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Abstract. In this paper, impact effects between cylinder end faces are investigated based on
a detailed analysis of the geometric relationships for the different contact situations edge-edge,
edge-face, and face-face. The corresponding impact effects are regarded by replacing the (rigid)
contact point by a spring with line of action collinear to the main direction of penetration. An
empirical blending formulae for providing smooth transition from one contact situation to the
other, e.g., from point contact to flat contact, is presented. As an application example, the
developed formulas are applied to the modeling and simulation of the inter-vertebral motion of
the C5–C6 human cervical spine vertebrae pair, using cylinder-cylinder pairs to represent the
facet joints. The application shows good agreement with experimental data, yielding an efficiency
boost by a factor of 350 compared to the hyper-ellipsoid approach used in the commercial
program MADYMO.

1 Impact Analysis

Let there by two cylinders approaching each other with their faces oriented towards them.
In this setting, four possible contact situations can occur: (1) the edge of the upper
cylinder touches the flat end of the lower cylinder (Fig. 1); (2) the edge of the upper
cylinder touches the egde of the lower cylinder (Fig. 9, right top); (3) the edge of the
lower cylinder touches the flat end of the upper cylinder (Fig. 2); and (4) both flat ends of
the cylinders rest flatly upon each other (not shown). In order to derive the corresponding
equations, skew and flat contact are treated separately, as explained below.

1.1 Skew Contact

Skew contact occurs when the angle between the faces of the colliding cylinders is finite.
For this case, three different contact configurations may occur: (case 1) contact of the
edge of disc 1 on the face of disc 2 (Fig. 1); (case 2) contact of the edge of disc 2 on
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the face of disc 1 (Fig. 2); (case 3) contact of the edge of disc 1 with the edge of disc
2 (Fig. 9, right top).

For case (1), the position vector ρ2 from the center C2 of disc 2 to the contact point
can be written as

ρ2 = −c+ r1 ua1 , (1)

where c = c2 − c1 connects the center C1 of disc 1 with C2, and r1 is the radius of disc
1. ua1 denotes the unit vector perpendicular to the line of intersection l of the two disc
planes π1 and π2 with line of action passing through C1. Denoting the unit vectors normal
to the cylinder faces 1 and 2, respectively, as n1 and n2, and setting

u =
n1 × n2

‖n1 × n2‖
,

it follows

ua1 = n1 × u .
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Figure 1: Contact on disc 2.

n1

n2

ua2

c

ρ1

C1

C2

Figure 2: Contact on disc 1.

When contact of the edge of disc 2 on the face of disc 1 (case 2) occurs, the position
vector ρ1 pointing from the center of disc 1 to the contact point becomes

ρ1 = c+ r2 ua2 , (2)

where r2 is the radius of disc 2 and ua2 is the unit vector perpendicular to the common
line of intersection with line of action passing through C2,

ua2 = −n2 × u .

Contact takes place whenever ‖ρ2‖ < r2 (case 1) or ‖ρ1‖ < r1 (case 2). In order to
simulate impact using a regularized approach, the neighborhood of the contact point is
regarded as compliant. The corresponding penetration d is defined as acting normal to
the face of the cylinder onto which the edge of the other rests. One hence obtains

d =

{

−c · n2 − r1 sinα : case 1
c · n1 − r2 sinα : case 2

.

The resulting contact force is normal to this face with magnitude equal to a user-defined
stiffness coefficient multiplied by the penetration d, i.e., a virtual linear spring element is
attached between the edge of the one cylinder and the face of the other at the contact
point with line of action normal to the cylinder face described above.
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Figure 3: Frictionless circle-circle contact.
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Figure 4: Projection onto contact
plane for flat contact.

For edge-edge contact (case 3), first, the distances a1 and a2 from the center points
of the two circles to the common line of intersection of the disc planes are established.
It holds (Fig. 3):

a1 =
(c2 − c1) · n2

ua1 · n2

=
c · n2

ua1 · n2

, a2 =
(c1 − c2) · n1

ua2 · n1

= −
c · n1

ua2 · n1

.

With these, the distances b1 and b2 from the feet of the circle midpoints at the common
line of intersection of the disc planes, A1 and A2, respectively, to the contact point P
can be computed as

b1,2 =
√

r1,2
2 − a1,2

2 .

Note that b1 and b2 are real whenever the common line of intersection of the disc planes
intersects both circles.

Penetration d is defined in this case as acting along the common line of intersection
of the disc planes. It follows

d = |c · u| − (b1 + b2) .

At contact, d = 0, and hence the contact condition becomes

b1 + b2 = |c · u| .

