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Abstract. This contribution presents the idea of model-based model validation.
For this purpose the PI-Observer as core of a validation scheme is introduced. Task
of this observer scheme is the estimation of unknown, unmeasured interaction effects
within the considered system. Therefore it is assumed, that the whole system is
divided in known and unknown parts. Estimating dynamic interaction effects inner
ratios within the unknown part are reconstructed. This model-based reconstruction
scheme can be used for validation purposes if real measurements are available.

As example the adhesion models are validated. The contact force highly depends on
the kinematical contact situation and additionally on external effects. By observing
the contact situation by the actual adhesion characteristic between rail and wheel
can be determined.

As a first application example the simulations of the driven wheel show the strategy
and the efficiency of this approach.

1 DMotivation

For model validation by comparison of predicted with real values, measure-
ments are needed. Here usually costly experimental validation especially for
models with a wide application range are necessary. Further on model val-
idation often is done using specific test-rigs to realize conditions to allow
measurements, which typically can not be assigned to practical problems.
Another problem is that measurements of the interesting system part and of
the interaction effects to others are not available. This means that practical
realization of measurements restricts the model refinements to those effects,
which affects the output. The proposed method overcomes these difficulties
by the application of a robust model-based technique which uses simple to re-
alize measurements and model knowledge to predict inner values of unknown
parts of the considered model.

The principle idea is illustrated by the validation of the nonlinear adhesion
characteristic. The adhesion-friction micromechanism is the core of the trans-
port mechanism of locomotion. Figure 1 gives possible contact situations of
a rail-wheel contact. The area of an optimal use of the contact situation is
defined due to the assumption of the maximum position of the friction-slip
ratio on the left hand side of the maximum, if a maximum is available.



2 Dirk Soffker et al.

Area for optimal adhesion use

0,4 -

0,3 ~

0,2

Different adhesion characteristics

0,1

10 20 30
Wheel Slip [%]

Fig. 1. Area of the optimal adhesion of the rail-wheel contact

The rail-wheel contact is highly nonlinear due to the complex geometrical con-
tact problem and the unknown environment parameters (temperature et al.).
Several papers focus to the modeling of the contact phenomena, trying to un-
derstand the effects as well [10], [21]. Furthermore the interaction between
the elastic track, the elastic rail, the elastic contact itself and the wheel is of
interest, because of several safety, economical and comfort aspects [18].

The problem of validation of those contact models are unavailable measure-
ments of the contact area. The model-based model validation technique offers
with the Proportional Integral (PI) Observer a possibility for validation in
cases where measurements are impossible or too costly. The PI-Observer uses
known model parts and easy available measurements from the known parts
to estimate unknown effects within the unknown parts.

So it works as a ‘virtual measurement device’. The method is illustrated
in Fig. 2.

The aim of this contribution is to demonstrate the possibilities of observer-
based estimation of nonlinear contact forces. Therefore it is not necessary
to work with detailed models of the mechanical system itself rather than
with arbitrary disturbed models to examine the robustness of the observer
technique itself to its own model assumptions.
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Fig. 2. The PI-Observer as a virtual measurement device

2 The Rail-Wheel Contact

Modeling of the contact between two elastic bodies is a classical problem.
The solution to the normal-contact problem — the determination of the con-
tact area and the planar pressure functions — was given by Hertz [6] . In
this contribution the contact area is assumed as an ellipse, described by the
radi a,b. This includes that the contact partners are shifted together with
the distance

i () »

with NV acting as normal force, R, as wheel radius, v as the contraction

number ( = 0.3 (steal)), the shear modulus G and the coefficient «,. The
ellipse radii are connected by

b=ay1-—e? (2)
(cf. [11]), where e defines the eccentricity of the contact ellipse. Relations
between the radii R,, Ry of the contact partners and the eccentricity are
given by

2

B _ (=) 5
a e)

(cf. [11]), with the coefficients D(e), B(e) as solutions from elliptic integrals.

Tabular solutions are given in [14].

In this contribution a dynamical contact is assumed, where the coefficients R,

Ry, a, are fixed. The coefficient a, is choosen with a, = 0.549.

