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The contribution contains the description of the procedure for automatic generation of
the equations of motion of the geometric nonlincar beam. The corresponding matrix rep-
resentation of a model of 3rd order is given. Here, due to the geometric nonlinear beam
kinematic, coupling effects between the elastic variables can be represented. This effects
are relevant for lightweight structures for space applications undergoing large reference
motion. ‘Stiffning effects’ and parametrically excited effects between longitudinal and
bending vibrations e.g., are important. The introduced modeling procedure allows the
representation of such kind of effects known as important from the literature. Here these
effects are not considered as additional linearized terms. Additionally also the length-
variability of beam-like structures is considered. The clearness and effectiveness of
matrix methods are combined with beam theory of 3rd order.

Keywords: Nonlinear modeling; elastic structure; stiffning effect; weakning effect; elastic
robot; beam structurc

1. INTRODUCTION

In the last years modeling, simulation, and control of flexible struc-
tures have made an essential progress, especially stimulated by the
requirements of space operations. For this application field, flexible
lightweight robots can enhance the range of the work space of space
robots very well, if the length of the robot arm is variable. A literature
review to related works can be found in [1]. Furthermore in [1] a
discussion about conceptional aspects of choosing modeling methods
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are given. Here only a brief introduction of the literature will be given.
Contributions presented in the corresponding literature [2,3,4,5, 6]
mostly consider special configuration models or experimental setups
and perform simple approximations or even assume linear or line-
arized models for the robot arm. Actual developments concentrate on
the development of the automatic generation of equations of motion
for a given structure using symbolic description [7] or to the problem
of considering higher order couplings added to a linear description
[8,9,10,11,12]. The question about the choice of the coordinate
system describing the elastic coordinates is also important [9, 13].
Finally all the equations are linearized with respect to the elastic
variables, so the equations have to be developed up to second order to
get the ‘correct’ linearization. These aspects are widely discussed in the
last decade.

It is known that for a beam with constant length the longitudinal
vibration may excite bending vibrations [9]. In the case of a robot arm
with variable length like a telescopic arm, it is expected that even
stronger vibrations occur. In this way it seems to be important to
consider also corresponding couplings, which represents the energy
transport between different vibration planes.

2. GEOMETRIC NONLINEAR BEAM KINEMATICS

Defining the cartesian coordinate system (£) to describe the elastic
variables uy, uy, u, in the movable joint coordinate system (G ), (Fig. 1),
the vector r(t) of an finite mass point dm in the finite (and stiff) disc
(P) in the inertial coordinate system (/) is given by

r(6) = roh(0) = rol()
: (1)
+ T(ﬂgg,m +5890) + 1S () + Ttgf;,m),

where rgg(t), rg};(t) are the vectors of the joint and of the mass point
from the joint resp., in the inertial coordinate system, where the vector
of the elastic displacements u(g,),(t) describes only the deformation of
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FIGURE I Coordinate systems.

the neutral axis of the considered cross-section. The whole vector
r(G]},(t) (described in the joint coordinate system) contains also the
vectors lgg,(t), s%G)E(t) describing the joint oriented boundaries of the
considered finite element and the position of the focussed undeformed
disc in the element coordinate system, and the vector TZ;E,}, to describe
the finite mass point of the stiff disc in the deformed position. The
rotation matrices 7 and T are needed to define the element- and joint
coordinate based variables of r(t) (Eq.(1)), which are given in the
inertial coordinate system. Using the angles 1 —,2 - ©,3 — ¢ and the
corresponding order of rotations, 7 is given as the function

T(4,0,9) =
cos @ cosy cos ©sin —sin®
sin@sin @ cos1 - - cospsinth  singsin©siny  singpcos O
cos ¢ sin © cos ¥ COoSs ¢ Sin © sin Y

+sin¢siny -sindcos®w  cosgpcos®



64 D. SOFFKER

and can be expressed defining the operation point ¢ = © =4 = 0, by
the linearized expression

7 -7
A I R A
Me,Bv)=| aB—v 1-%-3% a )
B4 ay By -« 1—%;

In [1] the development of 3, v, is given in detail. Using the results

v =u, —u,u, and

X"z

(3)
5:\/Z%-u;)2+u§2+u;? 1

the elastic strain € and the curvatures &y, K2, K3

I 1o
B =uy —uuy,

_ N N N Y S ' g
Ky = u_y—ruyux,uyux au, Ky3=—U,+U

"7 Lol y o7
2y Fuul +ouy (5)

are determined as functions of the elastic variables. This costly pro-
cedure and the determinations of the virtual values are given in [1] in
detail.