Again, as in cases 1 and 2 above, the resulting contact force is assumed to be in magnitude
equal to a user-defined stiffness coefficient multiplied by the penetration d. The line of
action of the contact force is in this case collinear to the common line of intersection of
the disc planes, i.e., a virtual linear spring element is attached between the edges of the
cylinders acting along the common line of intersection of the disc planes.

1.2 Almost Flat and Flat Contact

In the case of an almost flat or totally flat contact between the cylinder surfaces, the
formulas derived above become singular. In this case, one can establish the contact
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geometry by projecting the circles on the plane normal to the (almost parallel) cylinder
axes. In the following, it will be first assumed that the axes of the cylinders are almost,
but not exactly, parallel. This situation will be termed as ”almost flat contact”.

Regard first the case of contact between the edge of circle 1 and the flat end surface of
cylinder 2 is regarded (Fig. 4). Let P be the contact point and assume that the projection
plane is taken as π2. The inclination of cylinder 1 with respect to cylinder 2 is assumed to
be so small that the distortion of circle 1 to an ellipse is negligible. Contact is maintained
whenever the angle ϕ1, subtended by the interconnection line of the two circle centers
and the ray passing through C1 and the contact point, is less than or equal to the angle
β1, subtended by C1 C2 and the ray passing through C1 and the intersection point of
both circles.

For the angle β1, one readily obtains

cos β1 =
1

2 r1 c

(

r2

1
− r2

2
+ c2

)

,

where c = C1 C2. The angle ϕ1 can be calculated as

cosϕ1 =
−c ·∆n

|c| |∆n|
,

with ∆n = n1 + n2, a quantity that would correspond to the “difference” of the circle
normals when both were oriented towards the same half-space.

By inserting the above expressions in the contact condition cosϕ1 ≥ cos β1, one obtains
as condition for a contact of the edge of circle 1 on the end surface of cylinder 2, or similarly
for a contact of the edge of circle 2 on the end surface of cylinder 1, respectively

−c ·∆n ≥
1

2

|∆n|

r1

(

r2

1
− r2

2
+ c2

)

or, c ·∆n ≥
1

2

|∆n|

r2

(

r2

2
− r2

1
+ c2

)

.

By regarding the expression for cos β1, the following case distinctions can be made:

1

2 r1 c
(r2

1
− r2

2
+ c2)







> 1 : (virtual) contact outside of disc 2
< −1 : disc 1 fully contained in disc 2 ,
else : partial overlapping of discs 1 and 2

For the case of contact between the edge of circle 2 and the face of cylinder 1, a similar
expression can be obtained for cos β2 (the angle subtended by C1 C2 and the ray passing
through C2 and the intersection point of both circles), and one obtains the case distinctions

1

2 r2 c
(r2

2
− r2

1
+ c2)







> 1 : (virtual) contact outside of circle 1
< −1 : disc 2 fully contained in disc 1 .
else : partial overlapping of discs 2 and 1

The above derived formulas fail to be applicable when the circles are fully parallel
because in this case the vector ∆n vanishes. For this case, one can assume the contact
to take place at the center point M of the segment of the center interconnection line
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contained in the common contact patch (for partially overlapping discs). The distance
between C1 and M is given by

L = c− r2 +
r1 + r2 − c

2
=

c+ r1 − r2

2
.

If disc 1 lies completely within disc 2, one can assume that the contact point M
coincides with C1. Correspondingly, one can define the contact point M as incident with
C2 when disc 2 lies completely within disc 1.

1.3 State transition

For smooth transition between the fully parallel case and the almost parallel case, a
virtual contact point can be introduced by interconnecting M and P and employing a
blending function to position the virtual contact point between these two extremes as a
function of the angle between the circle normals. The blending function chosen in the
present context is

r = r0 (1− e−C sinα) ,

with r0 being the distance between M and P , C a constant and α the subtended angle
by the circle normals.

The basic idea of the blending function is illustrated in Fig. 6 for the case of a contact
of a cylinder with a plane. The virtual contact point P ′ lies between the center of the
cylinder and its circumference along the line of intersection of the plane subtended by
the surface normals np and nc with the cylinder end surface through the center of the
circle. A particular property of the blending function described above is that it renders
a stabilizing moment in direction perpendicular to both surface normals that makes fully
stable flat contact possible. Hence, no further computations and state transition tracking

C2 C1

r
r0

P

P ′

M

Figure 5: Blending ray within contact
patch for flat cylinder-cylinder contact.

α

virtual contact circle

real circle

ncnp

P ′
O r

Figure 6: Disc-plane contact.

procedures are necessary for transition from steep to flat contact as well as for transition
from one edge to the other. A result of a simulation of the contact between a disc and a
plane is displayed in Fig. 7, where the relative indentation r/r0 (with r0 being the original
disc radius and r the actual distance to the circle center) and the sine of the inclination
angle α are plotted over time. Clearly, the motion asymptotically approaches fully flat
contact with the virtual contact point at the circle center.
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Figure 7: Example of smooth steep-to-flat transition.

