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ABSTRACT
Described in the paper is the mathematical modeling of

a vertebrae pair using multibody methods and impact analysis
techniques with elementary contact geometry for the facet joints.
The results are compared with existing approaches and with ex-
perimental data, showing a good agreement with the latter and an
efficiency boost compared to existing approaches by a factor of
350. The investigations are focused on the vertebrae pair C5–C6
but can be easily extended to other vertebrae.

Introduction
In the reduction of medical costs, the improvement of hu-

man disease therapies, the development of new techniques for
injury prevention measures, and many other fields related to
human life, biomechanics is playing an increasingly important
role. Areas of actual research in this setting are, among oth-
ers, the development and surgical placement of spinal pros-
thetic devices such as spine implants, effective spinal immobi-
lizers and spine braces (DiAngelo et al. 1996), design of re-
liable anthropomorphic test devices (ATD) for physical crash-
worthiness simulations (Wismans et al. 1986), and the in vivo
and in vitro estimation of biological spine parameters (Bilston
and Thibault 1996, Margulies et al. 1992). In this setting, re-
construction of inter-vertebral motion, although basically under-
stood, still poses many open problems. This is so because pairs

�Address all correspondence to this author.

of vertebrae undergo in general six-dimensional motion relative
to one another, but display a high degree of coupling between
gross translational and rotational degrees-of-freedom due to re-
straints imposed by ligaments and muscles and the compliant na-
ture of the inter-vertebral discs (White and Panjabi 1990). These
degrees of freedom are excited differently depending on loading
conditions and biological parameters, making it difficult to es-
tablish relevant kinematic parameters on a case-by-case basis, as
required, e.g., to identify spinal diseases or to mimic the effects
of a surgical therapy for a concrete person. Hence, predictions
often fail to match experimental measurements, as is the case in
particular in vehicle crash situations (Geigl et al. 1995).

Existing approaches for computer modelling of inter-
vertebral motion use either kinematic or full-scale finite element
(FEM) models to reproduce vertebrae interaction. Kinematic
methods regard mainly planar flexion and extension motion in
the sagittal plane, employing the notion of instantaneous axes
of rotation (IAR) to reproduce combined rotation and translation
between pairs of vertebrae (White and Panjabi 1990). These axes
act as virtual hinges connecting pairs of vertebrae, where the vir-
tual pivot point is located somewhere between the centers of the
two connected vertebrae and the center of the inter-vertebral disc
(Jansen and DiAngelo 1997). They embody the well-known first-
order approximation of planar motion in kinematics (Bothema
and Roth 1990). The problem with this approach is that the lo-
cation of the IAR varies with respect to flexural position as well
as with respect to clinical and personal data (age, sex) of the tar-
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get person. Moreover, the IAR approach is not easily extendible
to full-degree-of-freedom joints, such as occurs in a combined
flexion-extension and lateral or axial rotation of the spine. On
the other hand, FEM modelling allows one to take into consid-
eration full effects of the mechanics of inter-vertebral motion,
including contact mechanics, surface gliding, and deformation.
For such models, a number of now industry-standard programs
have been developed, such as MADYMO (Lupker et al. 1991),
ATB (Obergefell et al. 1988), and LS-DYNA3D (Bedewi and
Bedewi 1996). However, these models have the drawback that
for actual computations, a great number of biological parameters
are required that are difficult to impossible to obtain. Moreover,
the computer models are computationally very slow, prohibiting
their use for real-time simulations, as required for educational or
optimization purposes. This also hampers their immediate use
in medical applications, where fast, online rendering of motion
properties is necessary to assess the effects of therapeutic mea-
sures.

This paper deals with the mechanical modelling of the mo-
tion only between one pair of vertebrae of the human cervical
spine, namely C5–C6. However, the underlying theory is de-
veloped in such a general way that other vertebrae pairs can be
rapidly modeled correspondingly, when needed.