3. PRINCIPLE OF VIRTUAL WORK

Applying the principle of virtual work 6V, = 6W, + §W, with 6V,
as virtual potential energy, the virtual work of the external forces
6W,, and the virtual work of the inertia forces and moments 6W,,
neglecting the influence of shear forces for the long beam, assuming,
without loss of generality, constant material behaviour for Youngs
modulus and the shear coefficient with E, G and the geometric para-
meters A, I, Iy, I,. the calculation of the virtual potential energy of the
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deformed beam gives

| .
1
6V, = /0 K(I - Eu;z j uf) uy () — wul)oul

+ (ul — u;ug)éuf:) EA (u; + % (u/)?- + u/yz)ﬂ
+[(=60/ -+ wjbu, +w6u)G (=o' + wju)
[(uyéul, + ujdu; ~woa’ — o'éu) + ujéu;
+ (U/\ — 1)6u;f)EIy(u;u;’ — u; e u;ug _ U’zf)!' ]
+[(ujbul — wbuy - Ug,éOt' - O/(Su/y + ubu,

- (uf = Dou)EL () - wuy + wu) + ouy)ldx. (6)

Considering all products up to 2nd order to develop a beam model
of 3rd order, using the usual scparation principle (here given for the
bending displacement u(x, t)) and therefore applying a vector of shape
functions f,(t)

uY (X, t) :f)l:v(x)u)’(t))
uy (X, t) -_f;r(x)uy(t), (7)
uy(x,t) = £ T (x)uy(t),

duy(x,t) = 6u | (1) f,,

(5u;,(x, t) = 5u;(t)f3,, (8)
511'),'()(, t) 5u)T(t)f3/

all appearing products can be discretized, like-as an example

SuyELY" = du [EL /" f1 u,, (9)
and also in quadratic form —as an example -

He ot "no__ T 1 onT 117
u ou,Elyuy = u Ely /. /0wy £y

_ T 1 T ot o1
= ou, Ely flou, [/ uy

(10)

Using a systematic description for all the elastic variables and combi-
nations of states and shape functions, the proposed procedure leads to
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the complete expression for
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which contains linear elements (like EI),/"‘ff;’,T) and nonlinear elements
(like Elyf’,\,fngLl)f;lTZly), which have to be integrated over the actual
length of the beam.
The complete procedure resulting to concrete matrix coefficients can
be done automatically.
To consider the nonlinear length -variant beam the following pro-
cedure is applied.
For a general nonlinear matrix- -element

form

v
F / Sux) S T(x)ut) /T (x)dx
JO

the procedure/the length integration fé ---dx can be substituted to the

(12)
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1 1
F:u[(t)/ fblfaffdx+uz(t)/ foa fuf Tdx
0 1 [} [ (13)
+ u3(t) /0 fo3 fuf Tdx + ua(t) /0 foa fu f Tdx

/umwﬂuvﬂmmx

= Zui(t)

1

= _(W(ODq,r(x).  (14)

Dy yopr

Here f,, f», f. denotes the vectors of shape functions. The vectors f;
and u consist of the scalar expressions

fit uy
fi> Uy
fi= resp. u = . (15)
fis u3
fia Uy

As an example the length dependent matrix Dy, r(x) is scalar
multiplied by time — dependent states of the beam. Here, because of
the length dependency, a time - - and state dependent stiffness matrix
element is obtained, which avoids the usual ‘length-integration’ in
every time step. The integration procedure is replaced by the updating
procedure of the matrices D. The generation procedure of the actual
element -- and global matrices is realized by the steps

o of defining all the matrix - products fb;(f;,f'c"), which are necessary.
For this procedure only the set of the polynomial coefficients of
the used shape functions are necessary. Knowing all arising vector
function combinations, this procedures work automatically. Here
Hermite polynomials are used and the resulting coefficients are
calculated one time automatically by using a MATLAB - - program
[1]. In general all shape functions can be used. Therefore only the
polynomial coefficient have to be changed.

e of calculating all D(x)dx — terms, using the previously calculated
matrix coefficients multiplied by the actual length and later also
with the actual state. This step has to be done for all states of the
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modeled knots. For every matrix element position the related
elements have to be collected, so that the output of this subprogram
gives actual matrix coefficients of the related beam element energy
expression.

e of summarizing all beam elements by using the knowledge about
the structure. This step gives the global matrices of the beam, which
represent the actual coefficients of the equations of motion.

