
Automated Symbolic-Numeric Methods for E�cient
Kinematics Computation of Loops in Mechanical Systems

Stefan Klein, Andr�es Kecskem�ethy

Institute of Mechanics and Mechanisms, Graz University of Technology,

Kopernikusgasse 24, A-8010 Graz, Austria.

email: fklein,kecsg@mechanik.tu-graz.ac.at.

This paper describes an object-oriented implementation and extension of the algorithm described

in [6] for �nding and generating closed-form solutions in single-loop mechanisms featuring such

closed-form solutions. In contrast to the previously mentioned approach, the present method relies

purely on the result of geometric projections, without performing symbolical simpli�cations. This

makes it possible to compute the closed-form solutions in a rather short time without the need of

employing algebraic packages such as Mathematica or Maple. By this, the approach is suitable

for integration in CAD systems, where a compromise between fast solution generation and fast

solution computation is required. Moreover, the approach allows one to cycle through all solutions

of a mechanism featuring explicitly solvable kinematics.

1 Introduction

Multibody systems consist of mechanical parts (bodies) interconnected by joints, such as revolute,

prismatic, spherical, etc. [9] When the interconnection structure is open, i.e., the system has tree

structure, the relative motions at the joints are independent and one can readily compute the

absolute motion of each body starting from the ground and traversing the branches joint-by-joint

and body-by-body.

When the system displays closed loops, however, the relative motions at the joints must ful�ll

closure conditions for each loop and hence are not independent [6]. In order to formulate these

closure conditions, the loop is regarded as a sequence of n homogeneous matrices Ai =
h
Ri

0

r
i

1

i
; i =

1; : : : ; n, describing the translation ri and rotation Ri between coordinate frames Ki�1 and Ki

either within bodies or as input-output frames at the joints. The closure of the loop implicates

that the �rst and last coordinate frames K0 and Kn must coincide, which can be stated as

A1A2 : : : An = I4: (1)

Here, matrices Ai contain six dependent joint variables �1; : : : ; �6 in the case of a spatial mecha-

nism and three dependent joint variables �1; : : : ; �3 in the case of a planar or spherical mechanism.

Six of the twelve scalar equations contained in Eq. (1) are dependent because of the orthogonality

condition Ri
T
Ri = I3 of rotation matrices, and for planar or spherical mechanisms three of the

remaining six equations are always ful�lled identically. As the closure conditions are coupled

nonlinear equations, their resolution is non-trivial. Hence, in current commercial code for kine-

matics solution of mechanical systems, iterative methods such as Newton's method are employed

[2], [1]. However, iterative solutions have two major drawbacks: (1) they can become ine�cient

1



when the system is complicated, and (2) because there are multiple solutions for the closure

conditions, the convergence of the iterative method to a particular solution is fortuitous, and the

solution can \jump" from one branch to another during simulation.

2 Loops rendering closed-form solutions

In contrast to iterative methods, kinematisists have worked for several decades with closed-form

solutions, which exist in particular cases in which the architecture of the mechanical system

and its geometric parameters ful�ll certain conditions. Such systems form a negligible subset of

\special cases" within the set of all possible mechanical systems, but for technical applications,

they are the rule and not the exception. The problem with such closed-form solutions is that

they require a vast experience and dexterity from the analyst, who has to �nd the \right" way

of formulating the closure conditions and work out their solutions with pencil and paper.

In this paper, we propose a set of C++ [10] classes that can be employed for detecting special

loop architectures and generating the corresponding closed-form solutions. The developed classes

generalize the Mathematica [11] program SYMKIN for fully symbolical generation of closed-form

solutions [8]. This method is brie
y reviewed below for better reference, leaving out details that

can be recovered from [6] or [8].

