Note that here the origin vector is premultiplied by the rotation matrix of the frame prior
to being printed. Thus the printed components are measured with respect to the �xed

M a aa aBILE 1.3 User's Guide 33

Section 3.4: State Objects

frame. Conversely, if one has a vector decomposed with respect to the �xed frame and
wants to apply it the actual frame, one transforms it to the actual frame by

K.lin_v = vector * K.R ;

Note that, here, the vector is post-multiplied by the rotation matrix. This is equivalent
to pre-multiplying the vector with the transpose of the matrix K.R (see Section 3.3).

As it was the case with scalar state objects, it is possible to create logical units comprising
several frames either by arrays or by lists. In M a aa aBILE, lists of frames are created
as instances of the class MoFrameList. Objects of this class are used in exactly the
same manner as objects of type MoVariableList (see Section 3.4.1). Which of the two
techniques the user prefers depends on the application. A code fragment in which both
methods are empoyed is displayed below.

#include <Mobile/MoElementaryJoint.h>

main() {
// (a) arrays of frames
MoFrame K[10];
MoAngularVariable beta ;
MoElementaryJoint joint (K[0] , K[1] , beta) ; // access by indices

// (b) lists of frames
MoFrame K1 , K2 ;
MoFrameList frameList ;
frameList << K1 << K2 ; // fill the list
MoFrame *p ;
while (p=frameList.getNext()) // returns `0' at the end of list

cout << p->R * p->r << "\n" ; // global components of radius vectors
}

Spatial and scalar kinetostatic state objects are crucial for the concatenation of transmis-
sion elements. They can be regarded as the \glue" that holds the di�erent parts together.
Moreover, kinetostatic state objects provide the interfaces through which the user can
access and manipulate the state-related data within the mechanical system. This gives
to the user complete control and insight over the operations performed within the model.
This will become more clear in the following chapter when the kinetostatical transmission
elements are discussed.

34 M a aa aBILE 1.3 User's Guide

4 Basic Kinetostatic Transmission Elements

This chapter describes the basic building blocks of M a aa aBILE for the kinematic, static and
inverse dynamics modeling of tree-type mechanical systems. Further objects, suitable
for the resolution of constraint equations (i. e., for the treatment of closed loops), the
generation of direct dynamics, and for the numerical solution of the equations of motion,
will be discussed in subsequent chapters.

4.1 Overview of Supplied Kinetostatic Transmission Elements

The mechanical building blocks in M a aa aBILE are particular specializations of a generic
element denominated \MoMap". This \super-ancestor" subsumes the generic properties of
mechanical components in form of virtual functions that are guaranteed to be supplied by
all mechanical components, whatever the details of their implementation. Two of these
functions are \doMotion(...)" for the transmission of motion and \doForce(...)" for
the transmission of forces.

Modules of mechanical components are obtained in M a aa aBILE by derivation from the
class MoMap. The idea behind this kind of module organization is that one can address
the generic properties of a component without knowing the exact type of implementation
hidden behind it. In M a aa aBILE, one can access the generic properties of any mechanical
component, e. g., a joint, a rigid link, or a complete vehicle suspension, by regarding them
as instances of class MoMap.

Fig. 4.1 illustrates the class hierarchy for a part of the family of kinetostatic transmission
elements. Note that some nodes act again as a base class for several descendants. Note
also that some elements, like MoOutputGenerator, MoIntegrator and MoDriver, are not
actually mechanical objects in the sense that they participate in the power transmission
of the system. Nevertheless, they are treated in M a aa aBILE as kinetostatic transmission
elements in the sense that they carry out signal processing tasks resembling the power
transmission mechanism of the kinetostatic model.

Table 4.1 gives an overview of the currently supplied kinetostatic transmission elements.
Note that classes in M a aa aBILE can be either abstract , or concrete. For example, the classes
MoForceElement and MoChord are abstract, while the classes MoConstantStepDriver,
MoChordPointPlane, and MoLinearSpringDamper are concrete. Abstract classes act
merely as conceptual containers for the common properties of a familiy of elements. They
can not be instantiated directly and their implementation is thus of no interest for the
user. However, one can introduce pointers to this type of objects that can be employed
for accessing the generic properties of objects derived from this class. On the other hand,
concrete classes represent actual implementations of entities that can be instantiated and
used as many times as necessary.

This chapter introduces the some fundamental classes needed for kinetostatic modeling
of tree-type mechanical systems. Other elements will be discussed in the subsequent
chapters. A detailed syntax description for these objects can be found in the appended

M a aa aBILE 1.3 User's Guide 35

Section 4.2: Generic Properties of Kinetostatic Transmission Elements

MoMap MoMapChain

MoForceElement MoConstantWrench

MoRigidLink MoLinearSpringDamper

MoOutputGenerator

MoChord ...

MoCompositeJoint ...

MoElementaryJoint

MoConstraintSolver ...

MoConstraintSolver MoExplicitSolver

MoMassElement MoImplicitSolver

MoIntegrator ...

MoDriver ...

-

- -

- -

-

- -

- -

-

- -

- -

- -

- -

- -

Figure 4.1: Hierarchy of kinetostatic transmission elements of M a aa aBILE (excerpt)

Reference Sheets.

4.2 Generic Properties of Kinetostatic Transmission Elements

The notion of the kinetostatic transmission elements was already introduced in Section 2.
This section focuses on the common features of the kinetostatic transmission elements,
presenting their underlying generic model and shared \services".

36 M a aa aBILE 1.3 User's Guide

Section 4.2: Generic Properties of Kinetostatic Transmission Elements

Class Functionality class type

MoMap generic base class for kinetostatic transmission elements abstract

MoElementaryJoint rotational or prismatic joints concrete
MoRigidLink rigid link (binary or multiple) concrete
MoElementaryScrewJoint screw joint concrete
MoCompositeJoint base class for multi-degree-of-freedom joints abstract
MoSphericalJoint spherical joint (both Euler or Byrant angles) concrete
Mo3DTranslationalJoint pure three-dimensional translation concrete
MoFloatingBodyJoint general spatial motion concrete
MoMapChain concatenation of transmission elements concrete

MoForceElement the base class for objects modeling applied forces abstract
MoConstantWrench spatial force or moment at a reference frame concrete
MoLinearSpringDamper linear spring-damper element (for joints and chords) concrete

MoChord base class for geometric measurements abstract
MoChordPointPointQuadratic measurement of quadratic distance between two origins concrete
MoChordPointPointLinear measurement of linear distance between two origins concrete
MoChordPointPlane measurement of distance between origin and plane concrete
MoChordList list of chords concrete

MoConstraintSolver base class for solution of loop constraint equations abstract
MoExplicitConstraintSolver closed-form solution of scalar constraint equations concrete
MoImplicitConstraintSolver iterative solution of general constraint equations concrete

MoMassElement inertia properties of point masses and rigid bodies concrete

MoIntegrator base class for numerical integration abstract
MoAdamsIntegrator Adams-Moulton-Bashfort integration concrete
MoExplicitEulerIntegrator one-step explicit Euler integration concrete
MoRungeKuttaIntegrator 4th order Runge-Kutta integration concrete

MoDriver base class for objects generating kinematical input abstract
MoConstantStepDriver generation of constant step increments for scalar variables concrete

MoOutputGenerator printout of scalars, vectors or matrices concrete

Table 4.1: Selection of kinetostatic transmission elements in M a aa aBILE

4.2.1 Model of a Kinetostatic Transmission Element

At the heart of the object-oriented modeling of M a aa aBILE is the notion of the \kinetostatic
transmission element", an abstraction which describes the minimal basic services that any
mechanical component must provide.

Consider a mechanical system consisting of several hundred of pieces ranging from bolts
over joints to complete subsystems such as gear boxes, transmission elements, suspension
mechanisms, etc. In real world, the designer will typically strive to use standardized,
simple interfaces that make possible a rapid assembly and disassembly of the pieces. This
makes the construction easily maintainable and extendable. In M a aa aBILE, this idea is
carried over to the modeling of multibody systems by employing as interfaces for the
models not only the data, but also the functions. By this measure, the user does not need
to peek into the core of the models to obtain information about internal implementation
details, but can construct a global model by making only use of abstract services. Hence,
a model can be completed incrementally by adding or removing parts without a�ecting

M a aa aBILE 1.3 User's Guide 37

Section 4.2: Generic Properties of Kinetostatic Transmission Elements

the rest of the operational model.

The transmission behaviour, or the \services", of a kinetostatic transmission element can
be best described by considering a simple element mapping a set of n scalar (kinematical)
input variables q 2 IRn , to a set of m scalar (kinematical) output variables q0 2 IRm , as
displayed in Fig. 4.2.

q -

_q -

�q -

Q �

\map"

- q0

- _q0

- �q0

� Q0

a) transmission behaviour

input output

position q 2 IRn q0 2 IRm

velocity _q 2 IRn _q0 2 IRm

acceleration �q 2 IRn �q0 2 IRm

force Q 2 IRn Q0 2 IRm

b) input and output coordinates

Figure 4.2: Model of a kinetostatic transmission element

The transmission of motion involves the mapping of the input variables q to a corre-
sponding set of output variables q0 . As well, the time derivatives _q and �q of the
input coordinates, i. e. the velocity and acceleration, are mapped to the corresponding
time derivatives _q0 and �q0 of the output coordinates. Apart from the kinematic trans-
mission functions, the kinetostatic transmission element also induces a transmission of
forces. This transmission is directed in opposite direction to the transmission of motion,
mapping the forces Q0 at the (kinematic) output of the kinetostatic transmission element
to corresponding forces Q at the (kinematic) input. The reasoning behind this kind of
modeling is explained in the following theoretical background information.

Theoretical background: Structure of the kinetostatic transmission functions

The transmission of motion is governed by the following formulas:

position: q0 = ' (q)

velocity: _q0 = J� _q

acceleration: �q0 = J� �q + _J� _q

where J� represents the Jacobian of the transmission element

J� =
@�

@q
2 IRm�n : (4.1)

For the transmission of forces, one �rst assumes that the transmission is ideal , i. e., that it neither
generates nor consumes power. Then, equality of virtual work at the input and output holds, and it
follows

�qTQ = �q0
T
Q0 :

38 M a aa aBILE 1.3 User's Guide

Section 4.2: Generic Properties of Kinetostatic Transmission Elements

After substituting �q0 = J� �q and noting that this condition must hold for all �q 2 IRn , the force

transmission function

Q = J
T
� Q0

follows. If the kinetostatic transmission element is not ideal, it contributes to the ideal transmission
of forces an additional term bQ which represents the source force of the element. Such source forces
can result for example from friction e�ects, but can also model contributions due to applied forces or
mass e�ects. With the source force bQ, the transmission of forces takes on the form

force: Q = JT� Q0 + bQ : (4.2)

Note that, in general, the Jacobian J� is not quadratic, so for most transmission elements this
relationship cannot be reversed. Thus, the natural direction of transmission of forces is in opposite

direction to the motion mapping, as was already depicted in Fig. 4.2.

4.2.2 Invoking Motion and Force Transmission

The transmission of motion and force is implemented for each type of mechanical compo-
nent in a particular (and e�cient) manner. The user can invoke these functions either by
appending the strings .doMotion() and .doForce() to the name of the kinetostatic trans-
mission element, or by using the pointer dereferencing mechanism pointer->doMotion()
and pointer->doForce(). Moreover, because the transmission operations are coded as
virtual functions, the user can invoke these functions also by treating pointers to existing
kinetostatic transmission elements as instances of the generic transmission element MoMap.

The following code fragment illustrates this concept. Two concrete kinetostatic transmis-
sion elements are introduced and subsequenty the motion transmission function is invoked
once directly for the given objects and once indirectly by treating them as generic trans-
mission elements and then using the pointer dereferencing mechanism.

...
MoAngularVariable beta ;
MoVector l ;
MoFrame K1, K2 , K3 ;
MoElementaryJoint R (K1 , K2 , beta) ;
MoRigidLink L (K2 , K3 , l) ;

...
// direct invocation ...
R.doMotion() ;
L.doMotion() ;

// indirect invocation ...
MoMap *kinetostaticElements[2] ;
kinetostaticElements[0] = &R ;
kinetostaticElements[1] = &L ;
for (int i = 0 ; i<2 ; i++)

kinetostaticElements[i]->doMotion(DO_ALL) ;

M a aa aBILE 1.3 User's Guide 39

Section 4.2: Generic Properties of Kinetostatic Transmission Elements

Note that direct invocation leads to more compact code, while indirect invocation allows
for automatized treatment of larger assemblies through iterative mechanisms. In general,
the user is free to choose the most convenient form for the application at hand.

function direct invocation indirect invocation
motion object.doMotion (...) pointer->doMotion (...)

motion object.doForce (...) pointer->doforce (...)

Table 4.2: Types of motion and force invocation

The two mechanisms of transmission function invocation are summarized in Table 4.2.
The ellipsis in the function call represents an optional argument by which the user can se-
lect only a subset of the operations involved in the computation of an invoked transmission
function. These subtasks are described in the following section.

4.2.3 Selection of Motion and Force Transmission Subtasks

When invoking the motion and force transmission functions, one can pass an argument of
type \MoTransmissionSubtask". The e�ect of the transmission subtask selection param-
eter is to select particular terms which are to be calculated or added to the result during
traversal of the transmission function.

The individual terms and calculation steps arising in the transmission of motion and force
are illustrated in Fig. 4.3. The meaning of these terms is displayed in Table 4.3

position: q0 =

�

��
1z }| {

' (q) velocity: _q0 =

�

��
2z}|{
J� _q

acceleration: �q0 =

�

��
3z }| {

J� �q|{z}
�

��
3a

+

| {z }
�

��
3c

_J� _q|{z}
�

��
3b

force: Q =

�

��
4z }| {

J
T
� Q0| {z }
�

��
4a

+|{z}
�

��
4d

bQ|{z}
�

��
4c| {z }

�

��
4b

Figure 4.3: Terms and computational steps involved in the transmission of motion and
forces

Table 4.4 lists the possible values of the transmission subtask selection parameter for
motion transmission and their relationship to the terms identi�ed above.

In the setting of spatial transmission elements, the term �

��
3a corresponds to the trans-

mission of the reference acceleration together with the relative acceleration due to the
second time derivatives of the relative coordinates. This term is denoted the \EULER"

40 M a aa aBILE 1.3 User's Guide

Section 4.2: Generic Properties of Kinetostatic Transmission Elements

term functionality
1 transmission of position (rotation/translation)
2 transmission of velocity (no further subtasks)
3 complete transmission of acceleration
3a transmission of input acceleration term only
3b computation of quadratic velocity terms only (no transmission)
3c transmission of quadratic velocity terms only (no computation)
4 complete transmission of forces
4a transmission of external forces only
4b computation and transmission of internal forces
4c computation of internal forces only (no transmission)
4d transmission of internal forces only (no computation)

Table 4.3: Meaning of the terms in Fig. 4.3

term. The term�

��
3b represents the Coriolis, centripetal and gyroscopic accelerations stem-

ming from quadratic velocity expressions. This expression is denoted the \CORIOLIS"
term. When several kinetostatic transmission elements are concatenated, the resulting
CORIOLIS terms are added together. In this case, the notation is a little misleading, as
the transmission of CORIOLIS terms at the local level involves also the transmission of
the reference acceleration stemming from CORIOLIS terms of the predecessor elements.
However, from the global point of view the nomencature is correct, as the calculated
terms of the accelerations are only those involving relative velocities, and not relative
accelerations.

The subtasks related to the forces are collected in Table 4.5. Note that here two types of
source forces are discerned, namely, (i) applied source forces and (ii) inertia source forces.
Applied source forces are those generated by springs, frictional e�ects, etc. Inertia source
forces are those generated by mass elements. Setting the subtask selection parameter to
\DO INTERNAL" computes both of these forces. The distinction between the two types
of forces stems from the M a aa aBILE algorithm for the generation of dynamical equations,
which involves calculating separately the mass matrix and the vector of applied forces.
This is discussed in more detail in Chapter 6.

Similarly to the quadratic velocity terms in the acceleration, the internal forces can be
computed only (\COMPUTE INTERNAL"), or transmitted only (\TRANSMIT INTERNAL"), or
both computed and transmitted (\DO INTERNAL"). This is done to optimize computations
when the evaluation of force terms of the motion state is very time consuming.

In most cases, the selection of the appropriate subtasks is performed by the transmission
elements automatically, so the user does not need to be concerned about choosing the
correct values for the transmission subtask selection parameter. However, direct use of
the transmission subtask selection parameter gives to the user better control over the
scope of the computations, and by this a means of optimizing performance.

Note that one can combine di�erent subtasks by using the logical `OR' operator `|' of C++.

M a aa aBILE 1.3 User's Guide 41

Section 4.2: Generic Properties of Kinetostatic Transmission Elements

name of constant value meaning term

DO NOTHING 0x00000 void action

DO POSITION 0x00003 transmit rotational and translational motion �

��
1

DO TRANSFORMATION 0x00001 transmit rotational motion only �

��
1

DO TRANSLATION 0x00002 transmit translational motion only �

��
1

DO VELOCITY 0x00004 transmit velocity �

��
2

DO ACCELERATION 0x00038 compute and transmit all acceleration terms �

��
3

DO EULER 0x00008 compute and transmit Euler acceleration
term only

�

��
3a

COMPUTE CORIOLIS 0x00010 compute quadratic acceleration term only
(no transmission)

�

��
3b

USE CORIOLIS 0x00020 transmit pre-computed quadratic accelera-
tion term (no computation)

�

��
3c

DO CORIOLIS 0x00030 compute and transmit quadratic accelera-
tion terms (both of above)

�

��
3b/c

DO ALL 0xFFFFF do all of the actions de�ned above

Table 4.4: Possible values for the motion subtask selection parameter

name of constant value meaning

DO NOTHING 0x00000 void action

DO EXTERNAL 0x00001 transmit external forces �

��
4a

DO INTERNAL 0x00006 compute and transmit all source forces �

��
4b

COMPUTE INTERNAL 0x00002 compute and store source forces (no
transmission)

�

��
4c

USE INTERNAL 0x00004 transmit pre-computed source forces (no
computation)

�

��
4d

DO INERTIA 0x00008 apply inertia-related source forces (applicable
only to mass elements)

DO ALL 0xFFFFF do all of the above

Table 4.5: Possible values for the force subtask selection parameter

For example, a combination of position and velocity traversal is achieved by

object.doMotion (DO POSITION | DO VELOCITY) ;

42 M a aa aBILE 1.3 User's Guide

Section 4.3: Joints, Links and Chains

Theoretical background: Calculation of Jacobians

In M a aa aBILE 1.3, all calculations are based on a Jacobian-free formulation. This simpli�es considerably
the implementation of new classes. However, for some applications, it may be required to determine
the Jacobian J� of a general mapping. In the following, two di�erent methods are proposed for the
calculation of Jacobians, which make only use of the motion and force transmission functions.

(A) Velocity-based determination of Jacobians (column-wise evaluation)

Setting at the input of the transmission element all velocity components equal to zero besides
the jth one, which is set to _qj = 1 , yields an output velocity vector which is identical to the
jth column of the Jacobian:

[J�]j = _q0
����
_qi =

�
1 for i = j

0 otherwise

; (4.3)

where [J�]j denotes the jth column of J� . An equivalent approach is to use the acceleration
transmission with the transmission substask selection parameter set to DO EULER.

(B) Force-based determination of Jacobians (row-wise)

A second method of computing the entries of the Jacobians is to set at the output of the
transmission element all force components equal to zero besides the jth one, which is set to
Q0

j
= 1 . Transmission of forces then yields at the input of the transmission element a force

vector which is identical to the jth column of the transposed Jacobian, thus of the jth row

jth row(J�) = Q

����
Q0

i =

�
1 for i = j

0 otherwise

: (4.4)

Elimination of the in
uence of applied forces is achieved by setting the force transmission
subtask selection parameter to DO EXTERNAL. The advantage of this method is that it is possible
to determine only selected rows of the Jacobian and thus the derivatives of only some speci�c
output variables with respect to all input variables. This situation typically arises when long
chains of transmission elements undergo only a few constraint conditions.

Note that the procedures described above are computationally not very e�cient, but, due to their
simplicity, they are well suited for rapid, draft-style modeling of multibody systems. More e�cient
procedures can be stated using sparse-matrix techniques.

4.3 Basic Transmission Elements: Links, Joints and Chains

This section describes the basic building blocks for the modeling of open kinematic chains.
These elements are:

� rigid links

� elementary joints

� transmission chains

� force and mass elements

Some theoretical remarks are interspersed with the description. These formulaes are only
informative and need not be regarded by the casual user.