Basic Model Parameters
The motion of the cervical spine comprises flexion and ex-

tension, lateral bending and axial rotation. Hence, in order to ob-
tain full spine mobility, the model for the vertebrae pair must al-
low for relative six-degree-of-freedom motion, even in the pres-
ence of kinematical constraints, as specified below. As only rela-
tive motion interests in this setting, the lower vertebra C6 is fixed
to the inertia system, to which the upper vertebra C5 is connected
via a six-degree-of-freedom joint with three translations along
the coordinate axes and three (consecutive) rotations about the
same axes. In addition to the six-degree-of-freedom joint, mo-
tion constraints are introduced by (unilateral) contact elements
reproducing the surfaces of the facet joints. Moreover, the junc-
tion between the vertebrae is enforced by force-displacement el-
ements comprising the intervertebral disc and the ligaments, as
explained below.

Structure and Inertia Properties
The definition of the reference coordinate systems is de-

picted in Figure 1. The x-axis points to the front and the z-axis
upwards. Table 1 summarizes the initial translations, sx, sz, of
the origin of the upper body in x- and z-direction, respectively,
and the relative rotation ϕy about the y-axis with respect to the
lower body. The table also displays the inertia properties of the
vertebrae.

body

mass tensor of inertia origin COG orient.

m Ixx Iyy Izz sx sz gx ϕy

kg kg � cm2 mm mm deg

C5 0.23 2.3 2.3 4.5 -2.8 17.4 -8.1 -5.2

C6 0.24 2.4 2.4 4.7 -2.0 18.4 -8.3 -5.6

Table 1. Inertia properties (de Jager).

Intervertebral Disc

The intervertebral disc can be modeled by an anisotropic set
of parallelly connected linear spring-damper elements. These el-
ements incorporate also the effects of the uncovertebral joints.
The force-displacement properties of the intervertebral disc are
computed as follows:

Fx =

�
kx+ tx+bt vx : tx � 0
kx� tx+bt vx : tx < 0

Fz = ky ty+bt vy

Fz =

�
kz+ tz +bt vz : tz � 0
kz� tz +bt vz : tz < 0

Mx = kϕx ϕx+bϕ ωx

My =

�
kϕy+ ϕy+bϕ ωy : ϕy � 0
kϕy� ϕy+bϕ ωy : ϕy < 0

Mz = kϕz ϕz +bϕ ωz

(1)

with F =

�
Fx Fy Fz

�T
denoting the resulting force at the disc

midpoint, tx; ty; tz denoting the deflections along the coordinate
axes, vx;vy;vz denoting their respective time derivative, M =�

Mx My Mz
�T

denoting the resulting torque vector, ϕx;ϕy;ϕz de-
noting the small angular rotations about the coordinate axes, and
ωx;ωy;ωz denoting their respective time derivative. The numer-
ical values for the stiffness coefficients are taken from Moroney
et al. (1988) and are summarized in Table 2. The load directions
correspond to the six degrees of freedom of the relative motion
of the vertebrae pair, namely anterior shear (AS) and posterior
shear (PS) for x translation, lateral shear (LS) for y translation,
tension (TNS) and compression (CMP) for z translation, lateral
bending (LB) for x rotation, flexion (FLX) and extension (EXT)
for y rotation, and axial rotation (AR) for z rotation. The damping
coefficients for translation and rotation were taken as bt = 1000
Ns/m and bϕ = 1:5 Nms/rad according to de Jager (1996).
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Figure 1. Definition of the reference systems.

Facet Joints
In addition to the intervertebral disc, the vertebrae pair is

partially guided by the facet joints. These joints support only
pressure contact forces and hence act as unilateral constraints
comprising contact and free-flight phases. During contact, the
roughly planar surfaces of the contact pair glide on each other
with almost no friction. When the contact force vanishes, the
surfaces detach from each other, eliminating the geometric con-
straints induced by the facet joint temporarily. During this mo-
tion, the facet joints are pulled together by the surrounding liga-
ments, which act as force elements.

coefficient kx+ kx� ky kz+ kz� kϕx kϕy+ kϕy� kϕz

direction AS PS LS TNS CMP LB FLX EXT AR

of load N/mm Nm/deg

stiffness 62 50 73 68 492 0.33 0.21 0.32 0.42

Table 2. Stiffness properties of intervertebral disc (Moroney et al. 1988).

