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Abstract

The analysis of collisions in multibody systems has been a topic of continuous research
in recent years. Traditionally, impact response is predicted by rigid-body models in con-
junction with impact hypotheses, such as Poisson’s, Newton’s, or Stronge’s [1, 2, 7]. An
alternative scheme — termed ‘regularized model’ — is to account for impact interactions
through contact elements featuring tangential and normal compliance as well as slip-stick
effects. The paper derives analytical solutions for the case of a planar, rough, oblique,
eccentric, fully elastic planar impact, showing that large discrepancies may occur between
the predicted impact responses of the rigid and regularized models. Finally, an object-
oriented multibody generalization and an engineering application are briefly described.

1 Basic Impact Characteristics

Consider the impact of a planar body with a rough horizontal surface featuring coefficient
of friction p (Fig. 1). In order to keep the expositions simple, the body is regarded as a
homogeneous bar of length 2¢, mass m and radius of gyration p, the extension to the two-
body planar collision problem being straightforward. The velocity of the bar is given by
its angular speed ¢ and the velocity v = [#,9]" of contact point O. Superscripts ‘=’ and
‘“t7 denote quantities at the start and end of im-

pact, respectively. During impact, all applied and
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gyroscopic forces, as well as any change of config- m, p _
uration, is neglected. Relevant external effects are R h ¢F
the contact forces F(t) = [Fy(t), F,(t)]* and the Y F, y v
Vo Y
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impulses P(t) = [P,(t), P,(t)|" = [ F()di. As
initial conditions, let the bar approach the con- Y

tact plane with pure translational velocity v~ and

angle ¢ with respect to the surface normal. New- Figure 1: Planar bar on a rough surface
ton’s second law produces two equations of motion which can be expressed in the accelera-
tion of the contact point and the angular acceleration of the bar. This angular acceleration
can be back substituted using Euler’s equation, yielding two equations of motion which,




upon setting A\, = (£/p) sing, Ay = (£/p) cosg; Coe = 14+ X35 Cypy = 1425 Coy = —Aa)y
integrating with respect to time on both sides, yield
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2 Rigid-Body Model

Using Eq. (1), the impact response can be immediately established once P is known. A
method for approximately determining these quantities, as originally proposed by Routh
[5], and further developed in [2, 6, 7], is to track the impulse process in the ‘impulse
plane’ with coordinate axes P, P, until lift-off is established. Hereby, two ‘axiomatic’
assumptions are made: (I) contact zone deformation occurs in normal direction but not
in tangential direction; (II) for impact termination, one of the following hypotheses holds:
(1) Newton: g™ = —egy~; (2) Poisson: P} = (1+ ) PC; (3) Stronge [6]: Dg = —€* D,
where e is the coefficient of restitution; D¢ is the strain energy stored up to the end
of compression; Dpg is the strain energy released from end of compression until end of
impact; and Pyc is the normal impulse accumulated up to the end of compression. For the
elastic case, which is regarded here, e = 1. Tracking of impact starts at the origin of the
impulse plane in sliding mode (assumption I), i.e., along the ‘line of sliding’ P,/P, = +p
(cf. Fig. 3). This line may intersect the Tine of sticking’ obtained by setting 4™ = 0 in
the first line of Eq. (1), or lead to lift-off before. At the intersection point, the system
either switches to stiction, or, if the tangential force is too large, to ‘reverse sliding’, which
is the line passing through the intersection point with the negative slope of the starting
line of sliding. Impact terminates when the hypothesis chosen by the user is fulfilled.
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3 Regularized Model

When impact velocities are small compared to
wave travel velocity in the colliding bodies, the T
tangential and normal compliances of the im- o 4/TP
pact zone can be modeled by massless springs z
[3]. With wave travel velocities between 46 m/s —~el/ ) ) sledge
(rubber) and 5200 m/s (steel), this is the case —yt

for most technical impact problems. Slip-stick Cz/2 (0] Cz/2

effects can be taken into account by introduc- : ;cy
ing a massless ‘sledge’ which slides for contact 1%
forces outside the friction cone. In this model,
O represents the contact point, x and y are the
deflections of the contact springs, s is the lo- Figure 2: Regularized model