M a aa aBILE 1.3 User's Guide 43

Section 4.3: Joints, Links and Chains

4.3.1 The Object \MoRigidLink"

A rigid link can be thought of as a transmission element that transports a coordinate
frame K via a constant rotation �R and a constant displacement �r to another frame
K0 (Fig. 4.4). Here, �R represents the orthogonal matrix transforming coordinates with
respect to K0 to coordinates with respect to K , and �r is the vector from the origin of
K to the origin of K0 , decomposed in K0 .

K0

�R

�r

r0
R0

K

R

r

K0

a) mechanical model

rigid

link

K K0

b) object-oriented model

Figure 4.4: Model of a rigid link.

Rigid links are modeled in M a aa aBILE as instances of class MoRigidLink. The typical
de�nition of the rigid link consists in stating the input frame, the output frame and the
relative displacement and rotation matrices as arguments to the rigid-link object. An
example is

MoFrame K_Input , K_Output ;
MoVector Delta_r ;

MoRotationMatrix Delta_R ;
MoRigidLink Link (K_Input , K_Output , Delta_R , Delta_r) ;

Here, \Link" is the name of the newly introduced object representing the rigid link, and
\K Input" and \K Output" are the input and output frames, respectively. The values of
the relative displacement \Delta r" and relative rotation \Delta R" need not be speci�ed
at this point. The object rigid link \remembers" their location in storage space for
later values storage and retrieval. Thus, the user can even change these values during
simulation. However, no velocity and acceleration information is regarded for the relative
displacement and orientation. Thus this technique works only for quasi-static variation
of parameters.

The relative rotation is de�ned as the transformation matrix from components of the
output frame to those of the input frame. Concerning the relative displacement, there
is a slight subtlety to be regarded. In the form displayed above, the vector Delta r is

44 M a aa aBILE 1.3 User's Guide

Section 4.3: Joints, Links and Chains

assumed to be decomposed with respect to the output frame. However, it is also possible
to specify the vector with respect to the input frame via the declaration

MoRigidLink Link (K_Input , K_Output , Delta_r , Delta_R) ;

Note that now the order of appearance of Delta R and Delta r is reversed.

If no relative displacement or no relative rotation occurs within the rigid link, one can
omit the corresponding arguments, yielding optimized code for pure �xed-point rotation
or pure translation. For example, the following code introduces a pure-rotation and a
pure-translation link, respecively:

MoFrame K_Input1 , K_Output1 ;
MoRotationMatrix Delta_R ;
MoRigidLink PureRotation (K_Input1 , K_Output1 , Delta_R) ;

MoFrame K_Input2 , K_Output2 ;
MoVector Delta_r ;
MoRigidLink PureTranslation (K_Input2 , K_Output2 , Delta_r) ;

Note that for the pure translation it does not matter with respect to which of the two
frames K Input and K Output the relative displacement is decomposed.

The class MoRigidLink can also be employed for de�ning nary or multiple rigid links, i. e.,
rigid links comprising n reference frames. These links have one input reference frame,
and n � 1 output reference frames, which are collected in a reference frame list of type
MoFrameList. For each output reference frame, a relative transformation matrix as well as
a relative displacement vector can be de�ned, which are collected in corresponding arrays.
Again, displacement vectors can be de�ned with respect to the respective output frame or
with respect to the input frame by placing the corresponding array after or before the array
of rotation matrices, respectively. In the same way, pure rotation or pure translation can
be de�ned by leaving out the relative translations or relative rotations array, respectively.
However, it is only possible to make this selections equally for all output frames. Hence,
if for example one output frame is only rotated and another only translated with respect
to the input frame, this can be taken advantage of only by introducing two separate rigid
link objects. The following example de�nes a binary link with its output frames located
at the tips of a two links swivelled by �45� with respect to the input frame.

MoFrame K_Input , K_Output1 , K_Output2 ;
MoRotationMatrix Delta_R[2] ;
MoVector Delta_r[2] ;
MoFrameList K_Outs ;
K_Outs << K_Output1 << K_Output2 ;
MoRigidLink binary (K_Input1 , K_Outs , Delta_r , Delta_R) ;
Delta_R[0] = MoZRotation (45.0 * DEG_TO_RAD) ;
Delta_R[0] = MoZRotation (-45.0 * DEG_TO_RAD) ;
Delta_r[0] = (1/sqrt(2)) * MoVector (1 , 1 , 0) ;
Delta_r[1] = (1/sqrt(2)) * MoVector (1 , -1 , 0) ;

M a aa aBILE 1.3 User's Guide 45

Section 4.3: Joints, Links and Chains

Theoretical background: Rigid Link

The transmission functions for the rigid link are de�ned as (quantities of frame K0 are marked with
a prime):

Position: (\forwards")

R0 = R ��R

r
0 = �RT

r+�r

)
; (4.5)

Velocity: (\forwards")�
!0

v
0

�
=

�
�RT 0

�f�r �RT �RT

� �
!

v

�
; (4.6)

Acceleration: (\forwards")�
_!0

a
0

�
=

�
�RT 0

�f�r �RT �RT

� �
_!
a

�
+

�
0
�a

�
; (4.7)

�a = !0 � (!0 ��r) ;

Force: (\backwards")�
�

f

�
=

�
�R �R f�r
0 �R

� �
� 0

f
0

�
: (4.8)

4.3.2 The Object \MoElementaryJoint"

Elementary transformations, i. e., rotations about a coordinate axis or translations along
a coordinate axis, play a fundamental role in the modeling of mechanical systems. In
M a aa aBILE, such elementary transformations are termed elementary joints and are re-
alized by objects of type MoElementaryJoint. They form the basis for revolute and
prismatic joints. Combinations of both are not regarded as elementary joints. In-
stead, two additional types of joints are introduced for this purpose. These are the
MoElementaryScrewJoint for a combination of translation and rotation with a constant
pitch (i. e., coupling) between these two, and MoCylindricalJoint for a combination of
independent translation and rotation with respect to the same axis.

As a transmission element, the elementary joint maps the motion of an input reference
frame K and the value of the joint variable � to the motion of an output frame K0

(Fig. 4.5). Depending on whether the joint variable is an angle � � � or a displacement
� � s , the joint becomes revolute or prismatic. For the case of a cylindric or screw joint,
both types of variables are active. The joint axis is assumed to correspond to one of the
coordinate axes of K .

For the de�nition of a joint in M a aa aBILE, one speci�es the reference frames at the input
and output, the joint variable, and optionally an argument indicating which coordinate
axis to use for the transformation. The type of joint, i. e. whether it is prismatic or
revolute, is recognized by the type of the variable passed as an argument. For example,
the following code fragment initializes a prismatic joint

46 M a aa aBILE 1.3 User's Guide

Section 4.3: Joints, Links and Chains

�s

u

u
K0

K

a) mechanical model

f�g

K

joint

K0

b) object-oriented model

Figure 4.5: Model of an elementary joint.

MoFrame K_Input , K_Output ;
MoLinearVariable s ;
MoElementaryJoint Slider (K_Input , K_Output , s) ; // prismatic joint

while the next one produces a revolute joint

MoFrame K_Input , K_Output ;
MoAngularVariable Theta ;
MoElementaryJoint Hinge (K_Input , K_Output , Theta) ; // rotational joint

Note that the type of joint, i. e., prismatic or revolute, is selected automatically according
to the type of state variable passed: in the �rst case, it was a linear variable, while in the
second it was an angular one.

The axis of rotation or translation of elementary joints is implicitly assumed to be the
z-axis. One can overwrite this setting by specifying explicitly the axis through a fourth
parameter. Possible values for this parameter are xAxis, yAxis and zAxis. For example,
a rotational joint R rotating about the y -axis and a prismatic joint P translating along
the x -axis are speci�ed by

MoFrame K1 , K2 , K3 ;
MoAngularVariable Theta ;
MoLinearVariable s ;
MoElementaryJoint R (K1 , K2 , Theta , yAxis) ;
MoElementaryJoint P (K2 , K3 , s , xAxis) ;

Theoretical background: Transmission functions for elementary joints

Below the transmission equations are reproduced for an elementary cylindric joint. The equations
can be specialized to the case of a revolute or prismatic joint by setting s � 0 or � � 0 , respectively.
The axis is described by a unit vector u 2 fux;uy;uzg .

Position: (\forwards")

R0 = R ��R ; �R = Rot [u;�]

r
0 = �RT

r+ u s

�
; (4.9)

M a aa aBILE 1.3 User's Guide 47

Section 4.3: Joints, Links and Chains

Velocity: (\forwards")

�
!0

v
0

�
=

�
�RT 0 u 0

�f�r �RT �RT 0 u

� 2664
!

v

_�
_s

3775 ; (4.10)

Acceleration: (\forwards")

�
_!0

a
0

�
=

�
�RT 0 u 0

�f�r �RT �RT 0 u

� 2664
_!
a

��
�s

3775+

�
�!
�a

�
; (4.11)

�! = !0 � u _� ;

�a = (�RT !)� (s !0 � u+ 2 _su) ;

Force: (\backwards")2664
�

f

Q�

Qs

3775 =

2664
�R �R f�r
0 �R

u
T 0

0 u
T

3775 � � 0

f
0

�
: (4.12)

In Eq. (4.9), Rot [u ; �] designates the orthogonal matrix corresponding to a rotation about the axis
with direction u by an angle �,

Rot [u ; �] � I3 + sin� eu+ (1� cos�) eu2 : (4.13)

4.3.3 The Object \MoMapChain"

Mechanical systems usually do not consist of only one part, but result typically from the
assembly of several components. In M a aa aBILE, such composite systems are modeled as
chains of kinetostatic transmission elements, for which a new type \MoMapChain", is in-
troduced. Because the overall transmission behaviour of a chain of transmission elements
just consists of carrying out the transmission operations of the individual transmission
elements, chains of kinetostatic transmission elements are simply established by concate-
nation.

This concatenation is achieved in M a aa aBILE by the user with the shift operator \<<",
which appends the kinetostatic element to the list to the left. For example, the following
code fragment de�nes the object \SimplePendulum" as a concatenation of a revolute joint
\R" and a rigid link \L":

MoFrame K0 , K1 , K2 ;
MoAngularVariable beta1 ;
MoVector l1 ;
MoElementaryJoint R1 (K0 , K1 , beta1 , xAxis) ;
MoRigidLink L1 (K1 , K2 , l1) ;
MoMapChain SimplePendulum ;
SimplePendulum << R1 << L1 ;

48 M a aa aBILE 1.3 User's Guide

Section 4.3: Joints, Links and Chains

Note that M a aa aBILE performs no sorting of the kinetostatic elements supplied to the
MoMapChain. Hence the order of elements in the concatenation sequence is signi�cant .
Each object must be placed at such a position in the chain that any objects providing
values for its inputs are located to the left of this object. As a rule of thumb, objects
that correspond to mechanical components arranged along serial branches must be con-
catenated in exactly the same order as in the real system, starting from the inertial
system. For parallel branches one can mix up the objects from the di�erent branches,
but it must be ensured that the subset of objects belonging to the same branch ap-
pear in correct order relative to one another. For example, linking the objects above
as SimplePendulum<<L1<<R1 would have resulted in erroneous calculations (although no
error message would have been issued).

Objects of type \MoMapChain" are again instances of kinetostatic transmission elements.
This means that chains of transmission elements can be used again as elementary trans-
mission elements in those settings in which this is allowed. For example, if the previous
chain is to be expanded by another pair of a revolute and a prismatic joint, one can reuse
the previous chain as follows

MoFrame K4 , K5 ;
MoAngularVariable beta2 ;
MoVector l2 ;
MoElementaryJoint R2 (K2 , K3 , beta2 , xAxis) ;
MoRigidLink L2 (K3 , K4 , l2) ;
MoMapChain DoublePendulum ;
DoublePendulum << SimplePendulum << R2 << L2 ;

4.3.4 A simple example

The foregoing concepts are be illustrated below by the example of two-link manipulator
displayed in Fig. 4.6. The manipulator consists of two revolute joints R1 and R2 with
non-orthogonal, non-intersecting axes. The vertical direction corresponds to the z -axis
of the inertial reference frame K0 . The �rst joint rotates about the �xed z -axis, while
the second joint is aligned with the x -axis of the moving frame. The links are assumed to
point in direction of the �xed z -axis and the moving y -axis, respectively. Both links have
a length of 1 . The objective is to evaluate the joint torques when a load fE is applied to
the tip of the manipulator in direction of the z-axis of the frame K4. The corresponding
M a aa aBILE model is displayed below.

#include <Mobile/MoElementaryJoint.h>
#include <Mobile/MoRigidLink.h>
#include <Mobile/MoMapChain.h>

main() {

// definition of system topology

MoFrame K0 , K1 , K2 , K3 , K4 ;

M a aa aBILE 1.3 User's Guide 49

Section 4.3: Joints, Links and Chains

K0

K1

K2
K3

K4

fE

R1

R2

L1

L2

�1 �2

Figure 4.6: A Simple Manipulator

MoAngularVariable beta1 , beta2 ;
MoVector l1 , l2 ;
MoElementaryJoint R1 (K0 , K1 , beta1 , zAxis) ;
MoElementaryJoint R2 (K2 , K3 , beta2 , xAxis) ;
MoRigidLink L1 (K1 , K2 , l1) ;
MoRigidLink L2 (K3 , K4 , l2) ;
MoMapChain SimpleManipulator ;
SimpleManipulator << R1 << L1 << R2 << L2 ;

// initialization of geometrical data

l1 = MoVector (0 , 0 , 1) ;
l2 = MoVector (0 , 1 , 0) ;

// simulation

int nsteps = 10 ;
MoReal forceMagnitude = 1.0 ;

beta1.q = 90.0 * DEG_TO_RAD ; // initial values
beta2.q = -45.0 * DEG_TO_RAD ; // ...

for (int i = 0 ; i < nsteps ; i++)

50 M a aa aBILE 1.3 User's Guide

Section 4.4: Force and Mass Elements

{
SimpleManipulator.doMotion (DO_POSITION) ;
SimpleManipulator.cleanUpForces() ;
K4.f = forceMagnitude * MoVector (0 , 0 , 1) * K4.R ;
SimpleManipulator.doForce() ;
cout << "Torque joint 1 = " << beta1.Q

<< "\nTorque joint 2 = " << beta2.Q
<< "\n" ;

beta1.q += 90.0 * DEG_TO_RAD / float(nsteps) ;
beta2.q += 180.0 * DEG_TO_RAD / float(nsteps) ;

}
}

Note that the numerical value for vectors and matrices passed to kinetostatical transmis-
sion elements can be rede�ned anywhere in the program. The kinetostatical transmission
elements retrieve this information during each motion or force traversal anew. Note also
that the motion traversal is carried out in this example only at the position level. Travers-
ing of the system at velocity or acceleration level is possible by passing as argument to
doMotion the value \DO POSITION|DO VELOCITY|DO ACCELERATION".

4.4 Force and Mass Elements

Forces and mass e�ects are modeled in M a aa aBILE as normal kinetostatic transmission
elements. The only di�erence to the previously introduced components is that force and
mass elements have no kinematical output, i. e., that they act as leaves attached to the
rest of the system. One can imagine the multibody system as consisting on the one side of
a kinematic `skeleton', in which the interconnection structure is de�ned by massless links,
joints, etc., and on the other hand of sources of dynamic e�ects, like forces and inertia,
which are added on to the kinetostatic skeleton.

4.4.1 Force Elements

Force elements can produce either scalar or spatial loads. Currently, only two force
elements are supported with the M a aa aBILE software. One of these force elements is suitable
for applying a spatial load whose components are measured either with respect to the
inertial frame or with respect to the actual frame. The other generates scalar forces,
either within joints or between frames.

Spatial loads are generated by objects of type \MoConstantWrench". These objects allow
the user to apply a `wrench', i. e. a force and a moment, at an arbitrary reference frame
of the system. The moment is always interpreted to be acting at the origin of the frame.
However, the components of the force and moment can be interpreted in one of two ways.
One can de�ne global wrenches, which are de�ned with respect to the inertial frame, and
local wrenches, which are decomposed with respect to the actual reference frame. Global
wrenches are useful for modeling e�ects such as gravitational forces, although the objects

M a aa aBILE 1.3 User's Guide 51

Section 4.4: Force and Mass Elements

for generation of dynamical equations provide an alternative and more e�cient way of
accomplishing this. Local wrenches are de�ned with respect to the actual frame. They
allow the user to model forces that follow the moving frame.

The following code fragment illustrates the creation of constant spatial loads with respect
to the inertial and actual frames, respectively:

MoFrame K1 , K2 ;
MoVector f , n ;

MoConstantWrench moving (K1 , f , n , LOCAL) ; // moving force & torque
MoConstantWrench fixed (K2 , f , n , GLOBAL) ; // fixed force & torque

The objects \moving" and \fixed" are instances of an object applying a spatial load.
The spatial load consists in both cases of a force \f" and a moment \n". In the �rst case,
the components of f and n are interpreted to be given with respect to K1. In the second
example, the elements of f and n are interpreted to be given with respect to the inertial
frame. If no fourth parameter is speci�ed, it is given the default value LOCAL.

Scalar loads are generated by instances of class \MoLinearSpringDamper". Objects of
this type allow the user to apply a load which is a linear function of the displacement
and the velocity of a scalar variable, i. e., which models a classical spring-damper element.
The element can be attached either to a scalar chord or to an elementary joint.

In the case that the scalar load is applied to a scalar chord , the force is applied to two
frames that are not necessarily adjacent. A scalar chord is a scalar measurement between
two frames. For example, an object of type \MoChordPointPointLinear" measures the
distance between the origins of two frames. A scalar load attached to this scalar mea-
surement applies a force proportional to the value and to the �rst time derivative of this
measurement. Fig. 4.7 illustrates the resulting force for this example. Further types of
scalar chords will be discussed in the next chapter.

g ; _g ; �

Figure 4.7: Elementary force element attached to a scalar measurement object

In the case that the scalar load is applied to a joint , the force is applied to the variable
describing the relative motion of the joint as well as to the two frames that are adjacent to
the joint. Only objects of type \MoElementaryJoint", i. e., revolute or prismatic joints,
are allowed for this kind of scalar loads.

The following code fragment illustrates the use of scalar loads.

MoReal k ; // stiffness coefficient
MoReal c ; // damping coefficient

52 M a aa aBILE 1.3 User's Guide

Section 4.4: Force and Mass Elements

// chord-based spring-damper element ...
MoFrame KChord1 , Kchord2 ;
MoChordPointPointLinear g (KChord1 , KChord2) ; // scalar measurement
MoLinearSpringDamper spring1 (g , k , c) ; // spring-damper

// joint-based spring-damper element ...
MoFrame KJoint1 , KJoint2 ;
MoAngularVariable theta ;
MoElementaryJoint R (KJoint1 , KJoint2 , theta) ;
MoLinearSpringDamper spring2 (R , k , c) ;

4.4.2 Mass Elements

Mass elements model the inertia properties of a rigid body, i. e., its mass m and its inertia
tensor �C . In M a aa aBILE, the inertia tensor is assumed to be de�ned with respect to the
center of gravity C of the body. The center of gravity itself can be o�set from the origin
of a reference frame K by a vector �s , as depicted in Fig. 4.8. As with the components
of MoFrame, all tensorial quantities are always assumed to be decomposed with respect to
the actual frame K .

m ; �S

�s

_t

wK

a) mechanical model

�s ; m ; �S| {z }

mass

b) object-oriented model

Figure 4.8: Model of a mass element.

Theoretical background: Modeling of inertia forces

In M a aa aBILE 1.3, inertia properties are modeled as d'Alembert's forces. Under a general motion of
the frame K , the d'Alembert's forces exerted by the mass upon the origin of the frame K are

f = �m [a+ _! ��s+ ! � (! ��s)] ;

� = �[�S _! + ! ��S !] + �s� f :

Note that in contrast to the force element, the force of the mass element depends also on the accel-
eration of the frame to which it is attached. However, this dependency is only linear.

A general mass element takes as arguments

� the frame to which the mass properties are to be attached,

M a aa aBILE 1.3 User's Guide 53

Section 4.5: Modeling of a SCARA robot

� a scalar parameter describing the mass of the body,

� an inertia tensor describing its moment of inertia, as well as

� a vector describing the o�set of the center of mass of the body with respect to the
origin to which the mass is attached.