In order to be able to reproduce the synovial behavior of
the facet joints, the latter were modeled as frictionless compliant
contact elements allowing for normal compression and produc-
ing contact forces depending linearly on normal penetration and
its time derivative.

A

B
C

ε=εmax
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Fmax
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Figure 2. Force-strain curve.

The normal contact force Fc hence is determined by

Fc = b f � u̇+

+

�
2 �109 N/m2 �u2 : 0� u� 3 �10�4 m
180N+1:2 �106 N/m � (u�3 �10�4m) : u > 3 �10�4 m

;

where u represents the penetration, in meters, and u̇ is the pen-
etration rate, as measured in m/s. The damping coefficient b f is
set to b f = 300 Ns/m according to de Jager (1996).

Nonlinear Viscoelastic Ligaments
Six ligaments of the lower cervical spine are incorporated in

the model, namely, the anterior longitudinal ligament (ALL), the
posterior longitudinal ligament (PLL), the flaval ligament (FL),
the interspinous ligament (ISL) and the left and right capsular
ligament (CL).

The ligaments are modeled as robes transmitting only ten-
sion forces. These tension forces are functions of ligament elon-
gation ε and its time derivative, namely

Fl =

�
Fel(ε)+bl �dε=dt : ε� 0
0 : ε < 0

;

where the load-displacement curves Fel(ε) are taken as piece-
wise linear functions comprising three segments, as shown in
Figure 2. The corresponding numerical values of the support
points A, B, C taken in this report are reproduced in Table 3,
while the damping coefficient bl was set to 300 Ns/m, corre-
sponding to given patterns in the literature. The lengths of the
ligaments in the undeflected case, l0, can be found in Table 4
together with the corresponding assumed insertion points of the
ligaments in body-fixed coordinates of the coordinate frame of
the corresponding vertebra body.
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A B C

ε
εmax

F
Fmax

ε
εmax

F
Fmax

εmax
Fmax

N

ALL 0.24 0.11 0.80 0.88 0.58 111

PLL 0.22 0.12 0.78 0.90 0.45 83

FL 0.33 0.21 0.77 0.89 0.21 115

ISL 0.33 0.19 0.78 0.87 0.40 34

CL 0.28 0.16 0.78 0.88 0.42 108

Table 3. Ligament parameters for spinal level C5–C6 (de Jager 1996);

see also Figure 2.

origin C5 origin C6

x y z x y z l0

ALL 7.7 0.0 0.0 8.0 0.0 0.0 18

PLL -8.1 0.0 0.0 -8.3 0.0 0.0 17

FL -25.4 0.0 -1.7 -26.3 0.0 -1.9 15

ISL -39.9 0.0 -3.2 -47.3 0.0 -4.1 16

CL -15.1 �20.3 -5.1 -12.9 �20.0 7.2 6

Table 4. Ligament insertion points for spinal level C5–C6 (x, y, z, l0 in

mm) (de Jager 1996).

Madymo Model
In order to obtain a reference computer model for the

kinematic, static and dynamic behaviour of the vertebrae
pair, the world-wide standard package MADYMO for occu-
pant safety analysis was employed, using the data set given
in the previous section. The facet joints were implemented
as Ellipsoid-Ellipsoid Contact Interactions.
For visualization purposes, vertebrae bodies were modeled also
as hyper-ellipsoids, but with no contact interactions. Similarly,
the vertebra arches are visualized as elongated hyper-ellipsoids.
Moreover, in order to reduce computational overhead, only the
hyper-ellipsoids embodying the facet joints are graphically ren-
dered, without reproduction of the interconnection to the verte-
bra bodies. This crude graphical model suffices to verify mo-
tion results, while at the same time yielding acceptable sim-
ulation times for the computer runs (approx. 5.7 seconds per
run on an SGI workstation; CPU: MIPS R10000, 175 MHz).
The visco-elastic behavior of the intervertebral disc was real-
ized by restraining the origins of the vertebra body reference sys-
tems by Point-Restraints for the translational part and by
Cardan Restraints for the rotational part. Six ligaments

C5 body

C6 body

ALL

PLLCL

CLFL

ISL

superior articular facet

inferior articular facet

Figure 3. C5–C6 MADYMO ellipsoid model

modeled as Kelvin Elements were additionally regarded.

