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Abstract: The reconstruction of inter-vertebral motion of the human cer-
vical spine, although basically understood, still poses many open problems.
This is so because pairs of vertebrae undergo in general six-dimensional mo-
tion relative to one another, but display a high degree of coupling between
gross translational and rotational degrees-of-freedom due to restraints im-
posed by ligaments and muscles and the compliant nature of the inter-
vertebral discs (White and Panjabi, 1990). Described in this paper is the
mathematical modeling of a vertebrae pair using multibody methods and
impact analysis techniques with elementary contact geometry for the facet
joints. The results are compared with existing approaches and with exper-
imental data, showing a good agreement with the latter and an efficiency
boost compared to existing approaches by a factor of 350. The investiga-
tions are focused on the vertebrae pair C5–C6 but can be easily extended
to other vertebrae.

1. Introduction

In the reduction of medical costs, the improvement of human disease ther-
apies, the development of new techniques for injury prevention measures,



and many other fields related to human life, biomechanics is playing an
increasingly important role. Hereby, the human spine is given particular
attention, due to its frequent involvement in accident-induced injuries and
almost epidemic appearance in common diseases such as low back pain.
In this setting, reconstruction of inter-vertebral motion, although basically
understood, still poses many open problems. This is so because pairs of
vertebrae undergo in general six-dimensional motion relative to one an-
other, but display a high degree of coupling between gross translational
and rotational degrees-of-freedom due to restraints imposed by ligaments
and muscles and the compliant nature of the inter-vertebral discs (White
and Panjabi, 1990). This paper deals with the mechanical modeling of the
motion between vertebrae pair C5–C6 of the human cervical spine using
notions from elementary contact mechanics. The underlying theory is de-
veloped such that it can be also applied to other vertebrae pair.

2. MADYMO Model

MADYMO is a world-wide standard for occupant safety analysis. It was cho-
sen in the present context for creating a reference computer model of the
kinematic, static and dynamic intervertebral interactions. The facet joints
were specified as Ellipsoid-Ellipsoid Contact Interactions. The vis-
co-elastic behavior of the intervertebral disc was implemented by connect-
ing the origins of the vertebra body reference systems through Point-Re-

straints for the translational part and Cardan Restraints for the rota-
tional part, and supplying appropriate stiffness parameters for the ensu-
ing relative degrees of freedom. Furthermore, six ligaments of type Kelvin
Element were attached to the vertebrae. Data for the model parameters
were employed according to de Jager (1996). The determination of static
equilibrium poses of the vertebrae pair requires the computation of dynam-
ics for the movable vertebra C5 until oscillations are damped out.

3. M a aa a
BILE Model

As an alternative approach, an object-oriented model of the vertebrae pair
was implemented using the multibody program library M a aa a

BILE (Kecs-
keméthy, 1999). For the unilateral constraints of the facet joints, a class
MoRegImpCircleCircle representing the contact of two cylinder faces, ei-
ther in edge-edge, edge-face, or face-face (flat) contact was implemented
and included in the M a aa a

BILE library. Contact is hereby regarded as a
non-smooth state transition, with appropriate state event objects “firing”
when a state transition takes place. This restarts the integrator with appro-
priate initial conditions, making the simulation more efficient than with-
out stop conditions. State transition from flat contact to the other two
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Figure 1. C5–C6 Madymo ellipsoid model.
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Figure 2. C5–C6 M a aa a
BILE model.

types of contact and vice-versa is computed using a novel blending func-
tion, which avoids zig-zagging of state transitions for the nearby flat case.
All other components, i.e., ligaments, the intervertebral disc, and stiff-
nesses of the facet joints, were modeled as in the MADYMO reference
model. Static equilibrium poses were computed using the built-in object
MoStaticEquilibriumFinder of M a aa a

BILE, which works with a Newton-
Raphson algorithm. This rendered a highly efficient code that made it pos-
sible to move the vertebrae pair online in quasistatic analysis, using appro-
priate software sliders which change the system parameters interactively.

3.1. IMPACT ANALYSIS

In order to obtain efficient and accurate computer models, a set of impact
geometry situations was investigated, regarding the facet joints as the end
faces of two cylinders touching each other. This assumption seems justified
due to the almost flat shape of the articulated surfaces, and proved to be
sufficiently accurate in the ensuing simulations. In this setting, four possible
contact situations can occur: (1) the edge of the upper cylinder touches the
flat end of the lower cylinder (Fig. 2, right bottom); (2) the edge of the
upper cylinder touches the egde of the lower cylinder (Fig. 2, right top);
(3) the edge of the lower cylinder touches the flat end of the upper cylinder
(not shown); and (4) both flat ends of the cylinders rest flatly upon each
other.