All developed matrix-elements are developed and given in [1]. .
The virtual work of a mass element described by the vector rg)P
(Eq. 1) is

EWp = / / / (6742 74))dm (16)

applying the notation given in (1). Using the above mentioned vari-
ations and assumptions, and assuming addionally that the material is
homogenius with p = const., Eq. (16) results to

§Wmn =~ / / / (&3{ F (1O 46507

+6ul®” *61(E7TTr)TT)o
('r'grg) + 719 4519 1 4O THED (17)

+ 27O 450 + 4® 4 'ﬁ(m)

L T(Z-(G) L5060 4 50 4 %Z(G)>dv,

To make the previous equation integrable and applicable for the
equations generation procedure with respect to the variable length and
to apply the introduced separation procedure Eq. (7,8), terms of the
T1E) TAE) | T1(E) with the vector /") = [0y z]7, describing the mass
points of the finite stiff disc (Fig. 1), can be reformulated using only the
geometry dependent matrices

1 00 -z y 0 0 0
No'—‘ 0 1 0 ,]V],,: 0 0 0 s Nl[,: z 0 0 s
00 1 —y 0 0
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0 0 0 0 00 z 0 —y
Nza: 0 0 —% ,Nz[,: '7% 00 ,N3: 00 O as
0 —¢ 0 ~f00 0y 0

(18)

TtE) = ]\foul + Ny + NipfBa + Nzaul2 + Nz[,,-qi -+ N3u:,,fg. (]9)

Here y,z denote the coordinates of the considered beam element of
the (P)-coordinate system (Fig. 1). The expression (19) contains beside
the geometry matrices the linear vector of the elastic variables u, a
quadratic expression u%, and also a mixed expression u,, of the ele-
ments. The virtual expression of the kinematic part of Eq. (19) follows
using the calculation rules as

S TT =6t TNT + 86U "N, +68ENT, 20)
+6u® N} + 682N, + 6 NT.
With the knowledge of the geometry of the beam, 2 of the 3 inte-
grations of (17) can be done in advance using the introduced
‘geometric’-matrices (18) as

//N,-dA or //N;w"deA. (21)

Using in general a fully matrix w", assuming

e axes-symmetric cross sections,

o that the neutral axis coincides with the center-point of the cross
section area, and

e the choice of a principal axes coordinates system for the (P)-co-
ordinate system of the disc

the square-integration Iy, = [, [.zdzdy, 1., = [,[.ydzdyl, = I, =
[ ]2 dzdy T, =1, = [,[.y*dzdy ], = [,[.yzdzdy T, =T, = [,[.
7’ + y? dzdy = 1,5 + 1, are defined as usual, which allows solving the
integrations in the way, that only the rotation-dependent parts of w”,
have to be multiplied in the actualization step of the modeling (or
simulation) procedure with precalculated matrix elements. For the
length variable beam the length integration can be solved by the same
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procedure using subprograms mentioned before. For the virtual work
of the inertia terms it follows formally a very complex series of terms.

The virtual work of the external forces and moments §W, consider
beside the gravitation influence, which is given in detail in [1] and not
considered here, also the reaction forces of the changing mass of the
element, which appear, due to the length variable distance of the beam
knots, only in axial direction. The complete idea behind the strategy of
handling variables mass systems is given in [14].