M a a

a a

BILE Model
Although the MADYMO-model was valuable in producing

accurate simulation results for the regarded vertebrae-pair mo-
tion, excessive simulation time turned out to be a mayor draw-
back in analyzing different parameter sets quickly, or even an on-
line simulation. Hence, an alternative model of the vertebrae pair
interactions was developed using the object-oriented multibody
package M a a

a a

BILE (Kecskeméthy 1999) and extensions hereof,
as described below.

Serial Model
For the relative kinematics between the two vertebrae bod-

ies without regard of the facet joints, a six-degree-of-freedom
joint comprising the concatenation of three translational joints
and three rotational joints was employed. The particular model-
ing of the facet joints is explained in the following sections.

For visualization purposes, two graphic rendering mod-
els were regarded. One simplified model comprises only
cones, cylinders and spheres, giving a rough idea of the
vertebrae locations (Figure 4). The other graphic render-
ing model employs original 3D vertebra visual geometry from
Viewpoint R
 DigitalTM and hence renders a more realistic view
of vertebrae motion, which can be used for example for under-
standing the effects of implants or for training purposes (Fig-
ure 6). Both models build upon the OpenInventor features of an
SGI workstation and are completely independent of the contact
iterations. Hence, the user can switch easily between them by
making an appropriate selection in the operation interface. In
contrast to the MADYMO model, the M a a

a a

BILE software pack-
age allows online user interactions during the animation. This is
achieved through software slider controls, by which system pa-
rameters can be changed interactively (Figure 5). For example,
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Figure 4. M a a

a a

BILE model with simplified graphics.

Figure 5. M a a

a a

BILE Slider.

Edge-edge contact

Edge-face contact

Figure 6. M a a

a a

BILE model.

the mechanism response can be controlled visually while stiff-
ness properties of the intervertebral disc are changed.

Impact Analysis
In order to obtain efficient and accurate computer models, a

set of impact geometry situations was investigated by regarding
the facet joints as the end faces of two cylinders in contact with
each other. This assumption seems justified due to the almost flat
shape of the articulated surfaces, and proved to be sufficiently
accurate in the ensuing simulations. In this setting, four possible
contact situations may occur: (1) the edge of the upper cylinder
touches the flat end of the lower cylinder (Figure 6, right bottom);
(2) the edge of the upper cylinder touches the egde of the lower
cylinder (Figure 6, right top); (3) the edge of the lower cylinder
touches the flat end of the upper cylinder; and (4) both flat ends
of the cylinders rest flatly upon each other.

For edge-edge contact, referring to Figure 7, the following
relationships hold:

n1

n2 u

r1

r2

A1

A2

C1

C2

P

a1

a2

b1

b2

π1

π2

l

Figure 7. Frictionless circle-circle contact.

Let r1 and r2 be the radii of the circles. Moreover, let a1 and
a2 be the distances from the center points of the two circles to the
common line of intersection of the disc planes π1 and π2. One
obtains

a1 =
(c2� c1) �n2

ua1 �n2
=

c �n2

ua1 �n2
; a2 =

(c1� c2) �n1

ua2 �n1
=�

c �n1

ua2 �n1
;
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Figure 8. Projection onto contact plane for flat contact.

where c = c2� c1 is the vector from C1 to C2, n1 and n2 are the
plane normals of circle 1 and 2, respectively, and ua1 and ua2 are
unit vectors in direction of the perpendicular distance from the
circle midpoints C1 and C2 to the common line of intersection of
the disc planes, respectively.