For the derivation of the appropriate contact mechanics, it is necessary
to discern between skew and flat contact, as explained below.

3.1.1. Skew contact model

Skew contact means that the angle between the faces of the colliding cylin-
ders is finite. For this case three different contact configurations may occur:
(1) contact of the edge of disc 1 on the face of disc 2 (Fig. 3); (2) contact
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of the edge of disc 2 on the face of disc 1 (Fig. 4); (3) contact of the edge
of disc 1 with the edge of disc 2 (Fig. 2, right top).

For case (1), the position vector ρ2 from the center C2 of disc 2 to the
contact point can be written as

ρ2 = −c+ r1 ua1 , (1)

where c = c2 − c1 connects the center C1 of disc 1 with C2, and r1 is the
radius of disc 1. ua1 denotes the unit vector perpendicular to the line of
intersection l of the two disc planes π1 and π2 with line of action passing
through C1. Denoting the unit vectors normal to the cylinder faces 1 and
2, respectively, as n1 and n2, and setting

u =
n1 × n2

‖n1 × n2‖
,

it follows

ua1 = n1 × u .

When contact of the edge of disc 2 on the face of disc 1 (case 2) occurs,
the position vector ρ1 pointing from the center of disc 1 to the contact
point becomes

ρ1 = c+ r2 ua2 , (2)

where r2 is the radius of disc 2 and ua2 is the unit vector perpendicular to
the common line of intersection with line of action passing through C2,

ua2 = −n2 × u .

Contact takes place whenever ‖ρ1‖ < r1 (case 1) or ‖ρ2‖ < r2 (case 2). In
order to simulate impact using a regularized approach, the neighborhood of



the contact point is regarded as compliant. The corresponding penetration
d is defined as acting normal to the face of the cylinder onto which the edge
of the other rests. One hence obtains

d =

{

c · n1 − r2 sinα : case 1
−c · n2 − r1 sinα : case 2

.

The resulting contact force is normal to this face with magnitude equal
to a user-defined stiffness coefficient multiplied by the penetration d, i.e.,
a virtual linear spring element is attached between the edge of the one
cylinder and the face of the other at the contact point with line of action
normal to the cylinder face described above.
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Figure 5. Frictionless circle-circle contact.
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plane for flat contact.

For edge-edge contact (case 3) analysis, first, the distances a1 and a2

from the center points of the two circles to the common line of intersection
of the disc planes are established. It holds (Fig. 5):

a1 =
(c2 − c1) · n2

ua1 · n2

=
c · n2

ua1 · n2

, a2 =
(c1 − c2) · n1

ua2 · n1

= −
c · n1

ua2 · n1

.

With these, the distances b1 and b2 from the feet of the circle midpoints at
the common line of intersection of the disc planes to the contact point P
can be computed as

b1,2 =
√

r1,2
2 − a1,2

2 .

Note that b1 and b2 are real whenever the common line of intersection of
the disc planes intersects both circles.



Penetration d is defined in this case as acting along the common line of
intersection of the disc planes. It follows

d = |c · u| − (b1 + b2) .

At contact, d = 0, and hence the contact condition becomes

b1 + b2 = |c · u| .

3.1.2. Flat contact model

In the case of an almost flat contact between the cylinder surfaces, the
formulas derived above become singular. In this case, one can establish
the contact geometry by projecting the circles on the plane normal to the
(almost parallel) cylinder axes.

In the following, the case of contact between the edge of circle 1 and
the flat end surface of cylinder 2 is regarded (Fig. 6). The case of contact
between circle 2 and the end surface of cylinder 1 is treated analogously.
Let P be the contact point and assume that the projection plane is taken
as π2. The inclination of cylinder 1 with respect to cylinder 2 is assumed to
be so small that the distortion of circle 1 to an ellipse is negligible. Contact
is maintained whenever the angle ϕ1, subtended by the interconnection line
of the two circle centers and the ray passing through C1 and the contact
point, is less than or equal to the angle β1, subtended by C1 C2 and the ray
passing through C1 and the intersection point of both circles.

For the angle β1, one readily obtains

cosβ1 =
1

2 r1 c

(

r2
1 − r2

2 + c2
)

,

where c = C1 C2. The angle ϕ1 can be calculated as

cosϕ1 =
−c ·∆n

|c| |∆n|
,

with ∆n = n1 + n2, a quantity that would correspond to the “difference”
of the circle normals when both were oriented towards the same half-space.