The basic idea behind this present method is to (1) reorder the multiplication sequence of matrix

multiplications in Eq. (1), including carrying some of the matrices to the right-hand side, and (2)

to apply geometric projections selected in such a way that the resulting scalar equations display

an echelon form in terms of the unknowns from the outset. This is in contrast to other approaches

to this goal, in which the closure conditions are regarded as a set of algebraic equations that

are then manipulated with generic algebraic procedures such as Gr�obner Bases. The projections

are taken between two of the geometric elements point and plane, which are represented by the

origin or a coordinate plane of a frame, respectively. Let ei; i = 1; 2; 3, denote unit vectors in

direction of the coordinate axes, r the di�erence vector of two radius vectors each describing

the position of the origin of a frame, and R the rotation matrix between two frames. With the

homogeneous matrix A =
h
R

0

r

1

i
, the regarded projections are:

the squared distance between two origins: gPP (A) = jjrjj2;
the squared distance between an origin and a plane: gEP (A; ei) = ei � r;
the cosine of the angle between two planes: gEE(A; ei; ej) = ei

TR ej:

(2)

The selection of proper projections is accomplished with the aid of an invariance property matrix

(IPM) [4], which holds the isotropy groups of the connecting joints and bodies. By choosing the

two \longest" subchains, each leaving a geometric element invariant, and generating a projection

� between those two elements, an equation can be produced in which many of the unknowns

are eliminated automatically. Here, \length" is measured as the number of dependent variables

contained in the subchains. Let ÂA and ÂB denote the resulting homogeneous transformation

2



matrices between the tip and the base of these subchains. Then, Eq. (1) can be partitioned as

ÂBAIIÂA = AI
�1
: (3)

Carrying out projection � on both sides of Eq. (3) yields

�(AII) = �(AI
�1): (4)

Hence, all individual transformations contained in ÂA and ÂB are eliminated from the outset,

including the dependent variables contained therein. If in this process all but one of the unknowns

�i are eliminated, Eq. (4) can be employed to solve for this �rst unknown, and then the rest can

be resolved in a sequential manner, which leads to equations displaying an echelon form:

f1(�i1) = 0

f2(�i2 ; �i1) = 0

f3(�i3; �i2 ; �i1) = 0

f4(�i4 ; �i3; �i2 ; �i1) = 0

f5(�i5 ; �i4 ; �i3; �i2 ; �i1) = 0

f6(�i6 ; �i5; �i4 ; �i3; �i2 ; �i1) = 0 :

(5)

The resulting equations each have the structure A cos �+B sin �+C = 0 for rotational unknowns

and As
2+B s+C = 0 for translational unknowns [4]. They can be produced \symbolically" by

recording the operations needed to compute the coe�cients A;B and C, as explained below.

3 Online solution generation and computation

For simulation purposes, the symbolical formulas generated by the Mathematica [11] program

SYMKIN need to be converted into a programming language code such as FORTRAN or C++

through an additional pass. Thus, the formula generation can take place o�-line and it is not time-

critical itself. In contrast to this, in online simulations the solution formulas need to be generated

and executed immediately. Hence, a new approach needs to be derived that amalgamates these

two stages in an e�cient manner. To this purpose, numerical multibody code may be extended

with features for symbolical formula generation procedures as the one described in Section 2.

In this paper, we chose the object-oriented multibody simulation package M a a

a a

BILE [5] as the

platform for multibody simulation. The basic processing scheme is to generate the explicitly

solvable formulas once per simulation run, and then evaluate these continuously for motion

rendering. This processing scheme was implemented in a class MoLoop which shall be referred

below.

The code MoLoop is split into two parts. The �rst part processes the topology of a loop and gen-

erates all the information necessary to solve it; this part is executed only once at the initialization

of MoLoop. The second part makes use of this information and actually solves the loop; this part

is implemented in the virtual member function doMotion containing motion-transmission code

for all objects in M a a

a a

BILE. Both parts are described in more detail in the following subsections.

3



3.1 Topological processing

At initialization, MoLoop requires the following input:

(1) a list containing the joints and rigid links forming a closed loop, given as a M a a

a a

BILE-object

MoMapChain,

(2) a list of the dependent joint variables to be resolved, given as a M a a

a a

BILE-object MoVari-

ableList.