By leaving out the inertia argument, one can model point masses. By leaving out the
o�set vector, one can model bodies whose center of mass is located at the origin of the
frame to which the mass is attached. Leaving out such an argument is more e�cient than
passing an identity matrix or a zero vector, respectively.

The following code fragment ilustrates the use of mass elements.

MoFrame K1 , K2 , K3 , K4 ;
MoReal m ;
MoInertiaTensor J ;
MoVector s ;

MoMassElement PointCentered (K1 , m) ; // case 1
MoMassElement PointExcentric (K2 , m , s) ; // case 2
MoMassElement BodyCentered (K3 , m , J) ; // case 3
MoMassElement BodyExcentric (K4 , m , J , s) // case 4

The code generates the following four mass elements

� case 1: a point mass attached to the origin of K1

� case 2: a point mass attached to K2 with o�set vector s

� case 3: a rigid body attached to K3 with center of mass coincident with origin of
K3

� case 4: a rigid body attached to K4 with center of mass o�est by vector s from
origin of K4

4.5 Example: Modeling of the Inverse Dynamics of a SCARA
robot

The following section describes the modeling of the dynamics for a simple robotic system.
The goal is to compute the joint torques that are necessary to achieve a prescribed motion
of the robot links, i. e., the so-called inverse dynamics of the system.

The system is depicted in Fig. 4.9. It consists of three parallel revolute axis and three
rigid links. The axes of the revolute joints are directed upwards in positive z direction.
The frame K0 represents the inertial reference frame. All links have equal masses and

54 M a aa aBILE 1.3 User's Guide

Section 4.5: Modeling of a SCARA robot

link_1
link_2

K0

R1 (beta_1)

R2 (beta_2)

R3 (beta_3)

a) mechanical model

link_2

link_1

K0

K2

K3

K5

K4

K1

R3
R2

R1
M3M1

M2
beta_3

beta_2

beta_1

b) iconic model

Figure 4.9: Modeling of the inverse dynamics of a SCARA robot

moments of inertia. The last link is modeled only by its mass properties as its geometric
dimensions are immaterial for the present analysis.

Below the corresponding M a aa aBILE code is reproduced. The inertia tensor is de�ned by its
diagonal entries. Moreover, the center of gravity of the links are o�set by vectors p1, p2
and p3 from the origins of the frames of attachment. Note that the inverse dynamics model
is just obtained by appending the mass elements to the kinetostatic chain representing
the kinematic skeleton of the system.

#include <Mobile/MoElementaryJoint.h>

#include <Mobile/MoRigidLink.h>

#include <Mobile/MoMassElement.h>

#include <Mobile/MoMapChain.h>

void main ()

M a aa aBILE 1.3 User's Guide 55

Section 4.5: Modeling of a SCARA robot

{

MoFrame K0, K1, K2, K3, K4, K5 ;

MoAngularVariable beta_1, beta_2, beta_3 ;

MoElementaryJoint R1 (K0, K1, beta_1, zAxis) ;

MoElementaryJoint R2 (K2, K3, beta_2, zAxis) ;

MoElementaryJoint R3 (K4, K5, beta_3, zAxis) ;

MoVector l1, l2, p1, p2, p3 ;

l1 = l2 = p1 = p2 = p3 = MoNullState ;

MoRigidLink link_1 (K1, K2, l1) ;

MoRigidLink link_2 (K3, K4, l2) ;

MoReal m = 2.4 ;

MoInertiaTensor theta = MoInertiaTensor(0.021, 0.004, 0.020) ;

MoMassElement M1(K1, m, theta, p1) ;

MoMassElement M2(K3, m, theta, p2) ;

MoMassElement M3(K5, m, theta, p3) ;

MoMapChain system ;

system << R1 << link_1 << R2 << link_2 << R3 << M1 << M2 << M3 ;

l1.y = l2.y = 1.0 ;

p1.y = p2.y = p3.y = 0.5 ;

beta_1.q = 0.00 ; beta_2.q = 0.20 ; beta_3.q = 0.30 ;

beta_1.qd = 0.01 ; beta_2.qd = 1.00 ; beta_3.qd = 0.11 ;

beta_1.qdd = 0.20 ; beta_2.qdd = 0.00 ; beta_3.qdd = 0.25 ;

system.doMotion (DO_ALL) ;

system.doForce (DO_ALL) ;

cout << " beta_1.Q = " << beta_1.Q << endl ;

cout << " beta_2.Q = " << beta_2.Q << endl ;

cout << " beta_3.Q = " << beta_3.Q << endl ;

}

56 M a aa aBILE 1.3 User's Guide

5 Objects for Closure of Loops

Multibody systems can feature two fundamental types of structure: (i) tree-type structure
or (ii) single or multiple loop structure (see Fig. 5.1).

a) tree-type system b) closed-loop system

Figure 5.1: Comparision of tree-type and closed-loop systems

In systems featuring tree-type structure, there is one and only one path between any
component and the inertial frame. Thus the relative motions between any two pairs of
neighboring bodies are independent, and it is possible to process the kinetostatics of the
elements on a component by component basis. A user concerned with the modeling of
such a system just needs to concatenate its components in an order that is compatible
with its topological structure, i. e., starting at the inertial system and ending at the tips
of the branches.

When the bodies of the multibody system form closed loops, the relative motions within
the loop become dependent; a change of relative motion at one place induces a change of
relative motion at another place. Such dependencies make it impossible to proceed joint
by joint or body by body as in the tree-type structure case. Instead, one has to formulate
and solve so-called constraint equations or closure conditions that hold the branches of
the loop together.

In M a aa aBILE, the closure of loops is accomplished as a two-stage process:

� In a �rst stage, a set of \characteristic measurements" is de�ned whose van-
ishing indicates the closure of the loop. These measurements, also called \chords"
in M a aa aBILE, are typically generalized distances between geometric elements such
as points, planes and lines. M a aa aBILE provides a whole family of classes for mak-
ing such measurements, which are derived from the (abstract) super-ancestor class
\MoChord". The objects instantiated from these classes are again kinetostatic trans-

M a aa aBILE 1.3 User's Guide 57

Section 5.1: Basic Methods of Formulating Loop Closure Conditions

mission elements, i. e., they can be used as any other kinetostatic transmission ele-
ment to propagate motions and forces.

� In a next stage, one or more objects termed \solvers" are de�ned that are set to de-
termine the dependent relative motions within the loop such that the measurements
vanish. M a aa aBILE supplies two classes for this purpose, which are both derived from
the (abstract) super-class `MoSolver". One solves the constraint equations by itera-
tive, Newton-based procedures. This is the universal, generally applicable method.
The other takes a scalar equation and solves it in closed form for an unkown joint
variable. This method only works for special types of measurements and loop archi-
tectures. In both cases, the resulting solver objects behave again like kinetostatic
transmission elements, supplying a motion and force transmission function.

The choice of optimal closure conditions and solution strategies for a given multibody
system is a non-trivial task that renders no unique solution. Several approaches exist
today for this purpose, each having its advantages and disadvantages depending on the
objectives of the simulation. For example, users seeking a high degree of e�ciency need
to access closed-form solutions where possible in order to avoid redundant computations,
while users requiring a rapid yet maybe not so e�cient modeling are satis�ed with it-
erative solution procedures. At present, M a aa aBILE provides only the basic constituents
for implementing the di�erent loop closure and solution strategies. Users must select
the ones that most closely �t their needs and concatenate them to appropriate transmis-
sion chains. Automatic loop-closure and resolution strategies will be installed in future
versions of M a aa aBILE. At present, the user is referred to the dedicated CA (Computer
Algebra) program \SYMKIN", which is a symbolical manipulation program written in
Mathematica that automatically eliminates redundant computations and produces closed-
form solutions where possible.

This chapter describes the basic mechanisms for generating and solving constraint equa-
tions with M a aa aBILE. Some sections, particularly those concerning scalar measurements
and closed-form solutions, are quite involved and may thus cause di�culties of understand-
ing to the casual reader. However, these sections describe advanced solution techniques
that can be skipped when only basic modeling features are required. Casual readers are
adviced to only browse through these sections, in order to grasp the basic ideas, and to
apply the universal, better undestandable iterative methods.

5.1 Basic Methods for Formulating Loop Closure Conditions

The basic procedure for tackling multibody loops in M a aa aBILE is to �rst dissect the orig-
inally closed loop into serial chains and then to bring again the loose ends of the serial
chains together by requiring the ful�llment of appropriate closure conditions. Hereby, the
following three basic methods are possible (see Fig. 5.2):

C1 Body Assembly Method. The loop is dissected at a body . The loop closure
condition corresponds to equality of pose for the two reference frames at both sides

58 M a aa aBILE 1.3 User's Guide

Section 5.1: Basic Methods of Formulating Loop Closure Conditions

(C1) Body Assembly (C2) Joint Assembly (C3) Segment Assembly

Figure 5.2: Three basic methods for modeling loops in M a aa aBILE

of the cut, where the term pose stands for displacement and rotation. This kind
of assembly is applicable to any type of loop. In may however perform only poorly
both in terms of computational e�ciency and in terms of numerical stability of the
computed solution. In M a aa aBILE, pose closure conditions are generated by objects
of type \MoChord3DPose".

C2 Joint Assembly Method. The loop is dissected at a joint . The loop closure
condition consists in the equality of the geometric elements left invariant by the
joint for the two reference frames at both sides of the cut. Currently, this type
of assembly is only applicable to loops featuring a spherical joint; the cut is then
performed at the spherical joint and the closure condition is produced by an object
of type \MoChord3DTranslation".

C3 Segment Assembly Method. The loop is dissected at two joints. The loop
closure condition is formulated by taking characteristic measurements between the
end frames of the two resulting segments and setting these measurements equal.
The characteristic measurements depend on the type of the two cut joints; the
types of measurements currently supplied with the M a aa aBILE software are described
in Section 5.2.5. This type of assembly is only applicable to systems of constraint
equations that are solvable in closed form. It is the most involved of all methods
described here; however, its numerical advantages, such as computational e�ciency
and numerical stability, make it a good choice for advanced modeling. Currently,
M a aa aBILE is the only multibody package supporting this kind of modeling.

M a aa aBILE 1.3 User's Guide 59

Section 5.1: Basic Methods of Formulating Loop Closure Conditions

For all three methods, the user has to carry out the following steps

1. decide where to cut the loop apart

2. decide which of the joint variable(s) of the loop are to be treated as dependent
variable(s), and put these together in an object of type \MoVariableList" in case
there are more than one unknowns; the other variables and motions are regarded as
independent variables or kinematic inputs of the loop

3. create one or more object(s) modeling the dependent chains of the dissected loop;
each dependent chain is typically an object of type MoMapChain containing the
kinetostatics from the dependent variables to the cut frames

4. create one or more object(s) derived from type \MoChord" that describe the loop
closure condition(s)

5. create an object of type \MoSolver", passing to it the dependent chain(s), the (list
of) dependent variable(s), and the object representing the closure condition(s)

After carrying out these steps, the user can employ the resulting object of type MoSolver
as a simple kinetostatic transmission element representing the kinetostatics of the closed
loop(s). The doMotion function of the solver generates the motion of the dependent
chains so that they follow the input motion while keeping the loop closed; the doForce

function computes the forces at the cut frames and within the dependent chains so that
static equilibrium is achieved. Usage of this object is then fully equivalent to the usage
of any other kinetostatic transmission element such as an elementary joint or a rigid link,
i. e., solver objects can be used again as constituents of chains of kinetostatic transmission
elements or even \super loops" exhibiting in their branches other loops.

Note that the choice of independent (and by this also of dependent) variables for a given
loop is in general a non-uniquely solvable and in some cases di�cult task. From a topo-
logical viewpoint, all joint variables are potential candidates for being selected as input
variables. However, the possible occurence of turning points and limit (e. g., stretched)
con�gurations limits the usefulness of some of these selections. Luckily, in most indus-
trial applications the places to be chosen as inputs are clearly marked by driving units
or major motion directions. However, for some (academic) examples, such a choice may
be non-evident or even impossible to make for a general simulation. These cases require
a careful assessment by the user. This manual provides no instructions on how to choose
appropriate input variables for a mechanism. For this purpose, the reader is referred to
the supplied examples or, for more di�cult cases, to the specialized literature.

5.1.1 Example: Inverse Dynamics of a Spatial Shaker Mechanism

For illustration of the just mentioned concepts, a M a aa aBILE model for the inverse dynam-
ics of a simple multibody loop is regarded. The objective is to compute the motion of
the system at a prescribed con�guration of the input variable(s) and the input torque(s)

60 M a aa aBILE 1.3 User's Guide

Section 5.1: Basic Methods of Formulating Loop Closure Conditions

required to drive the mechanism at this position at a given constant speed. The corre-
sponding M a aa aBILE code is reproduced below and shall be commented in the following
paragraphs. The model makes use of some classes that are new to the reader at this point.
These classes will be explained in more detail in the subsequent sections. At present, it is
su�cient to grasp the basic ideas behind the implementation of the �ve steps described
above and the use of objects of type \MoChord" and \MoSolver".

R3(theta_3)

R4(theta_4)

R1(theta_1)

l_lks_lk

d_lk r_lk

sphere

R2(theta_2)

a) closed system

R2, R3

R4
R1

l_lk

s_lk

d_lk

r_lk

sphere

K3

K8

x y

z alpha

b) opened system

K4

CouplerBody

r_lk

d_lk

s_lk

l_lk

sphere

R4

R3 R2

K6

K5

K7 K8

K0 K1 K2

K3

R1

theta_3 theta_2
theta_1

theta_4

c) iconic model

Figure 5.3: Analysis of a shaker mechanism

The regarded system involves seven joint variables, two at the revolute joints R1 and
R4, two at the Hooke joint, which is modeled by two revolute joints R2 and R3 with
orthogonally intersecting axes, and three at the spherical joint \sphere" (see Fig. 5.3a).
According to the six general spatial loop closure conditions, only one of these can be
chosen as kinematical input, which is here the rotation of joint R1.

M a aa aBILE 1.3 User's Guide 61

Section 5.1: Basic Methods of Formulating Loop Closure Conditions

For the formulation of the loop kinematics, one of the three methods described above has
to be selected. Because of the occurence of a spherical joint, method C2, i. e., the Joint
Assembly Method, is appropriate. This yields the open structure depicted in Fig. 5.3b.

The cut at the spherical joint introduces three constraint equations, corresponding to the
concurrence of the origins of the two cut frames K3 and K8. The three joint variables at the
spherical joint are hereby eliminated from the analysis. Thus, only the rotations theta 2,
theta 3 and theta 4 at the joints R2, R3 and R4 (see Fig. 5.3c) remain as dependent
variables for this analysis. They are collected in the variable list \dependentVars".

Fig. 5.3c illustrates the other components employed in the M a aa aBILE model. The indepen-
dent motion of the loop is subsumed in the transmission chain \input", which contains
the joint R1 and the link r lk. This takes care of the (independent) motion of the right
crank. The dependent motion is collected in the transmission chain \dependentChain".
The objective of this chain is to produce the motion of the cut frames K3 and K8 as a
function of the three dependent variables. In the present case, only K8 depends on the
aforementioned variables. Thus only the three revolute joints R2, R3 and R4 as well as
the two connecting links s lk and d lk need to be assembled in the dependent chain.
The link l lk in the base does not move during motion. It needs to be traversed only
once during simulation, and is thus not included in any of the two transmission chains
described above.

The closure conditions are evaluated by the object \sphere" of type MoChord3DPosition,
which measures the di�erence vector from the origin origin of K3 and to the origin of K8.
The solution of the constraint equations is performed by the object \Solver", which is
of type MoImplicitSolver and thus solves the constraint equations iteratively (based on
a Newton-like algorithm). The initialization of Solver is accomplished by three argu-
ments: (1) the measurement object \sphere", whose vanishing signals the closure of the
loop, (2) the list of variables \dependentVars", in which the three dependent variables
are subsumed, and (3) the transmission chain \dependentChain", which implements the
motion of the cut frames as a function of the dependent variables. Note that the number
of variables in dependentVars coincides with the number of components of the closure
condition. Note also that chain representing the input motion is not passed to the solver
object. This is not necessary because the input motion needs to be evaluated only once

prior to the loop closure procedure and not multiple times during the solver iterations.

After solving the constraints, the dependent chain is located appropriately by the solver,
and one can concatenate more elements to the loop. In the example below this is done
by attaching a mass element \CouplerBody" to frame \K7" of the coupler link \d lk".

The complete kinetostatics of the loop can be now subsumed as a transmission chain
\loopKinetostatics" comprising the following three blocks, which mirror also the rec-
ommended loop kinetostatics processing structure to be employed with M a aa aBILE: (1) the
transmission chain \input", which implements all motions that can be carried out before
solving the constraints, (2) the solver element \Solver", which contains also the depen-
dent chain that must be moved while solving the constraints, and (3) the post-solution

element \CouplerBody" (in general a transmission chain), which subsumes all tasks that

62 M a aa aBILE 1.3 User's Guide

Section 5.1: Basic Methods of Formulating Loop Closure Conditions

can be accomplished after solving the loop constraints. Note that, as the solver invokes
internally the kinematics and statics of the dependent chain, it is not necessary (or even
correct) to traverse this chain again after processing the constraint solver.

The ensuing simulation consists of a kinematical and statical traversal of the system. In
the kinematic part, �rst the input crank is moved, then the kinematics of the constraint
solver are processed (which implies also moving the dependent chain) and then the mass
element is put in place; in the statics part, �rst the force produced by the mass element
is applied, then the statics of the constraint solver are processed (which involves also
traversing the dependent chain), and �nally the statics of the input crank are computed.
The value of the force state subentry \.Q" of the variable \theta 1" then represents the
seeked generalized force that has to be applied in order to move the loop as required.

#include <Mobile/MoElementaryJoint.h>
#include <Mobile/MoRigidLink.h>
#include <Mobile/MoImplicitConstraintSolver.h>
#include <Mobile/MoMassElement.h>

void main() {
// reference frames
MoFrame K0 , K1 , K2 , K3 , K4 , K5 , K6 , K7 , K8 ;

// state-variables
MoAngularVariable theta_1 , theta_2 , theta_3 , theta_4 ;

// joints
MoElementaryJoint R1 (K1 , K2 , theta_1 , yAxis) ;
MoElementaryJoint R2 (K0 , K4 , theta_2 , zAxis) ;
MoElementaryJoint R3 (K4 , K5 , theta_3 , xAxis) ;
MoElementaryJoint R4 (K6 , K7 , theta_4 , xAxis) ;

// links connecting joints
MoVector r , l , s , d , d_s ;
MoRotationMatrix A ;
MoRigidLink l_lk (K0 , K1 , l , A) ;
MoRigidLink r_lk (K2 , K3 , r) ;
MoRigidLink s_lk (K5 , K6 , s) ;
MoRigidLink d_lk (K7 , K8 , d) ;

// subsystem containing only input motion
MoMapChain input ; input << R1 << r_lk ;

// subsystem to be iterated while solving the constraints
MoMapChain dependentChain ;
dependentChain << R2 << R3 << s_lk << R4 << d_lk ;

// constraint solving objects
MoChord3DPosition sphere (K8 , K3) ;
MoVariableList dependentVars ;
dependentVars << theta_2 << theta_3 << theta_4 ;
MoImplicitConstraintSolver

Solver (sphere , dependentVars , dependentChain) ;

M a aa aBILE 1.3 User's Guide 63

Section 5.2: Basic Properties of Measurement Objects

// mass element
MoReal m_d ;
MoInertiaTensor THETA_d ;
MoMassElement CouplerBody (K7 , m_d , THETA_d , d_s) ;

// complete kinetostatics
MoMapChain loopKinetostatics ;
loopKinetostatics << input << Solver << CouplerBody ;

// geometry and mass properties
r = l = s = d = d_s = MoNullState ;
MoReal alpha = DEG_TO_RAD * 10.0;
MoXRotation X = alpha;
A = X;
l.y = -0.8 ; // offset at the base
r.z = 0.2 ; // lenght of r_lk
s.z = 0.2 ; // lenght of s_lk
d.y = -0.7 ; // lenght of coupler
d_s.y = -0.5*0.7 ; // position of center of mass
m_d = 1.0 ;
THETA_d = MoVector(4.08895833e-2 , 1.125e-4 , 4.08895833e-2);

// initial conditions
theta_1.q = 1.0 * DEG_TO_RAD;

// compute inverse dynamics
loopKinetostatics.doMotion (DO_ALL) ; // propagate motion
loopKinetostatics.doForce (DO_ALL) ; // propagate forces

cout << "Computed torque at joint R1 = " << theta_1.Q ;
}

5.2 Measurement Objects

Measurement objects are special objects introduced in M a aa aBILE to map the motion of
moving frames to scalar or spatial quantities. The measurements are taken either directly
between the frames, or between pairs of geometric elements such as points, planes, lines,
etc. attached to these frames. In M a aa aBILE, there are several types of measurement
objects, also termed \chords", that are a combination of di�erent geometric, topological,
and activity types. Below we reproduce the characteristic features these attributes and the
basic functioning of the measurement objects. The usage of these objects for constraint
equation formulation and solution is explained in Section 5.3.