The contact force can be modeled assuming the theory of Kalker [9]. Here

the tangential contact force is modeled using the model of Shen-Hedrick-

Elkins [20]. Here only the tangential slip n is considered. The tangential

contact force T¢ is modeled by

TE = aT{lzn = —aabGCun, (4)
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with
(T (e
a:l—g /J,—N +ﬁ M—N for T§'<3IMN (5)
N )
a= % for Tém' > 3uN, (6)
§

and Cq; as a Kalker coefficient which is chosen fixed. The equations (1)—(6)
define a piecewise constant contact force / slip relation for the elastic contact.
This simplified model is sufficient to show the efficiency of this approach.

3 The Proportional-Integral-Observer

In this paper a Proportional-Integral Observer (PIO) is used, which allows
the robust estimation of modeled system states, additionally the estimation of
unknown inputs in desired / interesting input channels. If the nominal system
behaviour can be described by a nominal system description, changes in the
system structure or of system parameters can be understood as additional
external inputs acting to the nominal system and representing the fault.
In contrast to the Extended Kalman Filter, this procedure considers the
dynamical changes both of structure and parameter. In contrast to actual
works about the Unknown Input Observer (UIO) [7], this approach works in
an approximated wise, but with weak conditions.

In the sequel it can be shown that the PIO allows the robust estimation of
such unknown inputs interpreted as disturbances to the nominal system. The
main idea of this paper is the application of this observer type to nominal
known systems for fault diagnosis, in the way that the operator of a dynamical
system gets a new tool looking for inner, unmeasurable states of a system.
Combining the estimations of the PIO a new quality of inner informations
of the faulty structure is available. The main details of PIO is already given
and proved in [23]. In this paper the PIO is extended for applications as
Unknown-Input Observer (UIO), applied for estimation of unknown additive
inputs, like the contact forces of the rail-wheel contact.

3.1 History of Disturbance Estimation

Based on a linear and deterministic description of the plant, which describes
the nominal unfaulty dynamical behaviour of the plant, the Luenberger ob-
server can reconstruct unmeasurable states using measurements of outputs.
This permits the employment of the Luenberger-observer scheme to dynamic
systems of the form

& = Az + Bu, y=~Cuz, (7)
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with the state vector z of order n, the vector of measurements y of order rq,
and the known input vector u of order m. The system matrix A, the input
matrix B and the output matrix C' are of appropriate dimensions. However,
it is not directly applicable to nonlinear systems or systems with unknown
inputs. Since the proposed type of observer beside the proportional feedback
like the Luenberger-observer, also uses integral information of the estimation
error, it is called Pl-observer (PIO). It is known from literature, that the
PI-observer design is useful for linear systems with constant disturbances [3].
Here the Pl-observer is developed from another viewpoint. Continuing the
ideas of Johnson [8], who introduced linear models for disturbances acting
upon linear systems, and Miiller [16], [17], who gave the conditions and proofs
for modeling disturbances as linear models also acting upon linear systems,
this paper deals with the idea of constructing a ‘disturbance model’ for more
general use, especially to the practical case, in which no information about
the disturbance, the structure of the fault resp., is available. Here the term
‘disturbance model’ describes the use of disturbance models describing the
signal behaviour of external inputs regretted as disturbances, representing the
disturbance rejection philosophy given in [8], [16] and [17]. Here this term is
used only to relate the proposed development of the PI-observer to the known
disturbance rejection strategy, which can be considered as a special case.
The following aspects are the points of consideration: usual Luenberger ob-
server fails, if the system (7) is only roughly known or/and there exist ad-
ditional unknown inputs caused by nonlinearities. Using known PI-observer
techniques this disadvantage can be compensated, but only for piecewise con-
stant disturbances [3]. If the unknown input is caused by modeling errors or
unmodeled nonlinearities (unmodeled dynamics), this assumption is not ful-
filled.

In the general case of an external input, which can not be described by a lin-
ear model extension (disturbance rejection theory), the system description (7)
fails. Therefore, a more general description of such systems is given

z=Az+ Bu+ Nf(z,u,t), y=Czx . (8)

In (8) the vector function f(z,u,t) of dimension ry describes in general the
nonlinearities caused by the external input, unknown inputs and unmodeled
dynamics of the plant and may be a nonlinear function of states, control
inputs and time. The matrix NV is the corresponding distribution matrix
locating the unknown inputs to the system. Without loss of generality here
it is assumed that the matrices N, C have full rank.