For list (1) revolute (R) and prismatic (P) joints are supported. The following steps are executed

at initialization for the topological processing of the loop:

1. After processing the list (1), an invariance property matrix is set up, in which the invariance

properties of each object in the loop are stored column-wise. The regarded invariance

properties state whether the transformation matrix of the referred object leaves an origin

(\o") or one or more coordinate plane(s) (\�x", \�y", \�z") invariant. Tab. 1 summarizes

the invariance properties of prismatic (P) and revolute (R) joints, where a \1" denotes

invariant and a \0" denotes not invariant. The resulting invariance property matrix (IPM)

is stored in an object of class MoIPM.

P R

x y z x y z

�x 0 1 1 1 0 0

�y 1 0 1 0 1 0

�z 1 1 0 0 0 1

o 0 0 0 1 1 1

Table 1: Lookup-table for invariance properties

MoIPM contains member functions for

{ �nding the two longest subchains ÂA and ÂB leaving a geometric element invariant

and delivering the chain partitioning as stated in Eq. (3),

{ delivering the two invariant geometric elements regarding to ÂA and ÂB, and

{ decomposing the matrix AII of Eq. (4) into three sub-transformations A`, Ar and AE,

where AE holds the actual unknown and A`, Ar render the left and right subchain

embracing AE. With this decomposition, Eq. (4) can be written as

�(A`AEAr) = �(AI
�1): (6)

2. If the IPM contains rows totally �lled with ones, these rows are removed, because this

situation corresponds to a planar or spherical mechanism, where three of the six spatial

closure conditions are always ful�lled identically.

3. In a class MoESF, all information required to compute the coe�cients A;B;C of the explicit

solution formulas is stored. This comprises

4



{ the joint corresponding to AE in Eq. (6),

{ the matrices A`, Ar and AI
�1 of Eq. (6), stored as lists of homogeneous matrices which

refer to loop objects and multiply to A`, Ar and AI
�1, respectively, and

{ the two invariant geometric elements associated with the subchains ÂA and ÂB.

This step is repeated, eventually in slight variations, until an explicit solution formula is

generated for each dependent joint variable.

4. Finally, every joint and rigid link is associated with a homogeneous matrix Ai =
h
Ri

0

r
i

1

i
to

represent the loop objects. This is realized by another class MoSpatialTransformation

providing the translation ri and rotation Ri of every joint type, using the actual value of

the joint variable.

3.2 Motion transmission

The motion transmission function doMotion of MoLoop computes the actual pose of all the bodies

within the corresponding loop object. This function is invoked once at the start of a motion

simulation and every time the user changes a parameter or degree of freedom of the mechanism.

It uses the list of MoESFs generated during the topological processing of the loop. The function

doMotion performs the following steps for every MoESF in the list:

1. The actual coe�cients A;B;C of the explicitly solvable constraint equation are computed

in two steps:

(1a) Evaluation of the actual matrices A`, Ar and AI
�1 of Eq. (6),

(1b) Application of the geometric projection stored in the corresponding ESF to both sides

of Eq. (3). The resulting Eq. (4) delivers the desired coe�cients for this MoESF.

2. With the actual coe�cients, the resulting equation is solved for the unknown joint variable,

applying an explicit solution formula [8]. In general, there are two di�erent solutions, and

both of them are computed and stored in this step. At some stages of the algorithm it is

possible to generate two equations instead of one to solve for the unknown variable. In

these cases the solution is unique.

3. After determining the unknown joint variable, the kinematics of the corresponding joint

are computed. At this point, the solution branch for this MoESF is selected dependent on

the con�guration which is chosen for the whole loop.

After processing the list of MoESFs and thus computing all dependent variables of the loop, the

relative motions of all joints are known and the absolute motion can be computed by traversing

the loop joint-by-joint and body-by-body.