5.2.1 Basic Properties of Measurements

Measurement objects behave in M a aa aBILE like any other kinetostatic transmission ele-
ment. The kinematic transmission consists in mapping the motion of the frames to the

64 M a aa aBILE 1.3 User's Guide

Section 5.2: Basic Properties of Measurement Objects

measurement quantity. The force transmission involves the mapping of force components
associated with the measurement to the corresponding spatial forces at the frames.

For illustration of this concept, imagine a clothes line spanned between two hooks, one
at a wall and one at a tree (Fig. 5.4). If a wind gust makes the tree sway, the length of
the clothes line as well as its �rst and second time derivatives will vary. The computation
of this length variations corresponds to the motion transmission at position, velocity and
acceleration level, respectively. Also, depending on the sti�ness of the line, a (scalar)
tension will be induced, which produces corresponding spatial forces at the hooks. This
represents the force transmission.

K1 K2

f1 f2

\wall" \tree"

\doForce"

\doMotion"

\chord"
spanned between K1 and K2

264 length
length rate

second time derivative of length

375
| {z }

[tension]

Figure 5.4: Example of a \chord"

The measurement objects of M a aa aBILE are characterized by three basic attributes:

(A) the geometric type, determined by the type of geometric elements (point, plane, line,
or reference system) involved in the measurement; measurements generating tenso-
rial quantities are hereby denoted by spatial measurements, while measurements
producing scalar outputs are termed scalar measurements;

(B) the topological type which is determined by the number of frames involved in the
measurement, as well as the type of motion (relative or absolute) regarded in the
measurement; and

(C) the activity type, which characterizes the behaviour (static or self-recon�guring) of
the measurement with respect to the motion of the involved frames.

M a aa aBILE 1.3 User's Guide 65

Section 5.2: Basic Properties of Measurement Objects

Measurement objects in M a aa aBILE can combine almost any pattern of attributes from
the three basic types listed above. This results in a quite large number of potential
measurement objects. Table 5.1 lists the geometric types of measurements currently
supplied with the M a aa aBILE software. The measurements described there are described
based on the topological type involving only two frames. For scalar measurements, other
topological types exist which involve up to four frames. This is described in more detail
in Section 5.2.5. The two activity types of measurement are explained in Section 5.2.2.

type of measurement action when applied to two reference frames

MoChord base class for chord elements

MoChordPlanePlane cosine of the angle between two coordinate planes
MoChordPlanePoint shortest distance from a base plane and a target point
MoChordPointPointQuadratic squared distance between two points
MoChordPointPointLinear linear distance between two points
MoChordPointPlane distance from a base point to a target plane

MoChord3DPosition di�erence of two radius vectors
MoChord3DOrientation relative transformation between two frames
MoChord3DPose di�erence vector and relative transformation between two

frames

Table 5.1: Geometric types of measurement objects

M a aa aBILE supplies for each measurement object a pointer \state". Normally, the user
does not need to be concerned with this state, as it is processed automatically when
the measurement object is used as constituent for higher-level objects such as solvers,
spring-damper elements, etc. However, if required, the user can access the internal state
by appending \.state" to the name of the object. For scalar measurements, this pointer
references a linear variable containing the actual position, velocity, acceleration and load of
the measure. For spatial measurements, the pointer addresses an array of linear variables
representing the elements of the vectors and/or matrices associated with the measurement.
For example, for objects of type MoChord3DPosition, the pointer references an array
containing the three components of the di�erence vector between the origins of the two
measured frames. This is illustrated by a program example in Section 5.2.2.

5.2.2 Self-Recon�guring Measurements

Measurements normally just take the actual state of the involved frames and map them
to the corresponding scalar or vectorial quantities of the measurement. In order to reduce
the modeling e�ort, M a aa aBILE also allows the user to include a transmission chain in
the measurement that is invoked each time the measurement object is traversed. Such
measurements are termed self-recon�guring measurements.

For an illustration of this concept, consider the task of measuring the vector from a moving
camera to the end-e�ector of a robot (Fig. 5.5). Let the motion of the robot be carried

66 M a aa aBILE 1.3 User's Guide

Section 5.2: Basic Properties of Measurement Objects

endEffectorFrame

cameraFrame

manipulatorChain

cameraChain

approachVector

inertial frame

camera trajectory

Figure 5.5: Example of a measurement for a moving object

out by a transmission chain \manipulatorChain", while the motion of the camera is
produced by the object \cameraChain". In order to measure the actual motion, the user
�rst has to invoke the \doMotion()" functions for the manipulator chain and the camera
chain, respectively, and then that of the measurement object. A corresponding program
fragment might look like this:

MoFrame endEffectorFrame;
MoFrame cameraFrame;
MoMapChain manipulatorChain; // robot kinematics
MoMapChain cameraChain ; // camera motion
MoVector approachVector ; // difference vector

// definition of measurement object

MoChord3DPosition simpleChord (endEffectorFrame , cameraFrame) ;

// definition of transmission chains
...

// measurement (simulation)

manipulatorChain.doMotion(); // move the manipulator
cameraChain.doMotion(); // move the camera
simpleChord.doMotion(); // make the measurement

// extraction of coordinates of approach vector

approachVector.x = simpleChord.state[0].q ;
approachVector.y = simpleChord.state[1].q ;
approachVector.z = simpleChord.state[2].q ;

M a aa aBILE 1.3 User's Guide 67

Section 5.2: Basic Properties of Measurement Objects

By including the motion of the camera in the measurement, a more compact code results:

MoFrame EEFrame; // end effector frame
MoFrame cameraFrame;
MoMapChain manipulatorChain; // robot kinematics
MoMapChain cameraChain ; // camera motion
MoVector approachVector ; // difference vector

// definition of measurement object

MoChord3DPosition movingChord (EEFrame , cameraFrame , cameraChain) ;
...

// measurement

manipulatorChain.doMotion(); // move manipulator
movingChord.doMotion(); // make measurement moving internally the camera

// extraction of global coordinates of approach vector
...

The use of such self-recon�guring measurement objects can be quite useful when modeling
of some types of constraint equations and/or force elements, as discussed further below.

5.2.3 Lists of Measurements

Like state variables or transmission elements, measurement objects can be concatenated
into lists. If only the kinetostatic transmission properties of the measurement objects are
of interest, the concatenation can take place with objects of type MoMapChain. However,
if the list of chords are to be employed as a set of closure conditions to be solved by a
constraint solver, the list of measurements must be assembled in a special list type termed
\MoChordList". An example of the use of chord lists is

MoFrame K1 , K2 , K3 , K4 ;
MoChordPointPointLinear chord1 (K1 , K2) ;
MoChordPointPointQuadratic chord2 (K3 , K4) ;
MoChordList chords ;
chords << chord1 << chord2 ;

A chord list can be used in any setting allowed for a composite chord (i. e., not where
only scalar chords are required). The sequence of concatenation is hereby immaterial, as
the solution of a system of equations does not depend on the order in which the equations
are supplied.

5.2.4 Spatial Measurements

Spatial measurements generate vector and matrix quantities describing the relative pose
of two reference frames. Currently, there exist three types of spatial measurement objects
in M a aa aBILE:

68 M a aa aBILE 1.3 User's Guide

Section 5.2: Basic Properties of Measurement Objects

� objects measuring the relative displacement between the origins of two frames
(class MoChord3DPosition)

� objects measuring the relative orientation between two frames
(class MoChord3DOrientation)

� objects measuring both the relative displacement and relative orientation
between two frames (class MoChord3DPose)

Spatial measurement objects are initialized with two frames: the \from" frame, which
acts as the base for the measurement, and the \to" frame, which is the target. The
discerning of these two frames is signi�cant only when the sign of a scalar measurement
or the tensorial quantities involved in a spatial measurement are of interest. If the user
is only interested in establishing a measurement for later use in a solver, the order is
immaterial. An example of an initialization of spatial measurements is

MoFrame Kfrom1 , Kto1 ;
MoChord3DPosition distance (Kto1 , Kfrom1) ;
MoFrame Kfrom2 , Kto2 ;
MoChord3DPose pose (Kto2 , Kfrom2) ;

Theoretical background: Kinetostatics of Spatial Measurements

Objects for spatial measurements give rise to two geometric entities related to rigid body motion: the
vector �r pointing from the origin of the \from" frame Kfrom to the origin of the \to" frame Kto ,
and the transformation matrix �R transforming from components with respect to Kto to components
with respect to Kfrom (Fig. 5.6).

∆R

∆r

fromKtoK

Figure 5.6: A spatial measurement

The formulas involved in the kinematics of the spatial measurements are summarized in Table 5.2.

The operator \vect" in the rotational part extracts three independent quantities from the rotation
matrix that are used for formulation of the rotational constraint equations. These three numbers can
be regarded as coe�cients of a vector representing a `small' rotation increment. This vector behaves
like a vector of angular velocity, as explained below.

M a aa aBILE 1.3 User's Guide 69

Section 5.2: Basic Properties of Measurement Objects

translational part rotational part

�r = RTo rTo � RFrom rFrom vect (�R) = vect
�
RFrom R

T
To

�
�v = RTo vTo � RFrom vFrom �! = RTo !To � RFrom !From

�a = RTo aTo � RFrom aFrom � _! = RTo _!To � RFrom _!From

Table 5.2: Basic formulas for spatial measurements (kinematics)

An in�nitesimally small rotation �R can be written as

�R = I3 +

0@ 0 ��'z �'y
�'z 0 ��'x
��'y �'x 0

1A = I3 +f�' :

| {z }
symmetric

| {z }
skew-symmetric

Thus, an in�nitesimal rotation can be decomposed in the sum of the identity transformation and a
perturbing part that is purely skew-symmetric. Hereby, the skew-symmetric part has three indepen-
dent elements that can be put together in a vector �' = ['x ; 'y ; 'z]

T . The original skew-symmetric
matrix is then reconstructed by making use of the tilde operator.

Regarding now a general matrix �R , one can decompose

�R =
1

2
(�R +�RT)| {z }
symmetric

+
1

2
(�R ��RT)| {z }

skew-symmetric

:

If �R is only a small deviation from the identity transformation (as expected for example in a Newton-
like procedure), its symmetric part is approximated by the identity matrix and its skew-symmetric
part is approximated by a skew-symmetric perturbation term as described above. Hence, the closure
condition takes the form

g(�R) = �R� I3 �
1

2
(�R��RT)

!
= 0 :

The residuum of the rotational closure is thus approximated by a skew-symmetric matrix

f�' =
1

2
(�R��RT) ;

whose independent elements can be put together in a vector �' . The operation \vect" thus extracts
exactly the independent components from the perturbation �R. In M a aa aBILE, this vector is slightly
modi�ed in order to cope with rotations near to 180�. The thus ensuing components are

b'x = �'x + � � [3� trace (�R)]b'y = �'y + � � [3� trace (�R)]b'z = �'z + � � [3� trace (�R)]

9=; ; where � =

�
0 for k �' k > �

1 for k �' k < �

70 M a aa aBILE 1.3 User's Guide

Section 5.2: Basic Properties of Measurement Objects

and � = 10�4 is a prede�ned constant that can be changed by the user. This modi�ed residuum
vector is what is stored in the array `state' of the rotational measurement.

The equations for the statics of spatial measurements are summarized in Table 5.3. The objects take
here a force �f and/or a torque �� related to the measurement and apply them to the frames Kfrom
and Kto. Note, again, that the order of attachment frames has in
uence on the sign of the applied
forces and/or torques.

translational part rotational part

fTo = R
T
To �f ; fFrom = �RT

From �f �To = R
T
To �� ; �From = �RT

From ��

Table 5.3: Basic formulas for spatial measurements (statics)

The result of the measurement is stored in an array of linear variables. This array is explained below.

Table 5.4 gives an overview of the state subentries of the array addressed by state for
the di�erent types of spatial measurements currently supplied with M a aa aBILE.

MoChord3D...
element Position Orientation Pose

state[0].q �r.x b'.x �r.x
state[1].q �r.y b'.y �r.y
state[2].q �r.z b'.z �r.z
state[3].q b'.x
state[4].q b'.y
state[5].q b'.z
state[0].qd �v.x �!.x �v.x
state[1].qd �v.y �!.y �v.y
state[2].qd �v.z �!.z �v.z
state[3].qd �!.x
state[4].qd �!.y
state[5].qd �!.z

state[0].qdd �a.x � _!.x �a.x
state[1].qdd �a.y � _!.y �a.y
state[2].qdd �a.z � _!.z �a.z
state[3].qdd � _!.x
state[4].qdd � _!.y
state[5].qdd � _!.z

state[0].Q �f.x ��.x �f.x
state[1].Q �f.y ��.y �f.y
state[2].Q �f.z ��.z �f.z
state[3].Q ��.x
state[4].Q ��.y
state[5].Q ��.z

Table 5.4: Elements of the array `state' for spatial measurements

5.2.5 Scalar Measurements

Scalar measurements generate projections from spatial frames to real numbers. The basic
idea of this projection is illustrated in Fig. 5.7 in its most simple form. The measurement

M a aa aBILE 1.3 User's Guide 71

Section 5.2: Basic Properties of Measurement Objects

object takes the motion of two frames, termed the target frame KE and the base frame
KB , and produces a scalar quantity that depends only on the relative motion between
both frames. An example of such a measurement is the distance between the origins of
the frames depicted in Fig. 5.7.

III

KE KBg

Figure 5.7: Basic form of a scalar measurement

Scalar measurements can exhibit almost any combination of geometrical, topological
and activity type currently supplied with the M a aa aBILE software. Only the \segment
assembly" topological measurement type always requires that the measurement is self-
recon�guring. M a aa aBILE currently supports �ve types of scalar geometric measurements,
all of which arise from the combinations of the two geometric elements \point" and
\plane":

1. The quadratic distance between the origins of two frames. This class is suited
for formulating constraints between two spherical joints, or a Hooke joint and a
spherical joint (class name: MoChordPointPointQuadratic).

2. The linear distance between the origins of two frames. This class is suited for
generating linear springs, but not so well-suited for constraint formulation due to
its poor computational performance (class name: MoChordPointPointLinear).

3. the cosine of the angle between two coordinate planes. This class can be employed
for resolution of variables in a spherical joint (class name: MoChordPlanePlane).

4. The distance from a point to a plane, where the point is located at the origin
of frame KE and the plane is coplanar to a coordinate plane of frame KB . This
measurement is suited for resolving angles at Hooke joints when the second joint
is a spherical joint; one chooses as normal vector the unit vector in direction of
the second axis of the Hooke joint and as point the center of the spherical joint,
eliminating by this the second joint variable of the Hook joint and the three joint
variables of the spherical joint (class name: MoChordPointPlane).

5. The shortest distance from a plane to a point, where the plane is now a
coordinate plane of frame KE and the point is the origin of frame KB . This

72 M a aa aBILE 1.3 User's Guide

Section 5.2: Basic Properties of Measurement Objects

measure is suited for resolution of angles at a Hooke joint when the second joint
is a planar joint; note that the distribution of the geometric elements \point" and
\plane" to the two involved frames is now reversed in comparision to the previous
measure (class name: MoChordPlanePoint).

Fig. 5.8 illustrates the two geometrical types of measurements most used in multibody
analysis.

KE

KB

g

d

rE rB

rB

uB

KB

KE

d

g

rE

a) point{point b) point{plane

Figure 5.8: Geometric entities involved in the measurements between points and planes

Table 5.5 summarizes the scalar geometric measurements and the underlying measurement
expressions at position level. In these expressions, rB and rE denote the radius vectors
to the origins of the reference frames KB and KE as measured from the inertial system,
respectively, and RB and RE are the corresponding transformation matrices from the
reference frames to the inertial system. The vector uB is a unit vector normal to the
plane involved in the measurement. In M a aa aBILE, only coordinate planes are allowed in
measurements. Thus, unit vectors can have only one of the three values xAxis, yAxis
and zAxis.

MoChord: : : geom. entity KB geom. entity KE expression

PointPlane coordinate plane origin (RE rE � RB rB)RB uB

PointPointQuadratic origin origin jjRE rE � RB rB jj
2

PointPointLinear origin origin jjRE rE �RB rB jj

PlanePoint coordinate plane origin (RB rB � RE rE)RE uE

PlanePlane origin origin (RB uB) � (RE uE)

Table 5.5: Basic geometric types of scalar measurements

M a aa aBILE 1.3 User's Guide 73

Section 5.2: Basic Properties of Measurement Objects

5.2.6 Constructing Measurements with Di�erent Numbers of Frames

The geometrical types of measurements described above can be applied to between one
and four reference frames. This is yields the topological type of the measurement.

The basic entities and notations arising in the de�niton of the di�erent topological types
of measurement shall be �rst described based on the most general topological type of
measurement, the type (IV) measurement depicted in Fig. 5.9. For this measurement, the
loop is cut apart into two segments. One of the segments is denoted the \lower" segment
and the other the \upper" segment, the upper segment being the one that is not connected
to the inertial frame. The measurement consists in taking homolog measurements g0 and
g in the upper and lower segments, respectively, and subtracting these two values. The
upper segment is assumed to be modelled by a transmission chain denoted by �0. This
chain starts at the upper base frame K0

B and ends at the target frame K0

E. The two cut
frames of the lower segment are denoted accordingly as KB and KE, where KB matches
K0

B and KE matches K0

E at the respective cuts. The segment cut introduces a total of
three branches that are of interest for the subsequent processing of the loop kinematics.
These branches have the following meaning:

� Branch \I" leads to the base frame KB of the lower segment

� Branch \II" leads to the end frame KE of the lower segment

� Branch \III" leads from base frame K0

B to end frame K0

E of the upper segment

III

III

KE KB

K′E K′B

"upper"φ′

g

g′

Figure 5.9: Entities of interest for the topological types of measurement

An overview of the currently supported topological types of measurement is given in
Table 5.6 and Fig. 5.10. The notation \g(KX;KY)" in Table 5.6 denotes a scalar mea-
surement between any two frames KX and KY , while the frame K0 represents the inertial
frame. The second column of Fig. 5.10 represents the case in which the kinetostatics of

74 M a aa aBILE 1.3 User's Guide

Section 5.2: Basic Properties of Measurement Objects

branches \I" and \II" are passed to the measurement as a transmission chain �. This
corresponds to the case of a self-recon�guring measurement as explained in Section 5.2.2.

type arguments measurement notes

(I) K ; y g(K0;K)� y absolute motion of reference frame K minus scalar y

(II) KE ; KB ; y g(KB ;KE) �
y

relative motion of KE with respect to KB minus scalar
y

(III) K0

E ; KE g(K0

E ;K0)�
g(KE ;K0)

di�erence of measurements of absolute motion of two
frames KE and K0

E

(IV) K0

E ; �0 ,
KE ; KB

g0(K0

B ;K
0

E)�
g(KB ;KE)

di�erence of two measurements, one between the start
and endpoint of a moving chain (branch \III"), and one
based on the relative motion between two reference frames
of the other segment; the argument \ �0 " represents the
transmission function of the moving chain(see below)

Table 5.6: Types of measurements involving di�erent numbers of frames

The topological types of measurements described in Table 5.6 and Fig. 5.10 are applicable
for the following tasks:

� Absolute Motion | Type (I). These objects project the absolute motion of a
moving frame to a real number and subtract from it a constant y. One can use
these objects for example for establishing the height of an object over a coordinate
plane, or to compute the radius of a particle moving around a pole. By the variable
y, which is mandatory, one can establish an o�set which is subtracted each time the
measurement is carried out. Such an o�set can be for example of use for specifying an
unloaded spring length, for describing the constraint equation of a particle moving
on the surface of a sphere, etc.

� Relative Motion | Type (II). This is the \classical" topological measurement
type. It projects the relative motion of a reference frame KE with respect to another
reference frame KB to a scalar number. As with type (I), a constant y has to be
supplied that is subtrated from that number. Objects of this type are useful for
describing constraints arising from massless rods or couplers. Also, these objects
serve as a basis for elementary force elements like springs, dampers, etc.