By inserting the above expressions in the contact condition cosϕ1 ≥
cosβ1, one obtains as condition for a contact of the edge of circle 1 on the
end surface of cylinder 2, or similarly for a contact of the edge of circle 2
on the end surface of cylinder 1, respectively

−c ·∆n ≥
1

2

|∆n|

r1

(

r2
1 − r2

2 + c2
)

or, c ·∆n ≥
1

2

|∆n|

r2

(

r2
2 − r2

1 + c2
)

.



By regarding the expression for cosβ1 above, the following case distinc-
tions can be made:

1

2 r1 c
(r2

1 − r2
2 + c2)







> 1 : (virtual) contact outside of disc 2
< −1 : disc 1 fully contained in disc 2 ,
else : partial overlapping of discs 1 and 2

By the same token, after establishing a similar expression for cosβ2, one
obtains the case distinctions

1

2 r2 c
(r2

2 − r2
1 + c2)







> 1 : (virtual) contact outside of circle 1
< −1 : disc 2 fully contained in disc 1 .
else : partial overlapping of discs 2 and 1

The above derived formulas fail to be applicable when the circles are
fully parallel because in this case the vector∆n vanishes. For this case, one
can assume the contact to take place at the center point M of the segment
of the center interconnection line contained in the common contact patch
(for partially overlapping discs). The distance between C1 and M is given
by

L = c− r2 +
r1 + r2 − c

2
=

c+ r1 − r2
2

.

If disc 1 lies completely within disc 2, one can assume that the contact
point M coincides with C1. Correspondingly, one can define the contact
point M as incident with C2 when disc 2 lies completely within disc 1.

3.1.3. State transition

For smooth transition between the fully parallel case and the almost par-
allel case, a novel procedure is proposed, where a virtual contact point is
obtained by interconnecting M and P and employing a blending function
to position the virtual contact point between these two extremes as a func-
tion of the angle between the circle normals. The blending function chosen
in the present context is

r = r0 (1− e−C sinα) ,

with r0 being the distance between M and P , C a constant and α the
subtended angle by the circle normals.

The basic idea of the blending function is illustrated in Fig. 8 for the
case of a contact of a cylinder with a plane. The virtual contact point P ′

lies between the center of the cylinder and its circumference along the line
of intersection of the plane subtended by the surface normals np and nc
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with the cylinder end surface through the center of the circle. A particu-
lar property of the blending function described above is that it renders a
stabilizing moment in direction perpendicular to both surface normals that
makes fully stable flat contact possible. Hence, no further computations
and state transition tracking procedures are necessary for transition from
steep to flat contact as well as for transition from one edge to the other. A
result of a simulation of the contact between a disc and a plane is displayed
in Fig. 9, where the relative indentation r/r0 (with r0 being the original
disc radius and r the actual distance to the circle center) and the sine of
the inclination angle α are plotted over time. Clearly, the motion asymp-
totically approaches fully flat contact with the virtual contact point at the
circle center.
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Figure 9. Example of smooth steep-to-flat transition.



4. Model Validation

Both vertebrae pair models developed with the MADYMO package and the
M a aa a

BILE library were compared and validated with the experimental re-
sults reported by Moroney (1998) and the computer simulation performed
by de Jager (1996). The simulations compute the translational and rota-
tional deflections from the reference position of vertebra C5 to the new
state of equilibrium for nine loading conditions corresponding to applica-
tion of a single force (20 N) or moment (1.8 Nm) in direction of each
elementary motion of C5. In this setting, the numerical values shown in
Fig. 10 were obtained. Hereby, the following test loads were computed: an-
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Figure 10. Model comparison of main and coupled displacements:

M a aa a
BILE: ◦, MADYMO: ∗, de Jager (1996): × with experimental

results of Moroney (1998): + (average± SD).

terior shear (AS), posterior shear (PS) for x-translation, lateral shear (LS)
for y-translation, tension (TNS) and compression (CMP) for z-translation,
lateral bending (LB) for x-rotation, flexion (FLX) and extension (EXT) for



y-rotation, and axial rotation (AR) for z-rotation. As it can be seen, a good
agreement between the experimental data and the computer models could
be achieved. In particular, the simplified M a aa a

BILE model renders results
that are not more inaccurate than the complex MADYMO model. However,
the M a aa a

BILE model runs faster than the MADYMO model by a factor of
350. This allows one to compute the motion of a vertebrae pair in real-time
simulation environments, in contrast to the MADYMO model, which can
be used only in offline applications.

5. Conclusions

The developed impact model for vertebrae contact is suitable for efficient
biofidelic prediction of intervertebral motion. It is planned to use this model
for the controller of a small-scale parallel manipulator for the physical sim-
ulation of intervertebral motion, which is being currently designed.
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