Using the quantities described above, the distances b1 and
b2 from the feet of the circle midpoints at the common line of in-
tersection of the disc planes to the contact point P can be readily
computed as

b1;2 =

q
r1;2

2�a1;2
2 :

Note that b1 and b2 are real whenever the common line of inter-
section of the disc planes intersects both circles. The distance d
between the circles along the common line of intersection of the
disc planes can be computed as

d = jc �uj� (b1+b2); d < 0 : penetration

where u is the unit vector in direction of the common line of
intersection of the disc planes. At contact, d = 0, the contact
condition becomes

b1+b2 = jc �uj :

In the case of an almost flat contact between the cylinder
surfaces, the formulas derived above become singular. In this
case, one can establish the contact geometry by projecting the
circles on the plane normal to the (almost parallel) cylinder axes.

In the following, first the case of contact between the edge
of circle 1 and the flat end surface of cylinder 2 is regarded (Fig-
ure 8). The case of contact between circle 2 and the end surface

of cylinder 1 is treated analogously. Let P be the contact point
and assume that the projection plane is taken as π2. The incli-
nation of cylinder 1 with respect to cylinder 2 is assumed to be
so small that the distortion of circle 1 to an ellipse is negligible.
Contact is maintained whenever the angle ϕ1 subtended between
the interconnection line of the two circle centers and the ray pass-
ing through C1 and the contact point is less than or equal the an-
gle β1 subtended between the circle interconnection line and the
ray passing through C1 and the intersection point of both circles.

For the angle β1, one readily obtains

r2
2 = r2

1 + c2�2r1 c cosβ1 ) cosβ1 =
1

2r1 c

�
r2

1 � r2
2 + c2�

;

where c =C1 C2. The angle ϕ1 can be calculated as

cosϕ1 =
�c �∆n
jcj j∆nj

;

with ∆n = n1+n2, a quantity that would correspond to the “dif-
ference” of the circle normals when both were oriented towards
the same half-space. However, by taking into account that at con-
tact the surface normals of the two touching cylinders are faced
opposite to each other, the above mentioned difference actually
becomes the sum of the cylinder normals.

By inserting the above expressions in the contact condition
cosϕ1 � cosβ1, one obtains as condition for a contact of the edge
of circle 1 on the end surface of cylinder 2, or similarly for a
contact of the edge of circle 2 on the end surface of cylinder 1,
respectively

�c �∆n �
1
2
j∆nj
r1

�
r2

1� r2
2 + c2� or,

c �∆n �
1
2
j∆nj
r2

�
r2

2� r2
1 + c2�

:

By regarding the expression for cosβ1 above, the following
case distinctions can be made:

(r2
1 � r2

2 + c2
)

2r1 c

8<
:

> 1:(virtual) contact outside of disc 2
<�1:disc 1 fully contained in disc 2 ;

else :partial overlapping of discs 1 and 2

By the same token, after establishing a similar expression for
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cosβ2, one obtains the case distinctions

(r2
2 � r2

1 + c2
)

2r2 c

8<
:

> 1:(virtual) contact outside of circle 1
<�1:disc 2 fully contained in disc 1 :

else :partial overlapping of discs 2 and 1

The above derived formulas fail to be applicable when the
circles are fully parallel because in this case the vector ∆n van-
ishes. For this case, one can assume the contact to take place at
the center point M of the segment of the center interconnection
line contained in the common contact patch (for partially over-
lapping discs). The distance between C1 and M is given by

L = c� r2+
r1 + r2� c

2
=

c+ r1� r2

2
:

If disc 1 lies completely within disc 2, one can assume that
the contact point M coincides with C1. Correspondingly, one can
define the contact point M as incident with C2 when disc 2 lies
completely within disc 1.

For smooth transition between the fully parallel case and
the almost parallel case, a novel procedure is proposed, where
a virtual contact point is obtained by interconnecting M and P
and employing a blending function to position the virtual contact
point between these two extremes as a function of the angle be-
tween the circle normals. The blending function chosen in the
present context is

r = r0 (1� e�C sinα
) ;

with r0 being the distance between M and P, C a constant and α
the subtended angle between the circle normals. The basic idea

C2 C1
r

r0

P

P0

M

Figure 9. Blending ray within contact patch for flat cylinder-cylinder con-

tact.