� Absolute Di�erence | Type (III). Objects of this kind compute a scalar num-
ber by subtracting the measurement obtained from the absolute motion of one mov-
ing frame K0

E from a corresponding measurement (of the same type) taken for a
second frame KE . Both measurements are taken with respect to the inertial frame.
Objects of this type are useful when one chain is to follow the motion of another.
For example, one can let one robot prescribe the desired height of an object and ask
another to achieve this height by an appropriate control. The control is then taken
over by a constraint solver.

M a aa aBILE 1.3 User's Guide 75

Section 5.2: Basic Properties of Measurement Objects

Type simple measurement recon�guring measurement

absolute motion
(Type I)

f = g � y I

KE

KB

g

I

φ

KE

KB

g

relative motion
(Type II)

f = g � y III

KE KBg

III

KE KB

φ

g

absolute di�erence
(Type III)

f = g0 � g
III

KB

KEK′E

gg′

KB

KEK′E

IIIφ
gg′

relative di�erence
(Type IV)

f = g0 � g

III

III

KE KB

K′E K′B

"upper"φ′

g

g′

III

IIIK′E K′B

KE KB

"upper"

φ

g

g′

φ′

Figure 5.10: Types of measurements based on number of frames

76 M a aa aBILE 1.3 User's Guide

Section 5.2: Basic Properties of Measurement Objects

� Relative Di�erence | Type (IV). This is the most involved topological mea-
surement type. The measurement corresponds to the di�erence of two relative mea-
surements, one with respect to the \upper" segment, and one with respect to the
\lower" segment. As this upper segment is completely isolated from the system, the
measurement object needs access to the chain describing its kinetostatics. Thus,
the constructor of this type of objects always takes an additional argument of type
MoMap embodying this isolated chain. Objects of this type are useful for establishing
triangular systems of constraint equations which are recursively solvable. Such cases
can be found in abundance in technical systems, but the corresponding methodology
is very complex and not suited for casual users. Thus, these objects are not intended
for users who are seeking rapid-prototyping solutions to their problems. Such users
may skip the following sections and go right to Section 5.3, where the solution of
constraint equations is described. The use of scalar measurements of type (IV) for
e�cient solution of constraint equations will be further discussed in Section 5.3.2.

The following code fragment illustrates the initialization of measurement objects for the
four topological types described above. As an example, the linear measurement between
two points is employed. However, any other scalar measurement could have been employed
instead. Note that spatial measurements support only constructors with two reference
frames.

MoFrame KE , KB , KEprime ;
MoMapChain phi, phiPrime ;
MoLinearVariable y ;

// Type I
MoChordPointPointLinear chord_Ia (KE , y) ;
MoChordPointPointLinear chord_Ib (KE , y , phi) ;

// Type II
MoChordPointPointLinear chord_IIa (KE , KB , y) ;
MoChordPointPointLinear chord_IIb (KE , KB , y , phi) ;

// Type III
MoChordPointPointLinear chord_IIIa (KEprime , KE) ;
MoChordPointPointLinear chord_IIIb (KEprime , KE , phi) ;

// Type IV
MoChordPointPointLinear chord_IVa (KEprime , phiPrime , KE , KB) ;
MoChordPointPointLinear chord_IVb (KEprime , phiPrime , KE , KB , phi) ;

Note that it is not necessary to pass the base frame of the upper segment, KB', to the
chord. This frame is extracted internally from the transmission element coupler during
initialization of the object chord.

5.2.7 Optimizing Performance by Speci�cation of Active Branches

Measurement objects provide some rudimentary mechanisms for optimizing performance
in the calculation of their outputs. The basic idea is to tell the chord at which of the

M a aa aBILE 1.3 User's Guide 77

Section 5.2: Basic Properties of Measurement Objects

possibly three existing branches I, II, III it is necessary to apply an action, as e. g.
motion transmission or force application. For example, if the base frame KB is kept �xed
(though not necessary congruent to the inertial frame), the measurement object does not
need to upgrade that information and it can reuse the values computed at initialization
time. Optimization information does not have any e�ect on the accuracy of the results,
but can lead to up to 20% of improvement in execution time during solution of the
constraint equations. Users not concerned with computational performance issues can
skip this section.

Optimization information is passed to the measurement object by up three optional ar-
guments appended to the normal list of arguments:

� MoChord... (... , whereUnknown, whereForce, whereInput);

The functionality of these arguments is described in Table 5.7.

variable name informs about : : :

whereUnknown which branches contain unkowns; motion is evaluated and test
forces are applied (during computation of the Jacobian) only at
the tips of these branches

whereForce for which branches is force traversal required ; this corresponds to
the branches containing unknowns as well as those containing gen-
eralized coordinates (for statics and dynamics calculations)

whereInput which branches contain input motions, but not unkowns; motion is
evaluated for these branches at their tips only once at the start of
each iteration

Table 5.7: Optional parameters for performance optimization of measurement objects

The possible values for the optimization parameters are

� DO BRANCH I, do the calculations for branch \I"

� DO BRANCH II, do the calculations for branch \II"

� DO BRANCH III, do the calculations for branch \III"

� DO ALL BRANCHES, do the calculations for all branches (default)

If a variable is ommitted, it is given the default value DO ALL BRANCHES. Note that it is not
possible to omit an optimization parameter if one further to the right is to be prescribed.
Note also that, by prescribing a non-default value, the measurement will do less work
than if the variable is ommitted. However, the user's prescriptions are not checked for
inconsistency. For this reason, it is not recommended to use the optimization parameters

78 M a aa aBILE 1.3 User's Guide

Section 5.2: Basic Properties of Measurement Objects

before a reference simulation has been carried out. Ommitting all of optimization param-
eters will simply imply redundant calculations, but no errors will be incurred. Users not
familiar with the multibody systems need not to be concerned with these issues.

The following code fragment illustrates a possible optimization setting for a linear point-
to-point measurement of type IV:

MoFrame KB ; // motion of this frame depends on input variable
MoFrame KE ; // motion of this frame depends on dependent variable
MoFrame KBp , KEp ; // terminal frames of the upper segment
MoVector d ;
MoRigidLink coupler (KBp , KEp , d) ; // upper segment
MoChordPointPointLinear chord (KEp , coupler , KE , KB ,

DO_BRANCH_II , DO_BRANCH_I | DO_BRANCH_II , DO_BRANCH_I) ;

This constructor tells the measurement object \chord" that the dependent variable is
situated somewhere below reference frame KE (because of whereUnknown=DO BRANCH II),
that the forces are requested for frames KB and KE (because of whereForce=DO BRANCH I

| DO BRANCH II), and that input motion will only occur within the transmission chain
below KB (because of whereInput=DO BRANCH I).

5.2.8 Interlinking Measurements

In the treatment of closed loops it may happen that the complete system of constraint
equations can be decomposed into a cascade of scalar equations, each holding exactly one
unknown more than its predecessor, and each being solvable in closed form for that un-
known. M a aa aBILE o�ers a technique for treating such situations explicitly. This technique
works only for measurements of type IV above.

The basic idea for solving a cascade of constraint equations is to pass the previous mea-
surement objects to the measurement object of a newly introduced equation of the cas-
cade. The �rst equation of this cascade is called the \core" equation, and the rest are
termed the \complementary" equations. In progressing from the core equation to the �rst
complementary equation, the situation shown in Fig. 5.11 will result. In this �gure, it
is supposed that a �rst measurement was performed as the di�erence of relative motion
between the terminal frames K0

E and K0

B of the upper segment and the terminal frame
KE and the previous base frame prev-KB of the lower segment. It is now assumed that
the next unknown to be determined occurs somewhere between the previous base frame
prev-KB and the new base frame KB of the lower segment.

Let � denote the transmission chain that connects the previous lower base frame prev-KB

to the new lower base frame KB , such that it contains exactly one new unkown, and
that there are no additional unkowns between KB and K0

E . Then, one can take a new
measurement which has the same cut frames K0

E , K
0

B and KE as the core measurement,
but instead of the previous lower base frame prev-KB the new lower base frame KB .
This measurement is then employed to determine the new unknwon. M a aa aBILE allows to
model this situation by a constructor of type

M a aa aBILE 1.3 User's Guide 79

Section 5.2: Basic Properties of Measurement Objects

prev K B

I

II

KE

KB

g

IIIK′E K′B

"upper"φ′

g′

φ

Figure 5.11: Measurement Object for Complementary Variable

� MoChord... (MoFrame KB , MoChord prev , MoMap phi , ...) ;

where \prev" is the previous measurement, \KB" is the new lower base frame, and \phi"
is the transmission chain connecting the previous lower base frame oldKB with the new
lower base frame KB.

If only one unknown remains in the chain between KB and K0

B , one can repeat two
measurements between the four frames depicted in Fig. 5.11, but with di�erent geometric
elements than the previous one. M a aa aBILE allows the user to model this situation by
making use of a constructor of type

� MoChord... (MoChord prev , ...) ;

The only case in which such a situation occurs, is when the remaining unkown is an
angular rotation, and the measurements to be performed are of the geometric type point{
plane. Then, the two measurements to be taken are the distances of the origin of frame
KE or K0

E to the two planes parallel to the rotation axis of the joint containing the new
unknown. The user must take care that the order of this measurements is such that the
vector product of the normals of these two planes is equal to the unit vector in direction
of the axis of action of the angular variable, i. e. if the unknown rotation is about the
y-axis, the �rst measurement should be with respect to the plane normal to the z-axis
and the second with respect to the plane normal to the x-axis.

An example of this type of solution displayed in Section 5.4.3.

80 M a aa aBILE 1.3 User's Guide

Section 5.3: Objects for Solving Constraints

5.3 Objects for Solving Constraints

Constraint solving objects in M a aa aBILE can process the kinetostatics of one or more closed
loops. In order to keep the loops closed, a solver object needs three pieces of information:
(i) the measurements whose vanishing will signal the closure of the loops, (ii) the depen-
dent variables whose variation will lead to the closure of the loop and (iii) the dependent
chain that will recon�gure the cut frames involved in the measurements after perturbing
the dependent variables. Currently, there are two types of solver objects installed:

(A) explicit solvers, which can resolve a scalar constraint equation explicitly in terms
of one unkown (class name: MoExplicitConstraintSolver, and

(A) implicit solvers, which can resolve any number of constraint equation iteratively
for a set of unknowns (class name: MoImplicitConstraintSolver).

As was explained in Section 5.1, there exist three basic methods for establishing constraint
equations in closed loops:

(C1) cutting the loop at one body

(C2) cutting the loop at one joint

(C3) cutting the loop at two joints

For Methods (C1) and (C2), only implicit solvers are suitable. For Method (C3), there
are some cases in which explicit solvers can be applied. These cases are characterized by
the fact that by taking the measurement all but one of the unknowns of a loop can be
eliminated. If this is not possible, i. e., if more than one dependent variable remains in the
measurement, then set of measurements containing the same number of unkowns must be
established and an implicit solver has to be used that solves the corresponding equations
simultaneously. This happens for example when several loops are coupled yielding a set
of scalar measurements that form a system of coupled nonlinear constraint equations. In
this case, one collects the corresponding measurement objects in a chord list and solve
the complete set of equations by one implicit solver.

Solvers of constraint equations behave like any kinetostatic transmission elements, i. e.,
they supply a motion and a force transmission function. The motion transmission function
consists in establishing (and carrying out) the motion of the dependent chain such that
the loop stays closed. The force transmission function involves the computation of the
constraint forces within the loops ans their propagation within the dependent chain such
that static equilibrium is achieved.

Below the basic structure of the constraint solvers and their linkage with the measurement
objects are explained. Applications of solver objects to particular loops are displayed in
Section 5.4.

M a aa aBILE 1.3 User's Guide 81

Section 5.3: Objects for Solving Constraints

5.3.1 Implicit Solvers

The simpler method for resolving constraints is to use implicit or iterative solution
schemes. In this case, one just has to gather a set of measurement objects describing
the closure conditions of the loop(s), and pass it to the solver together with a list of
unkown variables and, optionally, a transmission element.

The possible initializations of implicit solvers of constraint equations are

� MoImplicitConstraintSolver (MoChord&, MoVariableList&) ;
This case is suitable when the measurement is of self-recon�guring type, i. e., when
it contains the dependent chain mapping the values of the dependent variables to
the cut frames involved in the measurement. Such solvers can be used for closure
conditions of type (C1) or (C2) described above.

� MoImplicitConstraintSolver (MoChord&, MoVariableList&, MoMap&) ;
This case is equivalent to the �rst one, only that now the dependent chain is passed
explicitly to the solver.

� MoImplicitConstraintSolver (MoChordList&, MoVariableList&, MoMap&) ;
This case is applicable to sets of constraint equations gathered at several places in
the mechanism, and which are to be solved simultaneously.

Note that the number of variables in the variable list must match exactly the number of
scalar measurements contained in the chord or the chord list passed to the solver. Other-
wise, the system of equations would be either over- or underdetermined, and no solution
could be determined. The number of scalar variables involved in spatial measurement
objects can be hereby determined from Table 5.4.

5.3.2 Explicit Solvers

Explicit solvers are applicable only when a single constraint equation contains only one
single unknown. The general syntax for the de�nition of an explicit solver is

� MoExplicitConstraintSolver (MoChord&, MoLinearVariable&) ;

� MoExplicitConstraintSolver (MoChord&, MoAngularVariable&) ;

In both cases, a scalar measurement object must be passed that depends only on one

unknown, namely, the dependenzt variable passed as second parameter. This measure-
ment object must be of the self-recon�guring type, i. e. it must comprise the dependent
chain mapping the dependent variable to the cut frames of the measurement. The type
of the second parameter determines which algorithm the constraint solver applies to the
resolution of the constraint.

When two measurements are taken for one unknown, it is possible to determine uniquely
a solution. The corresponding constructor takes on the form:

82 M a aa aBILE 1.3 User's Guide

MoExplicitConstraintSolver (MoChord&, MoChord&, MoAngularVariable&) ;

This type of solver is only needed for example for determining the second complementary
angle at a hook joint.

For a description of the usage of the solver objects, the reader is referred to the examples
of the next section and the introductory example of Section 5.1.1.

5.4 Examples

Below, three examples of loop closure formulation and solution are supplied. The examples
cover the three basic methods described previously for stating constraints, namely, (C1)
body assembly, (C2) joint assembly and (C3) segment assembly. Apart from the pure
kinematic modeling, the programs generate also the dynamical equations and integrate
them using the built-in numerical integrators. The objects for generation and solution of
dynamical equations shall be discussed in the next chapter.

5.4.1 Body Assembly of a Spatial Four-bar Mechanism

#include <Mobile/MoSphericalJoint.h>
#include <Mobile/MoRigidLink.h>
#include <Mobile/MoImplicitConstraintSolver.h>
#include <Mobile/MoMassElement.h>
#include <Mobile/MoAdamsIntegrator.h>

main()
{
// reference frames
// =================

MoFrame K0, K1, K2, K3, K4, K5, K6, K7, K8, K9, K10 ;

// masses
// ======

MoReal m_d ;
MoInertiaTensor THETA_d ;

// state-variables (angles)
// ========================

MoAngularVariable theta_1, theta_2, theta_3, theta_4, theta_5,
theta_6, theta_7;

// declare joints and connect reference frames
// ===

M a aa aBILE 1.3 User's Guide 83

base

link_2
link_1

coupler

R2

R3, R4 S1

(a) closed system

core
K10

K7

S1

R3, R4

coupler_b
coupler_a

link_1

link_2

R1

base

R2

x

z

(b) opened system

base

link_2link_1

K0
K2

K3

K8

K9

K10

K7

K6

K5

K4

K1

R3

R4

R2R1

coupler_a

coupler_b

S1
M

theta_4

theta_3

theta_1

theta_2

theta_5,
theta_6, theta_7

core

(c) iconic representation of the model

Figure 5.12: Modelling of the spatial Four-bar mechanism

MoElementaryJoint R1 (K0 , K1 , theta_1 , xAxis);
MoElementaryJoint R2 (K2 , K3 , theta_2 , xAxis);
MoElementaryJoint R3 (K4 , K5 , theta_3 , zAxis);
MoElementaryJoint R4 (K5 , K6 , theta_4 , xAxis);

MoVariableList CardanAngles ;
CardanAngles << theta_5 << theta_6 << theta_7 ;

MoSphericalJoint S1 (K8 , K9 , CardanAngles , BRYANT_ANGLES);
// link-transformations
// ====================

84 M a aa aBILE 1.3 User's Guide

MoVector r, l, s, d_a, d_b;
r = l = s = d_a = d_b = MoNullState;

MoRotationMatrix A;
A = MoNullState;

// declare links for rigid-body transformations
// ==

MoRigidLink base (K0 , K2 , l , A);
MoRigidLink link_1 (K1 , K4 , r);
MoRigidLink link_2 (K3 , K8 , s);
MoRigidLink coupler_a (K6 , K7 , d_a);
MoRigidLink coupler_b (K9 , K10 , d_b);

// subsystems for solution of constraints
// =======================================

MoMapChain DependentChain, Dp2 , RightBranch;

RightBranch << R1 << link_1 ;
DependentChain << R2 << link_2 << R3 << R4

<< coupler_a << S1 << coupler_b ;

// mass elements
// =============

MoMassElement CouplerBody (K6 , m_d , THETA_d , d_a) ;

// declare constraints
// ===================

MoChord3DPose core (K10 , // left
K7 , // right
DO_ALL_BRANCHES , // where unknown
DO_BRANCH_I) ; // where force

// declare implicit solver for constraint equations
// ===

MoVariableList dependents ;
dependents << theta_2 << theta_3 << theta_4 << CardanAngles ;

MoImplicitConstraintSolver CoreSolver (core, dependents, DependentChain);

// declare a subsystem for the full solution of the loop
// ===

MoMapChain SolveAll ;

SolveAll << base // base body

M a aa aBILE 1.3 User's Guide 85

<< RightBranch // move the input crank
<< CoreSolver // solve the implicit core
<< CouplerBody ; // compute D'Alembert's forces at coupler

// list of independent coordinates
// ===============================

MoVariableList q ;
q << theta_1 ;

// define parameter values
// =======================

l.y = 2.0 ; // offset at the base
r.z = 1.0 ; // lenght of link 1
s.z = 2.0 ; // lenght of link 2
d_a.z = -0.5*sqrt(5.0) ; // half lenght of coupler
d_b.z = 0.5*sqrt(5.0) ; // half lenght of coupler

m_d = 1.0 ; // mass of coupler
THETA_d = 1.0 ; // symmetric inertia tensor for coupler

// generation of equations of motion and integration
// ===

MoMechanicalSystem SystemDynamic (q , SolveAll , K0 , zAxis) ;

MoAdamsIntegrator SystemIntegrator(SystemDynamic) ;
MoReal dt = 0.01 ;
SystemIntegrator.setTimeInterval(dt) ;

// initial conditions
// ==================

theta_1.q = 1.0 * DEG_TO_RAD;

theta_2.q = DEG_TO_RAD * 0.0 ;
theta_3.q = DEG_TO_RAD * 0.0 ;
theta_4.q = DEG_TO_RAD * 40.0 ;
theta_5.q = DEG_TO_RAD * 20.0 ;
theta_6.q = DEG_TO_RAD * 0.0 ;
theta_7.q = DEG_TO_RAD * 0.0 ;

// run the simulation
// ==================

for (int i = 0 ; i++ < 100 ;)
SystemIntegrator.doMotion() ;

}

86 M a aa aBILE 1.3 User's Guide

R3(theta_3)

R4(theta_4)

R1(theta_1)

l_lks_lk

d_lk r_lk

sphere

R2(theta_2)

a) closed system

R2, R3

R4
R1

l_lk

s_lk

d_lk

r_lk

sphere

K3

K8

x y

z alpha

b) opened system

K4

CouplerBody

r_lk

d_lk

s_lk

l_lk

sphere

R4

R3 R2

K6

K5

K7 K8

K0 K1 K2

K3

R1

theta_3 theta_2
theta_1

theta_4

c) iconic model

Figure 5.13: Modeling of the Dynamics of a Shaker Mechanism

5.4.2 Joint Assembly of a Shaker Mechanism

#include <Mobile/MoElementaryJoint.h>
#include <Mobile/MoRigidLink.h>
#include <Mobile/MoImplicitConstraintSolver.h>
#include <Mobile/MoMassElement.h>
#include <Mobile/MoAdamsIntegrator.h>

main()
{
// reference frames
// ================

MoFrame K0 , K1 , K2 , K3 , K4 , K5 , K6 , K7 , K8 ;