In this way for all coupling terms of the elastic coordinates and
combinations of shape function and node variables specific products
arise, which are implemented by the introduced systematic scheme.
Using this length-dependent matrices as a library; stiffness, damping
and mass matrices for a beam element can be generated in every
time step of numerical calculations. Organized in modules, the whole
procedure is done automatically, ¢f. Figure 2. The user of the model-
ling module defines only the nature of the model (linear, nonlinear
with some coupling terms, modeling with all coupling terms, ¢f. [1],
the configuration of the length variable beams, and the detailed
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FIGURE 2 Modeling procedure.
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geometry of each beam element. The lowest level of the modeling
procedure generates length depending matrices by scalar multiplying
of given matrices. This matrices depend on the used shape functions
implemented as a set of parameters. The second level contains the
construction of beam-wise element matrices of second order depending
on the actual states and on the given reference motion. The third level
generates the global matrices from the element matrices, which leads,
in the case of a beam-like structure, to partial adding of matrices in the
usual linear manner illustrated in Figure 2.

In the case of length-constant beam the lowest level procedures are
done only ones, then, due to the reference motion dependency, the
matrices of the 2nd and 3rd level has to be updated to get the higher
order model representation.

In the case of a linear model no multiplication with actual system
states are needed: the generaled matrices are constant, state inde-
pendent and well-known.

The global system matrices are found by adding the specified element
matrices in the usual way, resulting to the describtion for the global
system

Mgiig + Dgtig + (Kg + Kgg)ug = fo1 + fo2 + faa, (22)

with the global mass matrix M,(u, /), the global damping matrix
Dy(u, w, l.;), the global stiffness matrix K, (u,w,w,l;), and vectors
Sa1>fe2, (1) resulting from translational and rotational motion of
the joint, and the matrices of gravitational effects f,, (K,,) [1]. Here
l,.; denotes the dependency of the actual length and position of each
beam element.

4. DYNAMIC STUDIES

The quality of the model will be shown by simulation of u very flexible
telescopic robot arm of three elements for space applications. The
geometric parameters of the system are given in [1]. The whole length
of the beam is 11.8 m, the weight is 48kg. The telescopic robot is
modeled using 5 beam elements. Results of using two different models
are shown: a) the linear model by using the state independent matrices
and b) the nonlinear model of 3rd order.
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Example — Planar Rotatory Maneuver

Using a rotational planar maneuver for the robot described in [1] with
the maneuver time T, = 15 sec. and the stationary rotatory speed 2 = 2
rad/sec, starting with zero initial conditions, the dynamic excitation
leads to elastic deformations (Fig. 3). Here the length constant case is
considered in detail.

In correspondence with results known from the literature [7, 8, 9,
12] a negative axial displacement appears in the nonlinear case.
Furthermore, it is known that the stationary vibrations using the
nonlinear modeling are larger than in the linear case. In contrast to the
known literatur it should be mentioned that the bending vibration for
the nonlinear model is larger than in the linear case. In the literature
[10,12] it is mentioned that so-called stiffning terms are neglected in
some program codcs, which stiffs the system, so for the rotational
maneuver smaller vibration should be expected. The analysis of this
effects in [1], leads to the conclusion that these kind of modeling is
useful for very elastic structures, where terms of 3rd order play an
important rule not only for stiffening but also for weakening effects, as
shown in the example.

Bending vibration Axial vibration

B E
£ £
E ]
s g
o 1=
4 bl
1 51 . .
= =-0.1 . {non~lin.
@ K2 {f
a a /
-02
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FIGURE 3 Axial-and bending vibrations for a rotational maneuver.
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Other examples are given in [1]. They defines the relevant terms and
show that this terms are responsible for the weakning effects for weak
structures. In [15] a simulation for the well known NASA minimast is
given using the introduced modeling technique. The results show that
for this type of structure (this configuration of material and geometry
parameters) the mentioned terms are not relevant.

As a conclusion it can be stated, that for weak structures weakning
effects can play an important rule. This effects only can be described by
coupling terms of higher order. This terms can not be integrated
by known procedures. Here a suggestion is given for consideration of
this type and order of coupling terms combined with a suggestion for
handling of the terms.

5. CONCLUSIONS

This contribution investigates the automatic generation of the
equations of motion of the nonlinear beam to describe the related
dynamical behavior. Using the nonlinear beam kinematics up to terms
of 2nd order, developing a new technique handling the quadratic
expressions, which includes model-updating of the state- and time-
dependent element matrices, time consuming integrations for the
length variation of the beam can be avoided and are replaced by
matrix operations which works automatically and time efficiently. The
scheme of (linear) mass, damping and stiffnes matrices can also be
used to handle nonlinear effects of higher order. Simulations show the
importance of these stiffning and weakning effects.
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