cation of the center of the sledge (Fig. 2), and & = x5 + x. This gives rise to two types of
governing equations:
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sticking case sliding case
Fp=—crx, Fy=—cy, k=cy/cy F,=wF,, F,=—cy, p* = psign(ts)
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prime denoting differentiation with respect to dimensionless time 7 = /¢, /mt. Note that
the governing equations now only depend on dimensionless parameters. In particular, the
stiffness ratio x may be bounded even for c;,c, — oo, i.e., for high absolute stiffness
of the material. Indeed, Routh’s assumption x — oo is quite unrealistic for technical
applications, as e.g. for collision of two spheres of similar material featuring Poisson’s
ratio v = 0.3, where it holds x = 0.824 [3]. Due to the linearity and time-independency
of the governing equations, the latter can be solved in terms of the initial conditions
2o =xz(0) =[z0, ¥0]" , 2y =2'(0) =[x}, yy]" in each case by simple modal analysis.
3.1 Time History for Sticking Case

For the solution of the equations of motion (2), let z (7) = re'“” where 1 = [ry, |7 is
the eigenvector and w is the eigenfrequency, i.e., the square root of an eigenvalue

1
A = 3 [/icxx+cyyi \/(’icmx_cyy)2+4’f"0§y] (3)

Substituting for Cyy, Cyy, Cyy, one first verifies that both eigenvalues are always positive,

and hence always two real eigenfrequencies exist. With the matrix of eigenvectors
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the (purely oscillatory) time response for displacements and velocities becomes

TaFA o)
2'(t) = R [—diag{w; sinw;7} R™" 2+ diag {cosw;T } R™'2'y] . (6)
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z(r) = R {diag {coswiT } R ' x4 + diag{
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Substituting d¢ = y/m/c, d7 in the time-integral for impulse P and assuming 75 = 0, one
obtains with the previous time history
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3.2 Time history for sliding case
In case of sliding, the resulting eigenvalues and eigenvectors take the form

M* C:c:c - C:cy

. (8)
Cyy — 1" Oy

)\1 =0 1
, 't = y T'p =
Ao = Cyy— i Coy 0

clearly involving a rigid-body mode in horizontal direction. Furthermore, depending on
the values of \;, A\, and p*, the second eigenvalue can attain a positive, negative or
vanishing value, giving rise to three cases (for definition of constants a;, b; see Table 1):

Case 1: |Cyy > p*Cyy| - The second eigenvalue is positive and hence a real eigenfre-

quency we = /Ao exists. The ensuing oscillatory motion is then

z(t) = (a1 +b17) + ag sin(wer — bo) 1y 9)




Case 2

Cyy < 11 Cay

. In this case, the second eigenvalue becomes negative and hence

horizontal motion is aperiodic and unstable, yielding

z(t) = (a1 +b7)

Case 3 |Cyy < u*Cyy
rigid-body mode. The ensuing motion is

&(T) = (a1—|-b17') =+ a9

+ ag sinh(vr — by) 1y (10)

This is an exceptional situation, giving rise to a quadruple

(11)
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where [r,], denotes the z-component of the eigenvector r,.

With these solutions, the transitions
from stiction to sliding (F,/F, = £p),
from sliding to stiction (&g = 0), or

from contact to lift-off (y = 0) can
be easily established either by Newton
iteration (for the stiction case, where
two harmonics involved) or analytically
(for the sliding case, where only one
transcendental function occurs). For
technical applications, it turns out that
only one or two transition events can
occur during impact. Hence, by choos-
ing appropriate initial guesses, only few
Newton steps are needed, yielding a

constant Case 1 Case 2 Case 3
[rolz [ro]z
ay Zo Ao Yo Zo Ao Yo Zo
by ) — [rols ,[rols a}

Ay Yo Lo — Ao Yo
V)2 + Mg V(o) — dewp

a2

w2 )\2 v |)\2| COSh(2b2) Yo
—A
bo tan—! 2, Yo tanh™! Y y(,) Yo
Yo Y

Table 1: Integration constants for sliding cases

computationally approach for the present case.