M a aa aBILE 1.3 User's Guide 87

// state-variables
// ===============

MoAngularVariable theta_1 , theta_2 , theta_3 , theta_4 ;

// joints
// ======

MoElementaryJoint R1 (K1 , K2 , theta_1 , yAxis) ;
MoElementaryJoint R2 (K0 , K4 , theta_2 , zAxis) ;
MoElementaryJoint R3 (K4 , K5 , theta_3 , xAxis) ;
MoElementaryJoint R4 (K6 , K7 , theta_4 , xAxis) ;

// links connecting joints
// =======================

MoVector r , l , s , d , d_s ;
MoRotationMatrix A ;

MoRigidLink l_lk (K0 , K1 , l , A) ;
MoRigidLink r_lk (K2 , K3 , r) ;
MoRigidLink s_lk (K5 , K6 , s) ;
MoRigidLink d_lk (K7 , K8 , d) ;

// subsystem to be iterated while solving for constraints
// ==

MoMapChain DependentChain ;
DependentChain << R2 << R3 << s_lk << R4 << d_lk ;

// constraint
// ==========

MoChord3DPosition sphere (K8 , K3) ;

// implicit solver for constraint equations
// ==

MoVariableList dependents ;
dependents << theta_2 << theta_3 << theta_4 ;

MoImplicitConstraintSolver Solver(sphere , dependents , DependentChain);

// mass element
// ============

MoReal m_d ;
MoInertiaTensor THETA_d ;

MoMassElement CouplerBody (K7 , m_d , THETA_d , d_s) ;

88 M a aa aBILE 1.3 User's Guide

// create a subsystem for applying the input motion
// ==

MoMapChain input ;
input << l_lk << R1 << r_lk ;

// create a map chain for the complete kinematics of the loop
// ==

MoMapChain SolveAll ;
SolveAll << input << Solver << CouplerBody ;

// list of independent coordinates
// ===============================

MoVariableList q ;
q << theta_1 ;

// generation of equations of motion and integration
// ===

MoMechanicalSystem SystemDynamic (q , SolveAll , K0 , zAxis) ;

MoAdamsIntegrator SystemIntegrator(SystemDynamic) ;
MoReal dt = 0.1 ;
SystemIntegrator.setTimeInterval(dt) ;

// geometry
// ========

r = l = s = d = d_s = MoNullState ;
MoReal alpha = DEG_TO_RAD * 10.0;
MoXRotation X = alpha;
A = X;
l.y = -0.8 ; // offset at the base
r.z = 0.2 ; // lenght of r_lk
s.z = 0.2 ; // lenght of s_lk
d.y = -0.7 ; // lenght of coupler
d_s.y = -0.5*0.7 ; // position of center of mass

// masses
// ======

MoVector theta(4.08895833e-2 , 1.125e-4 , 4.08895833e-2);
m_d = 1.0 ;
THETA_d = theta;

// initial conditions
// ==================

theta_1.q = 1.0 * DEG_TO_RAD;
// run the simulation
// ==================

M a aa aBILE 1.3 User's Guide 89

for (int i = 0 ; i++ < 100 ;)
SystemIntegrator.doMotion() ;

}

5.4.3 Segment Assembly of a Shaker Mechanism

core

core

d_lk

l_lk

K3

K8

K0

K5

s_lk

R4

r_lk

R2, R3

R1

theta_4

x y

z

(a) Step 1
R3

K5

K8

compl_1

K3

K4

R2 compl_1

theta_2

x y

z

(b) Step 2

compl_2a,
compl_2b

compl_2a,
compl_2b

K8

K3

K4

K5

R2, R3

theta_3

x y

z

(c) Step 3

Figure 5.14: Modelling of the Shaker (explicit solution)

#include <Mobile/MoElementaryJoint.h>
#include <Mobile/MoRigidLink.h>
#include <Mobile/MoExplicitConstraintSolver.h>
#include <Mobile/MoMassElement.h>
#include <Mobile/MoAdamsIntegrator.h>

main()

90 M a aa aBILE 1.3 User's Guide

{
// reference frames
// ================

MoFrame K0 , K1 , K2 , K3 , K4 , K5 , K6 , K7 , K8 ;

// state-variables
// ===============

MoAngularVariable theta_1 , theta_2 , theta_3 , theta_4 ;

// joints
// ======

MoElementaryJoint R1 (K1 , K2 , theta_1 , yAxis) ;
MoElementaryJoint R2 (K0 , K4 , theta_2 , zAxis) ;
MoElementaryJoint R3 (K4 , K5 , theta_3 , xAxis) ;
MoElementaryJoint R4 (K6 , K7 , theta_4 , xAxis) ;

// links connecting joints
// =======================

MoVector r , l , s , d , d_s ;
MoRotationMatrix A ;

MoRigidLink l_lk (K0 , K1 , l , A) ;
MoRigidLink r_lk (K2 , K3 , r) ;
MoRigidLink s_lk (K5 , K6 , s) ;
MoRigidLink d_lk (K7 , K8 , d) ;

// subsystem to be iterated while solving for constraints

MoMapChain coupler ;
coupler << s_lk << R4 << d_lk ;

// constraints
// ===========

MoChordPointPointQuadratic core (K8 , // upper left
coupler , // upper chain
K3 , // lower left
K0 , // lower right
DO_BRANCH_III , // where unknown
DO_BRANCH_II , // where force
DO_BRANCH_I |
DO_BRANCH_II) ; // input

MoChordPointPlane compl_1 (K4 , // new lower right
core , // same as in core
R2 , // lower chain
xAxis , // normal of the plane
DO_BRANCH_I , // where unknown

M a aa aBILE 1.3 User's Guide 91

DO_BRANCH_II |
DO_BRANCH_III , // where force
DO_BRANCH_III) ; // input

MoChordPointPlane compl_2a (K5 , // new lower right
core , // same as in compl_1
R3 , // lower chain
yAxis , // normal of the plane
DO_BRANCH_I , // where unknown
DO_BRANCH_II |
DO_BRANCH_III , // where force
DO_BRANCH_III) ; // input

MoChordPointPlane compl_2b (compl_2a, // all references as in
zAxis); // "compl_2a"

// explicit solvers for constraint equations
// ===

MoExplicitConstraintSolver CoreSolver (core , theta_4) ;
MoExplicitConstraintSolver FirstHooke (compl_1, theta_2);
MoExplicitConstraintSolver SecondHooke (compl_2a, compl_2b, theta_3);
FirstHooke.selectBranch();

// mass element
// ============

MoReal m_d ;
MoInertiaTensor THETA_d ;

MoMassElement CouplerBody (K7 , m_d , THETA_d , d_s) ;

// create a subsystem for applying the input motion
// ==

MoMapChain input ;

input << l_lk << R1 << r_lk ;

// create a map chain for the complete kinematics of the loop
// ==

MoMapChain SolveAll ;

SolveAll << input // move the input crank
<< CoreSolver // solve the implicit core
<< FirstHooke // solve the first hooke-angle
<< SecondHooke // solve the second hooke-angle
<< CouplerBody ; // compute D'Alembert's forces at coupler

// list of independent coordinates
// ===============================

92 M a aa aBILE 1.3 User's Guide

MoVariableList q ;
q << theta_1 ;

// generation of equations of motion and integration
// ===

MoMechanicalSystem SystemDynamic (q , SolveAll , K0 , zAxis) ;

MoAdamsIntegrator SystemIntegrator(SystemDynamic) ;
MoReal dt = 0.1 ;
SystemIntegrator.setTimeInterval(dt) ;

// geometry
// ========

r = l = s = d = d_s = MoNullState ;
MoReal alpha = DEG_TO_RAD * 10.0;
MoXRotation X = alpha;
A = X;
l.y = -0.8 ; // offset at the base
r.z = 0.2 ; // lenght of lk 1
s.z = 0.2 ; // lenght of lk 2
d.y = -0.7 ; // lenght of coupler
d_s.y = -0.5*0.7 ; // position of center of mass

// masses
// ======

MoVector theta(4.08895833e-2 , 1.125e-4 , 4.08895833e-2);
m_d = 1.0 ;
THETA_d = theta;

// initial conditions
// ==================

theta_1.q = 1.0 * DEG_TO_RAD;

// run the simulation
// ==================

for (int i = 0 ; i++ < 100 ;)
SystemIntegrator.doMotion() ;

}

M a aa aBILE 1.3 User's Guide 93

6 Generating and Solving Dynamic Equations

The generation and solution of dynamical is realized in M a aa aBILE as a three-step process.
These steps perform the following operations:

1. generation of the equations of motion from a kinetostatic transmission chain
(class MoEqmBuilder)

2. transformation of equations of motion into state-space form, i. e., a system
of ordinary �rst-order di�erential equations
(class MoDynamicSystem and classes derived from it, e. g. MoMechanicalSystem)

3. numerical integration of the di�erential equations
(class MoIntegrator and classes derived from it, e. g. MoExplicitEulerIntegrator,
MoAdamsIntegrator, and MoRungeKuttaIntegrator)

Below the main properties of these classes are described.

6.1 The class MoEqmBuilder

Objects of class for MoEqmBuilder are responsible in M a aa aBILE for generating the dy-
namical equations of mechanical systems. These dynamical equations are determined by
computing then inverse dynamics of the system repeatedly with changing input values
for velocities and accelerations. A short description of the underlying mathematics is
included below for easier reference.

Theoretical background: Generation of the Equations of Motion

The transmission elements described in the previous chapters give a simple means of generating
and transmitting motions and loads within a multibody system. Consider a mechanical system
having f independent generalized coordinates q = [q1 ; : : : ; qf]

T , and let the transmission of
these coordinates to the mass and the force elements be given by a transmission element 'S denoted
`global kinematics'. Let also the global kinematics be decomposed in a �rst part, denominated here
the `kinematical subsystem', which encloses the chains of links and joints of the system (including
closed loops), and a second part where the set of mass and force elements are subsequentially de�ned
as leaf elements (Fig. 6.1). In this way, the overall system is partinioned in a \skeleton" containing
the pure kinematostatic transmission structure of the system and additional elements producing force
and mass e�ects that act as \leaves" attached to the kinetostatic skeleton.

The concatenation of position, velocity, acceleration and force transmission functions of the global
kinematics yields a function which maps the generalized coordinates and their time derivatives to
a set of residual generalized forces Q at the input of the global kinematics. This function, which

represents the inverse dynamics 'D
�1

S of the system, has the structure

Q = 'D
�1

S (q ; q ; �q ; W(e) ; t) = �M (q; t) �q � bQ (q ; _q ; W(e) ; t) ; (6.1)

where W(e) recollects all externally applied forces, and M and bQ are the generalized mass matrix
and the generalized applied forces, respectively. The residual forces can be used to generate M andbQ by the following simpli�ed procedure:

94 M a aa aBILE 1.3 User's Guide

Section 6.1: Generating equations of motion (class MoEqmBuilder)

mass

force

kinematic
subsystem

8>>><>>>:
q

_q
�q
Q

9>>>=>>>;
W(e)

global kinematics ('S)

Figure 6.1: Model of the inverse dynamics of a multibody system.

bQ: Set at the input of 'D
�1

S for the generalized accelerations �q = 0; then in Eq. (6.1) the term

M �q vanishes and the residual vector obtained at the input is exactly bQ.
M: Eliminate in the calculation of 'D

�1

S the term bQ (this is simply done by `switching o�' e�ects
arising from applied and generalized coriolis and centripetal forces), and set a single input
acceleration �q� = 1 while all others vanish; then, the resulting force Q is exactly the �th
column of the generalized mass matrix, and, by repeating this procedure for all columns, one
obtains the complete mass matrix. Note that, in branched systems, only the subtree starting at
the inertial frame and possessing all objects which are successors to q� needs to be calculated.

Generation of the equations of motion by this approach requires f + 1 traversals of the inverse
dynamics for one set of equations, where f is the degree of freedom of the system. The number of
evaluations of the inverse dynamics can be reduced when an iterative method is employed for solving
the linear system of equations for the accelerations.

In order to accomplish the task of generating the dynamical equations, the object is ini-
tialized with the list of independent variables for which to generate the dynamic equations
and the kinetostatic transmission chain mapping the motion of these variables to the mo-
tion of the reference frames at which mass or force elements are attached, as well as the
mass and force elements themselves. Apart form this, the user can provide information
about the direction of action of gravity as well as the reference frame acting as the inertial
frame. Furthermore, one can give a map list containing for each degree of freedom the
subtree which contains all components whose motion depends on this degree of freedom
as well as the components places between the degree of freedom and the inertial system.
This last list is only required when the user wants to optimize computational performance
of the model. Depending on the type and number of arguments passed, the object will
perform the activities described below.

MoEqmBuilder (MoVariableList& q , MoMap& phi)

The object will generate the equations of motion for the variables contained in q,
and using the transmission chain phi for establishing the generalized force vectors
and the mass matrix. Gravity must be modeled through force elements.

M a aa aBILE 1.3 User's Guide 95

Section 6.1: Generating equations of motion (class MoEqmBuilder)

MoEqmBuilder (MoVariableList& q , MoMapChain& phiM , MoMap& phi)

Same as above, only that now a list phiM of transmission elements is supplied
in which each transmission element corresponds to the subtree which has to be
traversed when establishing the corresponding columns of the mass matrix. Note
that this list should always contain exactly the same number of elements as the
variable list q.

MoEqmBuilder (MoVariableList& q , MoMap& phi , MoFrame& K , MoAxis = zAxis)

The object will generate the equations of motion for the variables contained in q, and
using the transmission chain phi for establishing the generalized force vectors and
the mass matrix. Gravity will be modeled by applying an appropriate acceleration
to the reference frame K in the direction of the coordinate axis supplied as fourth
parameter. This models gravity in opposite direction to the coordinate axis supplied
as fourth parameter. If the fourth parameter is ommitted, gravity will be applied
in negative z-direction.

MoEqmBuilder

(MoVariableList& q , MoMapChain& phiM , MoMap& phi , MoFrame& K , MoAxis = zAxis)

Same as above, only that now a list phiM of transmission elements is supplied
in which each transmission element corresponds to the subtree which has to be
traversed when establishing the corresponding columns of the mass matrix. Note
that this list should always contain exactly the same number of elements as the
variable list q.

MoEqmBuilder (MoVariableList& q , MoMap& phi , MoFrame& K , MoVector& gravity)

The object will generate the equations of motion for the variables contained in q, and
using the transmission chain phi for establishing the generalized force vectors and
the mass matrix. Gravity will be modeled by applying an appropriate acceleration
in direction of the vector gravity to the reference frame K. The magnitude of this
vector is ignored.

MoEqmBuilder

(MoVariableList& q , MoMapChain& phiM , MoMap& phi , MoFrame& K , MoVector& gravity)

Same as above, only that now a list phiM of transmission elements is supplied in
which each transmission element corresponds to the subtree which has to be tra-
versed when establishing the corresponding columns of the mass matrix. Note that
this list should always contain exactly the same number of elements as the variable
list q.

The builders of dynamic equations are not kinetostatic transmission elements in the sense
de�ned above. They thus do not support the transmission functions doMotion() and
doForce(). Instead, one can invoke the functions described below. Normally, the user
needs not to be concerned with these functions, because they are called internally by the
objects described in the subsequent sections. They are required only the user needs to
have direct information about the terms involved in the equations of motion.

96 M a aa aBILE 1.3 User's Guide

Section 6.2: Generating Ordinary Di�erential Equations in State-Space Form

buildEquations

This generates the equations of motion, putting the result in internal storage space.

saveEquations

Copies the system matrices generated by buildEquations to the user-accessable
arrays. These arrays are

MoReal* MassMatrix

Symmetric matrix containing the generalized mass of the system. All coe�-
cients are �lled.

MoReal* ForceVector

Vector containing the di�erence of applied and generalized Coriolis forces.

solveEquations

Determines the system accelerations which are in equilibriumwith the applied forces,
and stores the result in the corresponding state subentries of the variables in the
variabe list q. A call to buildEquations must be performed prior to this invokation.

printMass

Prints the current values of the generalized mass matrix to standard output. A call
to buildEquations must be performed prior to this invokation.

printForce

Prints the current values of the force vector de�ned above to standard output. A
call to buildEquations must be performed prior to this invokation.

printAcceleration

Prints the current values of the resolved generalized accelerations to standard out-
put. A call to buildEquations and solveEquations, in this order, must be per-
formed prior to this invokation.

6.2 Generating Ordinary Di�erential Equations in State-Space
Form

For the integration of the equations of motion, it is required that they are transformed
to space-state form. The state-space form of a system of ordinary di�erential equations
takes the form

_y = f (y ; t)

In M a aa aBILE, objects that behave like systems of ordinary di�erential equations in state-
space form are derived from the class MoDynamicSystem. The common property of these
classes is the support of the following set of functions

M a aa aBILE 1.3 User's Guide 97

Section 6.2: Generating Ordinary Di�erential Equations in State-Space Form

int getOrder()

Return the number of state-space variables included in the dynamic system.

void giveYd(MoReal t , MoReal* y , MoReal* yd)

Evaluate the function f de�ned above for time t and state y , returning the result
of the function, i. e. the time-derivative _y , in the array yd.

void giveActualConditions(MoReal* y)

Returns the actual values of the state variables in the array y .

void setActualConditions(MoReal* y)

Sets the actual values of the state variables in the array y .

The class MoDynamicSystem declares the overall behaviour of the object representing dif-
ferential equations in state-space form. For the actual generation of these equations,
dedicated classes have to be written. In M a aa aBILE, there is currently only one class for
doing this. This class is termed MoMechanicalSystem and transforms a system of di�er-
ential equations of second order resulting from the equations of motion of a mechanical
system to state-space form. Other classes that are conceivable may generate �rst order
equations for other types of systems, such as hydraulic, electric or control systems. If
needed, these classes must be currently de�ned by the user. By deriving them from the
base class MoDynamicSystem, the user can combine them with other objects represent-
ing state-space form representations of dynamic equations and integrate them with the
supplied numerical integrators.

6.2.1 The Class MoMechanicalSystem

Objects of class MoMechanicalSystem transform dynamic equations of mechanical systems
into state-space form. Basically, an object of type MoMechanicalSystem needs to be
passed the name of a builder of equations of motion for generating the corresponding
state-space representation. However, M a aa aBILE provides also a shortcut that allows the
user to avoid the need of constructing an extra object of type MoEqmBuilder. This shortcut
consists of passing to the object of type MoMechanicalSystem the same arguments as to
the object of MoEqmBuilder. Thus, there exist the following constructors for objects of
type MoMechanical System.

MoMechanicalSystem (MoEqmBuilder& sys)

The object generates the state-space form of the equations of motion established by
the builder sys.

MoMechanicalSystem (MoVariableList& q , MoMap& phi)

MoMechanicalSystem (MoVariableList& q , MoMapChain& phiM , MoMap& phi)

MoMechanicalSystem (MoVariableList& q , MoMap& phi , MoFrame& K , MoAxis = zAxis)

98 M a aa aBILE 1.3 User's Guide

Section 6.3: Solving the Di�erential Equations

MoMechanicalSystem

(MoVariableList& q , MoMapChain& phiM , MoMap& phi , MoFrame& K , MoAxis = zAxis)

MoMechanicalSystem (MoVariableList& q , MoMap& phi , MoFrame& K , MoVector& gravity)

MoMechanicalSystem

(MoVariableList& q , MoMapChain& phiM , MoMap& phi , MoFrame& K , MoVector& gravity)

These objects generate the state-space form of the dynamical equations of a me-
chanical system. The meaning of the arguments is identical to that described in
Section 6.1.

6.3 Solving the Di�erential Equations

Once the equations of motion are available in state-space form, they can be passed to a
numerical integrator. The numerical integrator is capable of moving along the solution
trajectory of the system in prescribed time steps. In this setting, the integrator plays
the role of a generalized joint that supports a \doMotion()" function. For this reason,
integrators have been de�ned in M a aa aBILE as derivations of the class MoMap for general
kinetostatic transmission elements.

The base class for objects for integrating dynamical equations is MoIntegrator. Inte-
grator objects are constructed simply by passing a dynamic system whose di�erential
equations are to be integrated. The constructor is simply

MoIntegrator (MoDynamicSystem& sys)

The object is then capable of solving the di�erential equations established by sys.

The currently implemented methods for integrator objects are

void doMotion()

Progresses along the solution trajectory by the time interval speci�ed by the user
via the function setTimeInterval. Note that this time interval is not necessarily
the step size of the integrator, but the period after which a result is returned.

void doForce()

Void function; does nothing.

int getNumberOfSteps()

Return current number of already performed steps.

void setTimeInterval(MoReal& dt)

Set the time interval for the method doMotion described above to dt.