5



4 Examples

The �rst investigated example is a simple planar loop corresponding to the wheel suspension

of a trailer. It is modeled as a planar mechanism consisting of four rigid bodies interconnected

by three revolute joints (R) with parallel axes and one prismatic joint (P) with its joint axis

being normal to those of the revolute joints. The kinematical structure is single-loop with one

degree of freedom, for which the prismatic joint is chosen. The other three joint variables are

unknown. The example shall be employed to describe the basic structure of the closed-form

solutions generated in this setting. Fig. 1 illustrates the corresponding processing steps and the

ensuing output.

First, a set of arrays for the objects (rigid links, joints, vectors, coordinate frames, etc.) needed

to model the wheel suspension are created and initialized. For joints, the joint variable and

the joint axis are passed as arguments. The type of joint variable, translational or rotational,

classi�es the joint to be either prismatic or revolute.

In this example, the �rst joint is the revolute joint J[0]; this joint connects the base coordinate

frame K[0] as input and K[1] as output. The next object is the rigid link L[0] that connects

the output frame of the previous revolute joint with the next coordinate frame K[2], etc., until

one reaches the prismatic joint J[3] that closes the loop by supplying as its output frame the

base frame of the complete loop, i.e., K[0]. All revolute joint axes are aligned with the global x

axis; the prismatic joint has its axis in direction of the global z axis.

All loop objects are concatenated in a chain \loopChain" and passed to an instance \loop" of

type MoLoop, together with a list \allDepVars" containing the three dependent joint variables

ang[0], ang[1] and ang[2]. The �rst frame K[0] of loopChain is regarded to be �xed to the

ground.

The independent variable of the loop is chosen as the linear translation lin contained in the

prismatic joint J[3]. After setting a value for the position of this variable (su�x \.q"), the

motion transmission function doMotion of MoLoop is invoked to determine the position of all

bodies in the loop. Here, the user has to select the desired con�guration out of two possible

solutions. The resulting simulation windows for both solution branches are depicted in Fig. 1.

The resulting computational e�ort is compared with corresponding formulas generated by SYM-

KIN in Tab. 2. It is seen that the fully symbolic package SYMKIN produces much more e�cient

Op. SYMKIN MoLoop

+,� 69 236 (342 %)

� 78 307 (394 %)

/ 8 0p
1 1 (100 %)

sin 3 1 (33 %)

cos 3 1 (33 %)

arctan 4 4 (100 %)

Table 2: Operation count for the wheel suspension: SYMKIN \vs." MoLoop

6



x

y

z

K[0]

K[1]

K[2]

K[3]
K[4]

K[5]

J[0]

J[1]

J[2]

J[3]

L[0]

L[1]

coordinate frame

revolute joint

prismatic joint

rigid link

_void main() {

static MoFrame K[6];

static MoRigidLink L[2];

static MoElementaryJoint J[4];

static MoAngularVariable ang[3];

static MoLinearVariable lin;

static MoVector v[2];

static MoReal l1=2*0.73;

static MoReal l2y=2*0.31;

static MoReal l2z=2*0.06;

static MoReal l3y=2*0.425;

static MoReal l3z=2*0.065;

v[0]=MoVector(0,l1-l2y,l2z);

v[1]=MoVector(0,-l3y,l3z);

J[0].init(K[0],K[1],ang[0],xAxis);

L[0].init(K[1],K[2],v[0]);

J[1].init(K[2],K[3],ang[1],xAxis);

L[1].init(K[3],K[4],v[1]);

J[2].init(K[4],K[5],ang[2],xAxis);

J[3].init(K[5],K[0],lin,zAxis);

static MoMapChain loopChain;

loopChain << J[0] << L[0] << J[1]

<< L[1] << J[2] << J[3];

static MoVariableList allDepVars;

allDepVars << ang[0] << ang[1] << ang[2];

static MoLoop loop(loopChain, allDepVars);

lin.q=0.2;

loop.selectSolution(1);

loop.doMotion(DO_POSITION);

}

\>>"

Figure 1: Model, source code and two con�gurations of the wheel suspension

code than the present method. Here, it must be noted that in SYMKIN the operation count

involves also the global kinematics, while MoLoop only regards the determination of the dependent

variables, so that the performance boost of SYMKIN is even more signi�cant. On the other hand,

MoLoop has the advantage that it produces very rapidly the explicit solution formulas sought for,

and hence is suitable for online applications. Moreover, the present code is still more e�cient than

current numerical code. Tab. 3 displays the computation time needed for 300,000 loop solution

computations, measured in seconds, for the present method and the \half-analytic" solution

described in [5], as well as a purely iterative approach using the numerical routine \hybrj" of the

7



NAG library with error tolerance 10�8.