3.3 Results

Fig. 3 shows the impact P, s
responses for m = 1kg, [Ns]|
p=1/2V3)m, £ = 0.5m, o8

p =45, p =1 v = ¢l

»,—Newton
/’\‘ line of sticking (& = 0) ‘

% = 100~g—Stronge

[0.8, —1]"m/s. The two solid P‘}-’,_6,
lines represent the response
of the regularized model for
k =1 and x = 100, respec- al
tively, while the dashed lines ¥ |
are used to construct the 02}
impact response for the rigid-
body case. Clearly, the reg-
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Figure 3: Impact process diagram for planar-bar example



However, only Stronge’s hy- regular. regular. Newton Poisson Stronge
pothesis predicts accurately =1 k=100

the impact response, while —
Newton’s and Poisson’s hy- T [m/s] -0.894 -0.005 0.000 0.000 0.000

potheses lead to significant &' [m/s] | 0906  0.638  1.000 0520  0.651
errors, e. g., in the predicted ™ [rad/s] | 3.816 2.590 2.970 2.461 2.600

dissipated energy in normal Dy [Nm] 0.000  0.000  -0.180  0.048  0.000

direction as described by . .
Dy (Table 2)' Moreover, Table 2: Comparison of impact responses for planar-bar example

for the case k = 1, the solution of the regularized model is far from that of the rigid-body
model; here, the discrepancies are in the range of 40% for angular velocity and even larger
for tangential velocity, for which the rigid-body models completely fail to predict a non-
zero value. Thus the rigid-body impact assumptions may yield extremely questionable
results when the impact is oblique and subject to friction.

4 Object-oriented Implementation

The implementation of the regularized impact model for the planar bar case described
above could be readily carried out using Matlab. However, the analytical solutions
derived above can not be used for the general case. In order to deal with these, in
the current work the object-oriented multibody software MIJBILE was extended with
a state event objects that can be viewed as ‘observers’ that monitor a set of user de-

fined scalar functions, e.g., the dis- :

. contact element possible event status:
tance between a point and a plane | -l
or a force magnitude. These moni- |i n;‘gg}g’sﬂl;;isfg’ig‘;i" (nitialized (inactive
tored root functions are dynamically |77 T G active
collected in a vector g of functions i_?_‘f?ﬂt__l}?}}fi_l_l}?_g__i
that depend on the state vector ¢, its |! <
time-derivatives, ¢, ¢, and the time . - _______________ L (global conditions)
State events can be added (‘initial-
iged’) as W(?ll as activafted z.md defxc— +—{ contact pairs |
tivated arbitrarily during simulation
(Fig. 4). When the root function L zero-crossing functions:
turns zero, the event ‘fires’; causing C 14 N
a special user function to be invoked, i 9(¢,4,4,1) =0
e.g., one that loads a new model into . %
the dynamical engine. By employ- %
ing a numerical integrator with root %‘{ d% j
finding option, this ‘firing’ can be + \/
done with high numerical precision.
Besides the state events, also time solid-impact-pair list |

events and timers are introduced to
allow the user to set absolute time
points or time intervals at which sim-
ulation is stopped. With the object-oriented implementation, more complex application
can be simulated. A example is the pneumatically-driven mechanism displayed in Fig. 5.
The task of the analysis was to optimize the design such as to reduce the contact forces

Figure 4: Management of events



that arose when the arms hit the limits (not shown). For the simulation, a total of 10
event handlers where ‘attached’ to the kinematic skeleton, representing the impact of
piston with cylinder heads, contact of arm with environment, and sensors and valves for
‘intelligent’ control of cylinder chamber pressure. As shown in Fig. 5 (b), after optimiza-
tion of design and controller, a 30% reduction of contact forces could be achieved.

x10°

151

|
\
|
|
|
|
|
|
{
|

} 10

L

|
o

pressure in bar

g
;
2

: ‘l i
[} ) I h
’ 1 i [ [
05r | ] L | [
| B h
) ‘ I
{ |

[ I
(R Ly Ly
SN . U U N Y A P

(a) Pneumatically driven mechanism

. - original design
‘ ———  cylinder pressure ‘ --- opfc{mized degsign
. . . . T T T

~05 -
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
timeins

(b) Forces before and after optimization

Figure 5: Example of an engineering application with simple impacts

5 Conclusions

The paper revisits the regularized model for rough, oblique planar impacts, deriving
analytical solutions for the sticking and sliding cases. Based on these solutions, an impact
of a planar bar with a plane is studied, showing that large discrepancies between the
rigid-body impact responses predicted by Newton’s, Poisson’s as or Stronge’s hypothesis
and the regularized model can arise. Furthermore, an object-oriented implementation of
impacts as well as an engineering application is briefly described.
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