M a aa aBILE 1.3 User's Guide 99

Section 6.3: Solving the Di�erential Equations

void setStartTime(MoReal& t)

Set the start time of the integration to t.

Particular implementations of integrators may make it necessary to extend these methods
by further functions. Currently, the following integrator schemes are incorporated into
the M a aa aBILE software

MoExplicitEulerIntegrator

Solves the di�erential equations by the forward Euler method. Apart from the
functions described above, the following methods and member data are supplied:

void reset()

Read the current state of the system into internal storage.

MoReal StepSize

Step size of the method. Note that this is not the interval of integration set by
setTimeInterval.

MoAdamsIntegrator

Solves the di�erential equations by the Adams-Moulton method. Apart from the
functions described above, the following methods and member data are supplied:

void setRelativeTolerancere(MoReal& reltol)

Set the relative tolerance of the integration to reltol.

MoRungeKuttaIntegrator

Solves the di�erential equations by the Runge-Kutta method. Apart from the func-
tions described above, the following methods and member data are supplied:

void setRelativeTolerancere(MoReal& reltol)

Set the relative tolerance of the integration to reltol.

Note: this object works only with the NAG library installed.

6.4 Example: Dynamics of a Triple Pendulum

#include <Mobile/MoElementaryJoint.h>
#include <Mobile/MoRigidLink.h>
#include <Mobile/MoMassElement.h>
#include <Mobile/MoAdamsIntegrator.h>

main()
{
// definition of the system

MoFrame K0, K1, K2, K3, K4, K5 ;

100 M a aa aBILE 1.3 User's Guide

Section 6.3: Solving the Di�erential Equations

arm_a
arm_bR1

R2

R3

M1
M2

M3
beta_2

beta_3

beta_1

(a) principle

K0

R2 R3

R1
K1

K4

K3

K5

M2

M1

M3

arm_a arm_bK2

beta_3

beta_2

beta_1

(b) iconic representation of the model

Figure 6.2: Modelling of the TriplePendulum

MoAngularVariable beta_1, beta_2, beta_3 ;

MoElementaryJoint R1 (K0, K1, beta_1, xAxis) ;
MoElementaryJoint R2 (K2, K4, beta_2, xAxis) ;
MoElementaryJoint R3 (K3, K5, beta_3, xAxis) ;

MoVector a_1, a_2, a_3, a_4 ;

MoRigidLink arm_a (K1, K2, a_1) ;
MoRigidLink arm_b (K1, K3, a_2) ;

MoReal m1 = 1.0 , m2 = 2.0 ;

MoMassElement M1 (K1, m1, a_3) ;
MoMassElement M2 (K4, m2, a_4) ;
MoMassElement M3 (K5, m2, a_4) ;

MoMapChain pendulum ;
pendulum << R1 << arm_a << arm_b << R2 << R3 << M1 << M2 << M3 ;

// geometry and masses

a_1 = a_2 = a_3 = a_4 = MoNullState ;
a_1.z = -0.5 ;
a_2.z = -0.5 ;
a_1.y = -0.5 ;
a_2.y = 0.5 ;
a_3.z = -1.5 ;
a_4.z = -1.0 ;

m1 = 1.0 ;
m2 = 2.0 ;

M a aa aBILE 1.3 User's Guide 101

Section 6.3: Solving the Di�erential Equations

// initial conditions

beta_1.q = DEG_TO_RAD * 30.0 ;
beta_2.q = DEG_TO_RAD * 10.0 ;
beta_3.q = DEG_TO_RAD * 10.0 ;

// dynamics

MoVariableList q ;
q << beta_1 << beta_2 << beta_3 ;

MoMechanicalSystem SystemDynamic (q , pendulum , K0 , zAxis) ;

MoAdamsIntegrator SystemIntegrator(SystemDynamic) ;
MoReal dt = 0.1 ;
SystemIntegrator.setTimeInterval(dt) ;

for (int i = 0 ; i++ < 100 ;)
SystemIntegrator.doMotion() ;

}

102 M a aa aBILE 1.3 User's Guide

7 Graphic Rendering and Animation

This chapter describes the graphic interface provided with the M a aa aBILE software. Cur-
rently, the graphic interface of M a aa aBILE comprises only animation capabilities. System
modeling must be performed in ASCII format using the objects described in the previ-
ous chapters. In particular, graphic modeling capabilities are not covered by the present
version. These capabilities shall be included in future extensions.

The M a aa aBILE interface for graphic rendering builds substantially on Inventor, the object-
oriented graphics library of Silicon Graphics. Similar functionality can be achieved on
other machines after installing an Open Inventor-compatible library.

The basic structure of the graphics interface is depicted in Fig. 7.1. There are two basic
components involved. One is the model of the mechanical system, which is realized by
assembly of the objects described in the previous chapters. Here, motions, forces, etc.
are computed according to the prescribed input values and/or user feedback through the
interface. The second component concerns the geometric representation of the system's
parts on the screen. The de�nition of geometric information and its rendering are realized
by modules of the Inventor package. Here, the man-machine interface is provided through
which the user can interact with the system. This involves moving the camera, dragging at
joints, changing material properties, starting an animation, etc. The interaction between
M a aa aBILE and Inventor is provided by a two-way link. In one direction, M a aa aBILE puts
at disposition to the Inventor library the spatial location of frames of interest onto which
geometric information is attached. In the opposite direction, Inventor modules set the
values of selected input variables either through sliders or manipulators and trigger the
motion and force traversal of the M a aa aBILE model.

Mobile:

− mechanical model
− computation of
 motions and forces
− numerical integration

Inventor:

− graphic objects
− man−machine
 interface
− animation

MoFrame

doMotion(...)
doForce(...)
MoStateVariable

Figure 7.1: Basic structure of the M a aa aBILE-Inventor interface

7.1 Creating a Graphics Interface

In order to produce a graphic interface, the user creates an object of type \MoScene" and
passes to it the M a aa aBILE model of the system to be animated. This object is termed
the \viewer". The M a aa aBILE model is responsible for carrying out the computations
of motions and forces within the system. These motions are transmitted to the viewer

M a aa aBILE 1.3 User's Guide 103

Section 7.1: Creating a Graphic Interface

through specially de�ned frames, joints and links, to which the user attaches geometric
information. The graphic interface then renders this geometric information by superposing
the geometric information to the computed motion of the frames, bodies, joints, etc.
Moreover, the graphic interface allows the user to move the camera, introduce light e�ects,
manipulate joints, start animations, etc. This produces a virtual prototyping environment
in which the user can assess the functioning of the system as if it where operating in real
world.

The following code fragment illustrates the use of the graphics interface of M a aa aBILE

MoFrame K1 , K2 , K3 ;
MoAngularVariable theta ;
MoVector l ;
MoElementaryJoint joint (K1 , K2 , theta) ;
MoRigidLink link (K2 , K3 , l) ;
MoMapChain system ; system << joint << link ;
MoScene scene (system) ;
scene.makeShape (joint) ;
scene.makeShape (joint , link) ;
scene.show() ;
scene.mainLoop() ;

The object \scene" of type \MoScene" is the actual viewer of the system. This object
provides the graphic interface to the user. The mechanical system to be rendered is passed
to it as an argument. The viewer takes control over this system, providing data for input
motion, and invoking motion and force traversals according to the commands of the user.

At the outset, no graphic information is produced by the viewer. The M a aa aBILE model just
represents a skeleton within which motion and force are computed, but no visible geomet-
ric properties are considered. In order to make parts visible, the user invokes the function
\makeShape()" of the viewer for each part to be rendered. M a aa aBILE provides default
geometries for each of the basic modeling objects \MoFrame", \MoElementaryJoint" and
\MoRigidLink". In order to use default rendering information, the user passes just the
names of the corresponding objects to the makeShape() function. The default geometric
representation of these objects is reproduced in Table 7.1.

The default geometry information for the basic M a aa aBILE objects is de�ned in the �les

MoFrameGeom.so
MoRotationalJoint.so
MoPrismaticJoint.so
MoRigidLink.so

These �les are shipped in the subdirectory

Inventor/examples

of the M a aa aBILE home directory. In order to access the default rendering information, the
user has to copy these �les to the working directory from where the M a aa aBILE program is
to be started.

104 M a aa aBILE 1.3 User's Guide

Section 7.1: Creating a Graphic Interface

invokation rendering

makeShape (<frame>)

makeShape (<joint> , <rigid-link>)

makeShape (<revolute-joint>)

makeShape (<prismatic-joint>)

Table 7.1: Default rendering geometry for the basic M a aa aBILE objects

In the code fragment provided above, default rendering information is used for the objects
\joint" and \link". Note that the \makeShape()" invokation for the rigid link involves
also a joint as a �rst argument. This information is required for aligning the base of the
link, which is represented as a fork, with the axis of the joint to which the link is attached.

The actual rendering of the system occurs in the two lines following the \makeShape()"
function invokations. The function \show()" creates a static image of the system. The
function \mainLoop()" passes control to the graphics engine, allowing the user to interact
with the system. These two functions must always be called for the viewer in order for
the graphics rendering mechanisms to work properly.

Instead of just creating a shape, the user can also produce so-called manipulators for user
interaction. Manipulators provide the capability of user feed-back in addition to pure
geometric rendering. For example, with the joint above being de�ned as a manipulator,
the user can accomplish feed-back by picking the joint with a left mouse click and dragging
the mouse with the left button pressed down. The joint then moves according to the mouse
motion, while the rest of the system follows this motion. The code fragment described
below realizes this kind of manipulator action

MoFrame K1 , K2 , K3 ;
MoAngularVariable theta ;
MoVector l ;
MoElementaryJoint joint (K1 , K2 , theta) ;
MoRigidLink link (K2 , K3 , l) ;

M a aa aBILE 1.3 User's Guide 105

Section 7.1: Creating a Graphic Interface

MoMapChain system ; system << joint << link ;
MoScene scene (system) ;
scene.makeManipulator (joint) ;
scene.makeShape (joint , link) ;
scene.show() ;
scene.mainLoop() ;

Currently, only manipulators for joints can be created. Invoking the \makeManipulator()"
function for links, frames, etc., will result in an error.

edit mode

view mode

animationjoint manipulator

Rigid link
(default rendering)

Revolute joint
(default rendering)

Figure 7.2: Overview of the Inventor interface for M a aa aBILE

Fig. 7.2 shows the viewer resulting for the code described above. One can see the default
rendering for the joint and the link. The wireframe \cage" displayed around the joint is
the manipulator that pops up when the user hits the joint with a left mouse click while
being in \edit" mode. Edit mode is entered by hitting the arrow icon on the right menu
bar with a left mouse button click. By hitting the \cage" �gure around the joint, and
moving the mouse with the left button pressed down, the user can operate the joint.
This is called \dragging". Besides the dragging operations, one can perform viewpoint
modi�cation operations. This is accomplished by entering \view" mode. View mode is
chosen by clicking on the \hand" symbol on the right menu bar. By moving the mouse
with the left button pressed down, the camera is rotated. By moving the mouse with the
middle button pressed down, the window is paned. By moving the mouse up and down
with the left and middle mouse buttons pressed down, the camera is zoomed out and in,
respectively. Other functionalities of the viewer can be inquired by choosing \Help" from

106 M a aa aBILE 1.3 User's Guide

Section 7.2: Importing Inventor Files

the submenu item \functions" in the popup menu obtained by pressing the right mouse
button anywhere within the viewer window.

7.2 Importing Inventor Files

Besides using default rendering geometry, M a aa aBILE can be instructed to employ user-
de�ned Inventor �les for geometric rendering. Inventor �les are imported into the M a aa aBILE
model by supplying the �le name as an argument to the function invokations \makeShape()"
or \makeManipulator()". There are three modes for loading Inventor �les into the
M a aa aBILE model. These three modes are recollected in Table 7.2. In this table, \�le"
represents the name of the �le holding the Inventor model for the geometry to be ren-
dered. For information about writing Inventor �les, please consult the Inventor Mentor
manual provided with the Inventor software.

invokation action

makeShape(<frame> , �le) attach contents of \�le" to a frame
makeShape(<revolute-joint> , �le) attach contents of \�le" to a revolute joint
makeShape(<prismatic-joint>, �le) attach contents of \�le" to a prismatic joint
makeManipulator(<revolute-joint> , �le) attach contents of \�le" to a revolute joint
makeManipulator(<prismatic-joint>, �le) attach contents of \�le" to a prismatic joint

Table 7.2: Importing Inventor �les into a M a aa aBILE model

Besides by direct writing, one can also produce Inventor �les by translating from other
standards to Inventor format. For example, one can translate AutoCAD dxf-�les to
Inventor format via the function call

mobile-home-dir/bin/DxfToIv AutoCad-file.dxf Inventor-file.iv

Translating from AutoCad dxf-format to Inventor format allows the user to employ real-
istic geometric information for the animation.

7.3 Prescribing Motion by Sliders

Apart from manipulators, M a aa aBILE provides also the capability of prescribing user feed-
back through user-de�ned sliders. User-de�ned sliders are grouped in objects of type
\MoWidget", termed \slider widgets". Slider widgets are placed in own windows that can
be located anywhere on the screen. A slider widget is initialized with the name of the
viewer to which it is to be attached, a kinetostatic transmission element and a character
string. The kinetostatic transmission element is traversed in motion mode each time a
slider of the widget is actuated. The character string is displayed as the title of the slider
widget. One can de�ne several slider widgets for the same viewer.

For each slider widget, one can de�ne severl sliders by invoking the functions

M a aa aBILE 1.3 User's Guide 107

Section 7.3: Prescribing Motion by Sliders

slider-widget.addSlider (real , title , min , max) ;

slider-widget.addSlider (angle , title , min , max) ;

Here, \real" and \angle" are names of objects of type \MoReal" and \MoAngle" used as
input variables or parameters for previously de�ned kinetostatic transmission elements.
The numbers \min" and \max" are the minimum and maximum values allowed when
operating the sliders. For angles, these values are interpreted in degrees. The parameter
\title" is a character string to be displayed as the title of the slider.

When the user actuates the slider, the value of the scalar quantity attached to the slider is
updated and the \doMotion" function of the transmission element attached to the slider
widget \slider-widget" is invoked. Note that one can use any scalar quantity used within
kinetostatic transmission elements as the destination of sliders. Thus, slider widgets make
it possible to change parameters online during simulation.

In order for the slider widgets to be rendered on the screen, it is necessary to invoke the
\show()" member function explicitly for them. This should be done after the show()

function of the viewer object has been invoked.

An example of the use of slider widgets is shown in the program reproduced below. The
corresponding result on the screen is displayed in Fig. 7.3.

these sliders actuate
the system online

these sliders change system
parameters during simulation

"viewer" window

Figure 7.3: An example of the use of slider widgets

108 M a aa aBILE 1.3 User's Guide

Section 7.3: Prescribing Motion by Sliders

#include <Mobile/MoElementaryJoint.h>
#include <Mobile/MoRigidLink.h>
#include <Mobile/MoMassElement.h>
#include <Mobile/MoLinearSpringDamper.h>
#include <Mobile/MoAdamsIntegrator.h>
#include <Mobile/Inventor/MoScene.h>
#include <Mobile/Inventor/MoWidget.h>

void main () {

// definition of mechanical system (see previous section)
MoFrame K0 , K1 , K2 ;
MoAngularVariable phi ;
MoVector l ;
MoElementaryJoint R (K0, K1, phi) ;
MoRigidLink rod (K1, K2, l) ;
MoReal m ;
MoMassElement Tip (K2, m) ;
MoReal k , c ;
MoLinearSpringDamper springDamper (R , k , c) ;
MoMapChain Pendulum ;
Pendulum << R << rod << springDamper << Tip ;

// dynamic equation
MoVariableList vars ;
vars << phi ;
MoMechanicalSystem Dynamics (vars , Pendulum , K0 , yAxis) ;

l = MoVector (0 , -1 , 0) ;
m = 1 ;
phi.q = phi.qd = 0 ;

// numerical integrator
MoAdamsIntegrator dynamicMotion (Dynamics) ;
MoReal dT = 0.1 ;
MoReal tol = 0.01 ;
dynamicMotion.setTimeInterval(dT) ;
dynamicMotion.setRelativeTolerance(tol) ;

// animation
MoScene Scene (Pendulum) ; // interface for 3D-rendering
Scene.makeShape (K0) ; // create shape for inertial frame
Scene.makeManipulator (R) ; // create manipulatorfor revolute joint
Scene.makeShape (R , rod) ; // create shape for rigid link
Scene.makeShape (K2 , "MoSphere.so") ; // attach ball at end of rod

Scene.addAnimationObject (dynamicMotion) ;
Scene.setAnimationIncrement (0.1) ; // animate in real time if possible

MoWidget parameters (Scene , Pendulum , "Parameters") ;
parameters.addSlider (m , 0 , 10 , "mass") ;
parameters.addSlider (k , 0 , 30 , "stiffness") ;
parameters.addSlider (c , 0 , 10 , "damping") ;

M a aa aBILE 1.3 User's Guide 109

Section 7.4: Realizing Autonomous Animations

MoWidget initCond (Scene , Pendulum , "Initial conditions") ;
initCond.addSlider (phi.q , -360 , 360 , "angle") ;
initCond.addSlider (phi.qd , -10 , 10 , "angular vel.") ;

Scene.show() ;
parameters.show() ;
initCond.show() ;
MoScene::mainLoop() ; // move the scene

}

7.4 Realizing Autonomous Animations

Besides motion generation by user-feed back, M a aa aBILE provides the capability of real-
izing autonomous motion animation for appropriate objects. Objects for autonomous
animation are passed to the viewer through the member function

addAnimationObject (kinetostatic-transmission-element) ;

The object \kinetostatic-transmission-element" is an object derived from MoMap and
should exhibit a built-in mechanism for progressive motion within the \doMotion()"
function. A typical example is an instance of a class derived from \MoIntegrator".

The user can supply several such objects by repeated invokation of \addAnimationObject()".
These objects are then traversed in the sequence in which they were passed to the viewer
during animation. Animation then consists in invoking the \doMotion()" function for
the supplied objects (in order of their addition) at constant time intervals.

The (real) time interval between doMotion() invokations can be set via the member
function

setAnimationIncrement (time) ;

of the viewer, where \time" is a real number representing the time interval. If the
computation of the \doMotion()" functions takes less time than the given time inter-
val, the system will wait until the required interval elapses. If the computation of the
\doMotion()" functions takes more time than the given time interval, the system will
repeat the doMotion() call immediately, progressing at maximum computational speed.
The user can force the viewer to work with highest possible speed by specifying a zero
value for the animation time interval.

Animation is started from the viewer by selecting \Run Animation" from the drop-down
menu under the entry \Anim" at the right of the main menu bar. Animation is stopped by
selecting \Run Animation" from the drop-down menu under the entry \Anim" at the right
of the main menu bar. Animation can be used in conjunction with manipulators and/or

110 M a aa aBILE 1.3 User's Guide

Section 7.5: Further Animation Capabilities

sliders. Note that attempting to start an animation without supplying appropriate ob-
jects through the \addAnimationObject()" member function will result in unpredictable
errors.

When animating a numerical integration process, one can stop the animation and re-
con�gure the mechanism parts by operating the manipulators and sliders. Selecting\Run
Animation" again will then restart the animation from the position attained after recon-
�guration. Manipulators store also the speed with which the recon�guring motion was
performed. This speed is then used by the integrator as an initial condition.

7.5 Further Animation Capabilities

Further capabilities of the graphics interface are documented in the M a aa aBILE reference
sheets. Furthermore, several examples have been shipped with the M a aa aBILE software in
the directory

mobile-home-dir/Inventor/examples

and its subdirectories.

M a aa aBILE 1.3 User's Guide 111

8 M b b
b b
BILE for PC

The M a aa aBILE for PC version enables the user to write and to display mobile models under
Windows (98 and NT) in the same way as on UNIX environments. Moreover, in order
to make M a aa aBILE for PC independent of Open Inventor (which requires on PC systems
licence fees), the graphic interface was implemented additionally using only OpenGL,
which is a royalty free part of Microsoft Windows. Finally, M a aa aBILE for PC integrates a
graphic user interface for building models interactively.