2 Application

As an application of the theory developed above, regard the simulation of the motion
between the vertebrae pair C5-C6 of the human cervical spine (Fig. 9). These vertebrae
are linked to each other, on the one hand, through the intervertebral disc and a number
of ligaments, which act as force elements, i.e, they impose no constraints. On the other
hand, the vertebrae bodies can come into contact with each other at the facet joints,
which display at the contact surfaces almost the geometry of cylinder faces. The vertebrae
pair was modeled, for comparison purposes, using the industry standard for biomechanic
modeling MADYMO, as well as an extension of the object-oriented multibody library
M a a

a a
BILE (Kecskeméthy 1999) involving objects for impact effects of two cylinders.

C5 body

C6 body

ALL

PLLCL

CLFL

ISL

superior articular facet

inferior articular facet

Figure 8: C5–C6 Madymo ellipsoid model.

Edge-edge contact

Edge-face contact

Figure 9: C5–C6 M a a
a a
BILE model.

In the MADYMO model, the facet joints were specified as ELLIPSOID-ELLIPSOID

Contact Interactions (Fig. 8). The visco-elastic behavior of the intervertebral disc was
implemented by connecting the origins of the vertebra body reference systems through
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Point-Restraints for the translational part and Cardan Restraints for the rotational
part, and supplying appropriate stiffness parameters for the ensuing relative degrees of
freedom. Furthermore, six ligaments of type Kelvin Element were attached to the ver-
tebrae. Data for the model parameters were employed according to de Jager (1996). The
determination of static equilibrium poses of the vertebrae pair requires the computation
of dynamics for the movable vertebra C5 until oscillations are damped out.

In the M a a
a a
BILE model, objects of the newly implemented class MoRegImpCircle-

Circle representing the contact of two cylinder faces, either in edge-edge, edge-face, or
face-face (flat) contact, were employed for modeling the facet joints. All other components,
i.e., ligaments, the intervertebral disc, and stiffnesses of the facet joints, were modeled
as in the MADYMO reference model. Static equilibrium poses were computed using the
built-in object MoStaticEquilibriumFinder of M a a

a a
BILE, which works with a Newton-

Raphson algorithm. This rendered a highly efficient code that made it possible to move
the vertebrae pair online in quasistatic analysis, using appropriate software sliders which
change the system parameters interactively.

Both vertebrae pair models developed with the MADYMO package and the M a a
a a
BILE

library were compared and validated with the experimental results reported by Moroney
(1988) and the computer simulation performed by de Jager (1996) (Fig. 10). The simula-
tions compute the translational and rotational deflections from the reference position of
vertebra C5 to the new state of equilibrium for nine loading conditions corresponding to
application of a single force (20 N) or moment (1.8 Nm) in direction of each elementary
motion of C5. Hereby, the following test loads were computed: anterior shear (AS), pos-
terior shear (PS) for x-translation, lateral shear (LS) for y-translation, tension (TNS) and
compression (CMP) for z-translation, lateral bending (LB) for x-rotation, flexion (FLX)
and extension (EXT) for y-rotation, and axial rotation (AR) for z-rotation. As it can be
seen, a good agreement between the experimental data and the computer models could be
achieved. In particular, the simplified M a a

a a
BILE model renders results that are not more

inaccurate than the complex MADYMO model. However, the M a a
a a
BILE model runs faster

than the MADYMO model by a factor of 350. This allows one to compute the motion of a
vertebrae pair in real-time simulation environments, in contrast to the MADYMO model,
which can be used only in offline applications.

3 Conclusions

A new impact model for cylinder-cylinder and cylinder-plane contact was derived, using
appropriate geometric relationships for determining the contact points, and taking into
account the state transitions between skew and flat contact through blending functions.
The developed model was implemented within the object-oriented library M a a

a a
BILE. As

an application, the model was used to simulate the motion between the vertebrae pair
C5-C6 of the human cervical spine. Comparisons with experimental data and industry
standard modeling environment MADYMO proved the approach to be accurate and more
efficient than the general ellipsoid-ellipsoid model by a factor of 350. It is planned to
use this model for the controller of a small-scale parallel manipulator for the physical
simulation of intervertebral motion, which is being currently designed.
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Figure 10: Model comparison of main and coupled displacements:

M a aa a
BILE: ◦, MADYMO: ∗, de Jager (1996): × with experimental results of

Moroney et al. (1988): + (average± SD).
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