α

virtual contact circle

real circle

ncnp

P0

O
r

Figure 10. Disc-plane contact.
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0.6

0.8

1

 
 

r=r0

time

sinα

indentation

Figure 11. Smooth steep-to-flat transition.

of the blending function is illustrated in Figure 10 for the case
of a contact of a cylinder with a plane. The virtual contact point
P0 lies between the center of the cylinder and its circumference
along the line of intersection of the common plane of the surface
normals np and nc and the cylinder end surface through the cen-
ter of the circle. A particular property of the blending function
used is that it renders a stabilizing moment in direction perpen-
dicular to both surface normals that makes fully stable flat con-
tact possible. Hence, no further computations and state transition
tracking procedures are necessary for transition from steep to flat
contact as well as for transition from one edge to the other. A re-
sult of a simulation of the contact between a disc and a plane is
displayed in Figure 11, where the relative indentation r=r0 (with
r0 being the original disc radius and r the actual distance to the
circle center) and the sine of the inclination angle α are plotted
over time. Clearly, the motion asymptotically approaches fully
flat contact with the virtual contact point at the circle center.
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Forces As frictionless contact is assumed, the contact force
must be aligned with the common line of intersection of the disc
planes. In order to take account also of penetration situations, a
positive penetration distance d is assumed. The vector r1 from
C1 to the contact point P is then assumed as

r1 = a1 �ua1+(b1+
d
2
) �u ;

where the term d=2 makes P lie in the middle between the two
intersection points of the circles with the corresponding end face
planes. Note that for this to hold true the vector u must be chosen
such that c � u > 0. This can always be assured by choosing an
appropriate sign in the formula for calculation of u, i.e., in

u =�
n1�n2

kn1�n2 k
:

The position of P with respect to C2 is obtained accordingly by
the vector r2 = r1� c.

Model Validation
Both vertebrae pair models developed with the MADYMO

package and the M a a

a a

BILE library were compared and validated
with the experimental results reported by Moroney (Moroney
et al. 1988) and the computer simulation performed by de Jager
(de Jager 1996). The simulations compute the translational and
rotational deflections from the reference position of vertebra C5
to the new state of equilibrium for nine loading conditions cor-
responding to the application of a single force (20 N) or moment
(1.8 Nm) in direction of each elementary motion of C5. In this
setting, the numerical values shown in Figure were obtained. As
it can be seen, a good agreement between the experimental data
and the computer models could be achieved. In particular, the
simplified M a a

a a

BILE model renders results that are not more in-
accurate than the complex MADYMO model. At the same time
the M a a

a a

BILE model turns out to be faster then the MADYMO
model by a factor of 350 (SGI workstation MIPS R10000).

The reason for this performance enhancement is that, be-
sides using simpler and more efficient mathematical models
of the contact mechanics, the calculation of the static equilib-
rium could be achieved in M a a

a a

BILE in a few iterations using
the built-in object MoStaticEquilibriumFinder, which
works with a Newton-Raphson algorithm. In contrast to this, the
MADYMO model required the computation of dynamics for the
movable vertebra C5 to approach equilibrium.

Conclusions and Outlook
With the simplified contact model of facet joints using

cylinder-cylinder pairs, a highly efficient and sufficiently accu-
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Figure 12. Model comparison of main and coupled displacements:

M a a

a a

BILE: �, MADYMO: �, de Jager (1996): � with experimental re-

sults of Moroney et al. (1988): + (average� SD).

rate model for intervertebral motion could be achieved. This high
performance model may be useful in applications were several
traversals of the kinematics, statics and/or dynamics are required,
as e.g. for parameter estimation purposes, or in a controller for
a physical model of a vertebrae pair, employing, for example,
miniaturized parallel platform of Gough-Steward type. The lat-
ter application is planned for future work.
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