8.1 Installation

Installing M a aa aBILE on a PC is as easy as counting one through three:

(1) Make sure the following products are installed on your PC

Microsoft Visual C++ 6.0

Microsoft FORTRAN Power Station 4.0 or Visual FORTRAN 5.0 (or newer
version)

and, if the Open Inventor graphic interface is desired, additionally

TGS Open Inventor 2.5.0

(2) Copy the M a aa aBILE home directory to your hard-disk. This directory is assumed to
be in the following c:\mobile-home but can be changed by the user to any other
value.

If using M a aa aBILE with Open Inventor, two environment variables have to be set to
speci�c directories. To accomplish this, click the "Start" icon and then traverse the
following pop-up menues:

Start ! Settings ! Control Panel ! System ! Environment

Then, perfom the following two steps (see Fig. 8.1)

(a) type \MOBILE_INPUTS" in the �eld \Variable" and \c:\mobile-home\geom" in
the �eld \Value"; then click on \Set"

(b) click on \path" in the list \User Variables for ..." and type
\c:\mobile-home\lib\libInventor" in the �eld \Value"; then click on \Set"

[Remark: The \path" variable speci�es the location of the �le mobileInvDll.dll, which is

part of the interface between M a aa aBILE and Open Inventor, while the environment variable

\MOBILE INPUTS" speci�es the location of standard graphic �les of elementary objects

like links or joints.]

112 M a aa aBILE 1.3 User's Guide

Section 8.2: M a aa aBILE for PC with Open Inventor

Figure 8.1: Setting a environment variable and a path

(3) Copy the �les

MobileInventor.awx, MobileOpenGL.awx

from the directory

/mobile-home/pdf/

to the directory

/Programme/Microsoft Visual Studio/Common/MSDev98/Template/

This allows an easy generation of new M a aa aBILE programs with the Application
Wizard of Visual C++.

8.2 M b b
b b
BILE for PC with Open Inventor Graphic Interface

For programming and executing a M a aa aBILE model, the following steps have to be per-
formed:

(1) Start Microsoft Visual C++

(2) Select the menu

File! New

In this window, choose Mobile Inventor AppWizard and enter a location direc-
tory and a project name for the model. For example, in Fig. 8.2 the location typed
in is c:\mobile-home\examples\Inventor and the project name is Pendulum.

M a aa aBILE 1.3 User's Guide 113

Section 8.2: M a aa aBILE for PC with Open Inventor

Figure 8.2: Generate a new Project

Also, make sure \Mobile Inventor AppWizard" is selected in the Projects win-
dow. After closing this and the following window with OK, the Mobile Inventor
AppWizard generates a new project, including the three new �les (in our exam-
ple MoCmpnt.cpp, MoCmpnt.def, Pendulum.cpp) in the Source Files folder of the
Workspace window. The �le Pendulum.cpp, where the actual mobile model source
code is typed in by the user, is always generated automatically by the system as
the project name with the extension .cpp appended. From the mobile model source
�le, the executable M a aa aBILE model is lateron automatically compiled and linked
as a DLL (Dynamic Link Library). The �les MoCmpnt.cpp and MoCmpnt.def are
required for the interface between the main program MobileInventor.exe and the
executable M a aa aBILE model and should not be changed.

(3) Open and edit the M a aa aBILE model source �le. When opening the M a aa aBILE model
source �le, you will encounter the following code:

#include "Mobile/Inventor/MoMFC.h"

#include "Mobile/Inventor/MoScene.h"

#include "Mobile/Inventor/MoWidget.h"

_void main()

{

//insert here your Mobile-code

return MoScene::mainLoop();

}

Do not change any of these lines, as otherwise the model will not compile
and function correctly!

You may type in a M a aa aBILE model in the place indicated in the template much the
same way as in the UNIX system. The only di�erence is that all variables must

114 M a aa aBILE 1.3 User's Guide

Section 8.2: M a aa aBILE for PC with Open Inventor

be declared as static! Not declaring all variables as static will result in loss of
information and unpredictable errors!

An example of a program for PC is reproduced below.

#include <Mobile/Inventor/MoMFC.h>

#include <Mobile/MoElementaryJoint.h>

#include <Mobile/MoRigidLink.h>

#include <Mobile/MoMassElement.h>

#include <Mobile/MoLinearSpringDamper.h>

#include <Mobile/MoAdamsIntegrator.h>

#include <Mobile/Inventor/MoScene.h>

#include <Mobile/Inventor/MoWidget.h>

_void main ()

{

// insert here your Mobile-code

// definition of mechanical system (see previous section)

static MoFrame K0 , K1 , K2 ;

static MoAngularVariable phi ;

static MoVector l ;

static MoElementaryJoint R (K0, K1, phi) ;

static MoRigidLink rod (K1, K2, l) ;

static MoReal m ;

static MoMassElement Tip (K2, m) ;

static MoReal k , c ;

static MoLinearSpringDamper springDamper (R , k , c) ;

static MoMapChain Pendulum ;

Pendulum << R << rod << springDamper << Tip ;

// dynamic equation

static MoVariableList vars ;

vars << phi ;

static MoMechanicalSystem Dynamics (vars , Pendulum , K0 , yAxis);

l = MoVector (0 , -1 , 0) ;

m = 1 ;

phi.q = phi.qd = 0 ;

Pendulum.doMotion();

// numerical integrator

static MoAdamsIntegrator dynamicMotion (Dynamics) ;

static MoReal dT = 0.1 ;

static MoReal tol = 0.01 ;

dynamicMotion.setTimeInterval(dT) ;

dynamicMotion.setRelativeTolerance(tol) ;

// animation

M a aa aBILE 1.3 User's Guide 115

Section 8.2: M a aa aBILE for PC with Open Inventor

static MoScene Scene (Pendulum) ; // interface for 3D-rendering

Scene.makeShape (K0) ; // create shape for inertial frame

Scene.makeManipulator (R) ; // create manipulatorfor revolute joint

Scene.makeShape (R , rod) ; // create shape for rigid link

Scene.makeShape (K2 , "MoSphere.so") ; // attach ball at end of rod

Scene.addAnimationObject (dynamicMotion) ;

Scene.setAnimationIncrement (0.1) ;

static MoWidget parameters (Scene , Pendulum , "Parameters") ;

parameters.addSlider (m , 0 , 10 , "mass") ;

parameters.addSlider (k , 0 , 30 , "stiffness") ;

parameters.addSlider (c , 0 , 10 , "damping") ;

static MoWidget initCond (Scene , Pendulum , "Initial conditions");

initCond.addSlider (phi.q , -360 , 360 , "angle") ;

initCond.addSlider (phi.qd , -10 , 10 , "angular vel.") ;

Scene.show() ;

parameters.show() ;

initCond.show() ;

return MoScene::mainLoop() ;

}

(4) Set the paths to the directories of the include (header) and lib �les as follows (see
Fig. 8.3):

(a) Select the menu Tools ! Options... ! Directories

(b) Select \Include files" in the window \Show directories for"

(c) select your M a aa aBILE home directory (in our example \c:\mobile-home"

(d) Select \Libraries files" in the window \Show directories for"

(e) select your M a aa aBILE Inventor lib directory (in our example
c:\mobile-home\lib\libInventor)

(5) Compile the program by selecting

Build ! Build Pendulum.dll (or F7)

The compiler generates the �le Pendulum.dll and writes it into the directory
/Pendulum/Debug or /Pendulum/Release

(6) Start the program. To do this, open the directory /mobile-home/mobile-EXE/ and
double-click MobileInventor.exe. In the then appearing window (see Fig. 8.4)
select the directory and M a aa aBILE model name with the .dll extension (in our
example Pendulum.dll). Operate the mechanical model in the same manner as on
UNIX environments.

116 M a aa aBILE 1.3 User's Guide

Section 8.3: M a aa aBILE for PC with OpenGL

8.3 M b b
b b
BILE for PC with OpenGL Graphic Interface

The OpenGL Graphic Interface frees the user from the burden of purchasing an Open
Inventor license. However, please note that in the OpenGL version not all sophisticated
features of Open Inventor will be available. For example, it is only possible to render
M a aa aBILE default representations of objects and not CAD �les.

New projects are generated with the OpenGL graphics environment in the almost in
same way as with the Open Inventor version. The only di�erence is that in the Projects
window Mobile OpenGL AppWizard has to be selected instead of Mobile Inventor
AppWizard, as explained in Page 114, Fig. 8.2.

Please read the instructions in Section 8.2 before continuing, as this section speci�es only
the di�erences to the Open Inventor procedure.

The generated �le Pendulum.cpp for the OpenGL version is:

#include "Mobile/MobileGL/MoMFC.h"

#include "Mobile/MobileGL/MoScene.h"

#include "Mobile/MobileGL/MoWidget.h"

_void main()

{

//insert here your Mobile-code

return MoScene::mainLoop();

}

Again, do not change any of these lines, as otherwise the model will not compile
and function correctly!

You may type in again a M a aa aBILE model in the place indicated in the template. Again,
all variables must be declared as static! Not declaring all variables as static will
result in loss of information and unpredictable errors!

Figure 8.3: Setting the path to header- and library �les

M a aa aBILE 1.3 User's Guide 117

Section 8.3: M a aa aBILE for PC with OpenGL

Figure 8.4: Start of a model with Open Inventor

The same program as in section 8.2 yields, then, here

#include <Mobile/Inventor/MoMFC.h>

#include <Mobile/MoElementaryJoint.h>

#include <Mobile/MoRigidLink.h>

#include <Mobile/MoMassElement.h>

#include <Mobile/MoLinearSpringDamper.h>

#include <Mobile/MoAdamsIntegrator.h>

#include <Mobile/Inventor/MoScene.h>

#include <Mobile/Inventor/MoWidget.h>

_void main ()

{

// insert here your Mobile-code

// definition of mechanical system (see previous section)

static MoFrame K0 , K1 , K2 ;

static MoAngularVariable phi ;

static MoVector l ;

static MoElementaryJoint R (K0, K1, phi) ;

static MoRigidLink rod (K1, K2, l) ;

static MoReal m ;

static MoMassElement Tip (K2, m) ;

static MoReal k , c ;

static MoLinearSpringDamper springDamper (R , k , c) ;

static MoMapChain Pendulum ;

Pendulum << R << rod << springDamper << Tip ;

// dynamic equation

static MoVariableList vars ;

vars << phi ;

static MoMechanicalSystem Dynamics (vars , Pendulum , K0 , yAxis) ;

118 M a aa aBILE 1.3 User's Guide

Section 8.3: M a aa aBILE for PC with OpenGL

l = MoVector (0 , -1 , 0) ;

m = 1 ;

phi.q = phi.qd = 0 ;

Pendulum.doMotion();

// numerical integrator

static MoAdamsIntegrator dynamicMotion (Dynamics) ;

static MoReal dT = 0.1 ;

static MoReal tol = 0.01 ;

dynamicMotion.setTimeInterval(dT) ;

dynamicMotion.setRelativeTolerance(tol) ;

// animation

static MoScene Scene (Pendulum) ; // interface for 3D-rendering

Scene.makeShape (K0) ; // create shape for inertial frame

Scene.makeShape (R , rod) ; // create shape for rigid link

Scene.makeShape (K2 , SPHERE , 0.1) ; // attach ball at end of rod

Scene.addAnimationObject (dynamicMotion) ;

Scene.setAnimationIncrement (0.1) ;

static MoWidget parameters (Scene , Pendulum , "Parameters") ;

parameters.addSlider (m , 0 , 10 , "mass") ;

parameters.addSlider (k , 0 , 30 , "stiffness") ;

parameters.addSlider (c , 0 , 10 , "damping") ;

static MoWidget initCond (Scene , Pendulum , "Initial conditions") ;

initCond.addSlider (phi.q , -360 , 360 , "angle") ;

initCond.addSlider (phi.qd , -10 , 10 , "angular vel.") ;

Scene.show() ;

parameters.show() ;

initCond.show() ;

return MoScene::mainLoop() ;

}

The program code has only two di�erences in comparision to the code in Page 116. The
�rst one is that the class MoScene has no member function makeManipulator(joint).
The second one is that the function call

Scene.makeShape (K2 , "MoSphere.so") ;

has been replaced by

Scene.makeShape (K2 , SPHERE , 0.1) ;

M a aa aBILE 1.3 User's Guide 119

Section 8.4: M a aa aBILE for PC with Graphic User Interface

where the value 0:1 indicates the radius of the sphere.

For compilation, select now /mobile-home/lib/libOpenGL in Step (4e) of the general
procedure for generation and execution of the model displayed in Page 116 (see Fig. 8.3)
Compilation of the program can then be performed in the same manner as in Section 8.2.

For starting the M a aa aBILE program, execute the �le MobileGL.exe in the directory
/mobile-home/mobile-EXE/. Again, a window appears where the M a aa aBILE model can
be selected (see Fig. 8.5).

Figure 8.5: Start of a model with OpenGL

8.4 M b b
b b
BILE for PC with Graphic User Interface

When starting MobileGL.exe from the directory

/mobile-home/mobile-EXE/

(like in section 8.3), the option Interactive (see Fig. 8.5) brings up a window with a tool
bar on the right side and the initial coordinate frame in the center (see Fig. 8.6). Here,
mechanical systems can be modelled, including the closure of loops. Finally, the dynamic
equations can be solved, allowing the animation of the system.

Furthermore, the C++ code of the model can be exported in the menu

File ! Export Source Code

Further details for usage of this module can be recognized from the icons displayed in the
decoration of the window.

120 M a aa aBILE 1.3 User's Guide

Section 8.4: M a aa aBILE for PC with Graphic User Interface

Figure 8.6: Interactive models

M a aa aBILE 1.3 User's Guide 121

Index
.C, see implementation �le

.h, see header �les
<<

in kinetostatic transmission chains, 48

in variable lists, 31

abstract class, 35

activity types of measurement, 65
angle, 16
angular variables, 29

animation, 110

base frame, 72

basic mathematical objects, 19
basic mathematical objects, 10

categories of objects, 10
chord, 64
chords, 57

client-server paradigm, 11
closed-loop systems, 57
closure conditions, 57

compiler invocation, 4
complementary equations, 79
COMPUTE_CORIOLIS, 42

COMPUTE_INTERNAL, 42
concrete class, 35
connector paradigm, 29

constraint equations, 57
core equation, 79
Coriolis acceleration term, see quadratic ac-

celeration term

cut, 59
cyclic coordinates, 22

decomposition of vectors, 33

dependent chains, 60
direction of transmission, 39

directory structure, see M a aa aBILE, directory
structure

DO_ACCELERATION, 42
DO_ALL, 42
DO_EULER, 42

DO_EXTERNAL, 42
DO_INERTIA, 42
DO_INTERNAL, 42

DO_NOTHING, 42
DO_POSITION, 42

DO_TRANSFORMATION, 42

DO_TRANSLATION, 42
DO_VELOCITY, 42

examples

accessing scalar variables, 30
arrays or lists of frames, 34

SCARA robot, 54{56
shaker mechanism (joint assembly), 60

simple manipulator, 49{51
simple pendulum (animation), 16

simple pendulum (dynamics), 12�
simple pendulum (kinematics), 5

use of MoAngle, 22

use of MoNullState, 21

use of MoVector, 24

force, 51

kinetostatic element, 51

de�nition for a moving frame, 32

generalized applied, 14

generalized Coriolis and centrifugal, 14

source, 39

frame

actual, 32

�xed, 32

frames

list of, 34

geometric types of measurement, 65

hardware platforms supported

Silicon Graphics, 17

hardware platforms supported

Hewlett Packard, 17

header �les, 3

container �les for, 9

including, 3

overview of existing, 8{9

ideal transmission element, 38

implementation �le, 3

implicit constraint solver, 82

indexing

C-style, 32

FORTRAN-style, 32

inertia, 51

inertia tensor

122

Section 8.4: M a aa aBILE for PC with Graphic User Interface

components, 53

Jacobians

evaluation in M a aa aBILE 1.3, 43

force-based determination, 43

velocity-based determination, 43

joint

cylindric, 46

elementary, 46{47

prismatic, 46

revolute, 46

screw, 46

joints

elementary, see elementary joints

kinematic inputs, 60

kinematic skeleton, 51

kinetostatic state subentries, 28

kinetostatic state objects, 10, 27

connector paradigm, 28

scalar, 28

types of, 10

kinetostatic transmission chain, 48

kinetostatic transmission element

chains of, 48

composite, 48

concatenation of, 48

kinetostatic transmission elements, 10

basic class hierarchy, 36

chain of, 48

generic model, 37

generic properties, 36

overview of classes, 37

linear coordinates, 22

linear variables, 29

link

binary, see binary link

multiple, see multiple link

lins

rigid, see rigid links

list of frames, 34

lists

of chords, see chord lists

loop constraint processing, 58

lower segment, 74

Makefile, 5

manipulator, 105

mass

kinetostatic element, 51

mass (generalized), 14

mass elements, 53

matrices, 24

basic operations, 26

basic properties, 25

class hierarchy, 24

columns of, 26

data structure, 25

index expressions, 26

measurements

absolute di�erence type, 75

absolute motion type, 75

characteristic, 57

relative di�erence type, 77

relative motion type, 75

scalar, see scalar measurements

spatial, see spatial measurements

topological types of, 74

mechanical components

basic operations, 10

responsibilities, 11

MoAngle, 22

operations, 23

MoAngularVariable, 29

M a aa aBILE
description, 1

directory structure, 4

features of, 1

scope of M a aa aBILE 1.3, 2

scope of M a aa aBILE 2.x, 2

scope of M a aa aBILE 3.x, 2

$MOBILE HOME DIR, 4

MoChord, 57

MoChordList, 68

MoCylindricalJoint, 46

MoElementaryJoint, 46

MoElementaryScrewJoint, 46

MoExplicitEulerIntegrator, 18

MoFrame, 32

state subentries, 33

MoFrameList, 34

MoInertiaTensor

operations, 26

MoRungeKuttaIntegrator, 18

MoLinearVariable, 29

MoMap

M a aa aBILE 1.3 User's Guide 123

Section 8.4: M a aa aBILE for PC with Graphic User Interface

virtual functions, 35

MoMapChain, 48

sequence of elements in, 14

MoMatrix, 23

accessing elements, 26

MoNullState, 21

MoReal, 22

MoRigidLink, 44

MoRotationMatrix

operations, 27

MoScene, 17

MoSolver, 58

MoStateVariable, 29

MoAngularList, 31

MoVector, 23

accessing elements, 23

basic operations, 23

MoXYZRotationMatrix

operations, 27

neutral element, 21

numerical integrators

Adams-Bashfort-Moulton, 17

objects

scalar types, 22

basic mathematical, 19

iconic representation of, 13

not initialized by constructor, 21

operators

precedence of, 20, 26

parameter passing

pass by reference, 14

pass by value, 14

planes of projection, 73

pose, 58

precedence of operators, 19, 20

prerequisites

C++, 1

kinematics and dynamics, 1

reference frames, 10

rigid link, 44

multiple, 45

scalar kinetostatic state objects, 11, see state
kinetostatic objects, scalar

scalar load, 52

applied to a chord, 52

applied to a joint, 52

scalar measurements, 65, 71, 72

interlinking of, 79

optimizing performance, 77

Type (I), see scalar measurements, ab-

solute motion type

Type (II), see scalar measurements,relative
motion type

Type (III), see scalar measurements, dif-
ference of absolute motion type

Type (IV), see scalar measurements, dif-
ference of relative motion type

scalar types, 19

scalar variables

accessing both types of, 30{31

getting the type, 30

self-recon�guring measurements, 66

slider widget, 107

solver objects

transmission functions, 60

solvers, see constraint solvers

source force

applied and inertia, 41

spatial measurements

closure condition, 70

rotational part, 69

statics, 71

spatial kinetostatic state objects, 10, 32

spatial load

global and local, 51

spatial measurements, 65

basic kinematic formulas, 70

basic static formulas, 71

components of state, 71

kinetostatics, 69

types of, 68

state objects, 10, 27

state (of measurement), 66

super loops, 60

SYMKIN, 58

target frame, 72

topological types of measurement, 65

transmission

of forces, 38

of motion, 38

transmission subtasks, 40

124 M a aa aBILE 1.3 User's Guide

Section 8.4: M a aa aBILE for PC with Graphic User Interface

mathematical terms, 40

tree-type systems, 57

upper segment, 74
USE_CORIOLIS, 42

USE_INTERNAL, 42

variable list, 31

indexing, 32

vector

unit, 73

vector components, 23, 33

vector products

inner, dyadic and vector, 24

viewer, 103, 104

edit mode, 106

view mode, 106

whereForce, 78

whereInput, 78

whereUnknwon, 78

M a aa aBILE 1.3 User's Guide 125