Method sec.

MoLoop 13

half-analytic 20.5

iterative 47

Table 3: Performance comparisons for the wheel suspension

As a more involved example, the kinematics of an elbow manipulator were computed by MoLoop.

The manipulator consists of six revolute joints involving six dependent rotational joint variables

and three rigid links. Its end-e�ector can be controlled by the independent joint variables of

three prismatic and three revolute joints providing the six degrees of freedom of the end-e�ector

as a combination of translational motion and BRYANT-angles. The eight possible con�gurations

of the manipulator belonging to one end-e�ector state are reproduced in Fig. 2.

Figure 2: The eight con�gurations of the elbow manipulator

Conclusions

The present semi-symbolical method makes it possible to obtain closed-form solutions for single-

loop mechanisms online, which is an advantage as compared to fully symbolical approaches, where

solution generation may take minutes or hours. At the same time, the established solutions,

while involving more computational e�ort than the fully symbolic approach, render much more

e�cient code at solution time than iterative methods. This makes the method suitable for

motion animation in CAD systems, while at the same time allowing the user to switch between

con�gurations.

Acknowledgments

Funding of the present work by the European Community as a Marie-Curie Fellowship under

Contract Number ERBFMBICT972704 is gratefully acknowledged.

8



References

[1] J. E. Dennis and R. B. Schnabel. Numerical Methods For Unconstrained Optimization And

Nonlinear Equations. Prentice-Hall, Inc., Englewood Cli�s, New Jersey, 1983.

[2] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press, London

New York Toronto Sidney San Francisco, 1981.

[3] A. Kecskem�ethy. Objektorientierte Modellierung der Dynamik von Mehrk�orpersystemen mit

Hilfe von �Ubertragungselementen. Fortschrittberichte VDI, Reihe 20 Nr. 88. VDI-Verlag,

D�usseldorf, 1993.

[4] A. Kecskem�ethy. Kinematics of robots and mechanisms. In C. Melchiorri and A. Tornamb�e,

editors, International Summer School on Modelling and Control of Mechanisms and Robots,

pages 39 { 79. World Scienti�c Publishing Co. Pte. Ltd., Singapure, 1996.

[5] A. Kecskem�ethy. MOBILE User's Guide Version 1.3. Institute for Mechanics and Mecha-

nisms, TU Graz, 1999.

[6] A. Kecskem�ethy and M. Hiller. Automatic closed-form kinematics-solutions for recursive

single-loop chains. In Flexible Mechanisms, Dynamics, and Analysis, Proc. of the 22nd

Biennal ASME-Mechanisms Conference, Scottsdale (USA), pages 387{393, 1992.

[7] G. A. Kramer. Solving Geometric Constraint Systems: A Case Study in Kinematics. The-

Massachusetts-Institute-Of-Technology-Press, Cambridge, Massachusetts, 1992.

[8] T. D. Krupp. Symbolische Gleichungen f�ur Mehrk�orpersysteme mit kinematischen Schleifen.

Berichte aus der Softwaretechnik. Shaker Verlag, Aachen, 1999.

[9] W.O. Schiehlen. Technische Dynamik. Teubner, Stuttgart, 1986.

[10] Bjarne Stroustrup. The C++ Programming Language, second edition. Addison-Wesley

Series in Computer Science. Addison-Wesley Publishing Company, Reading, MA, 1991.

[11] Stephen Wolfram. The Mathematica Book. Wolfram Media/Cambridge University Press,

third edition, 1996.

9