Several successful practical and theoretical applications concerning machine
diagnosis [22] and also observer-based control [2], [15] are known. In all of
these cases an approximation

f~ Hv (9)

of the vector of nonlinearities f (friction torques, forces caused by the crack)
was used. In the theory of DRC [8], [16], [17], the linear time-invariant system
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with the unknown inputs N f caused by nonlinearities, unknown inputs or
unmodeled dynamics is described by the linear exo-system

v=Fv . (10)

The resulting extended linear dynamical model includes these inputs and
appears as

2= [0 ]+ 0] o
y=[C0] m (12)
and can be used as an (extended) base building up an extended linear ob-
server. Here the matrix IV relates the fictitious approximations Hv of the
unknown inputs f to the states where they appear. The signal characteris-
tics of these inputs will be approximated by a linear dynamical system with
the system matrix F. Using the extended system description (11),(12) an
extended observer can be designed, so the estimate © of v represents the ap-
proximation of the disturbances, whereby & is the estimation of z.
In the applications [22], [2], [15] it is noticed that using

F=0, F—0,[resp.,] (13)

leads to a very good reconstruction of the diagnosted nonlinearity. This means
that without exact knowledge about the dynamical behaviour of the unknown
inputs f (F = 0 represents a constant disturbance [3]), a very general ap-
proach is possible by assuming the disturbance as approximately piecewise
constant (related to the ‘disturbance model’-philosophy), but applying the
observer scheme to applications where this assumption is not fulfilled.

By the given procedure using ‘F' = 0’ in the sense of disturbance model phi-
losophy, the successfully applied scheme appears as the PI-observer and will
be seen as a natural comprehensible extension of the well known Luenberger
observer [23].

Figure 3 shows the structure of the observer therefore (8) is written in the
following form

&= Az + Bu+b+ N*'n*(z,t). (14)

where b is the known input which is independent from u and N*n* describes
the unknown, external inputs.

Here in contrast to the conventional Luenberger approach a second loop with
two gain matrices Ly, L3 and integrator is used additionally.

Now, the question is how to determine the matrices Ly, L» and L3 such that
the corresponding PIO works well. Therefore the estimation performance is
analyzed for different cases of the dynamical behaviour of the unknown input
related to the nominal system.
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Fig. 3. Structure of the PI-Observer

3.2 Estimation Behavior

The development of the theory behind follows the works in [23], [26]. From the
structure of the PI-observer depicted in Fig. 3 it follows, that the dynamics

of PI-observer is described by
&= A&+ Lsf + Bu+ Li(y - ) f=La(y—19)
where § = CZ. Writing (8) in a matrix form gives
il [ALs][2] , [B L A
Ao e ][] (][] oo
or

T A—L,C L T B L
e I HEE A

IEN N ,
Ae

(15)

(17)

Now the problem is how to design the gain matrices Ly, Lo, and L3, such

that the observer can estimate approximately the states x of the plant.
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Defining the estimation error as e(t) = Z(t)—x(t). Then, from (7), (8) and (17)
we have that

é [e]

-f.c- =A, -f- (18)
in the case of system (7), or

[ €] [e] N

=as]- [0 (19)

in the case of system (8) with unknown inputs or nonlinearities. From (17)
the following result can be obtained [23].

3.3 Known System without external inputs

Theorem 1. If the pair (A, C) is observable, then there exists a PI-observer
with any dynamics for the system (7), such that lim;_, o [2(t) — 2(t)] = 0 for
any initial states z(0), Z(0) and f(0).

Proof. From the dynamics (17) of PI-observer it can be seen that the
dynamics or poles of (17) can be arbitrarily assigned if and only if the matrix

. A Ls . .
pair ([0 0 ] , [C’ 0]) is observable, i.e.

s[— A —L3 .
rank 0 sl =n + dim(f) (20)
C 0

holds for all s € C. Furthermore, the condition (19) is equivalent to

rank{ {éLﬂ } =n + dim(§) (21)

when s = 0 and

mnk{{‘ﬂgﬂ}:n (22)

when s # 0. The condition (21) implies that the dimension of the integrator
must be less than or equal to that of the outputs. Since the matrix L3 may
be arbitrarily selected, the rank condition (22) holds if and only if

o {[A]} =n -

Combining the conditions (22) and (23) leads to

rank{:SIaA]}:n (24)
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for all s € C, i.e. (A, C) is observable.

A main motivation to study the PI-observer is to reconstruct the states of the
system (8) with nonlinearities. The following two theorems give the results
in case of the system (8).

3.4 Known Systems with Constant External Inputs

Theorem 2. Assume that lim;, o, f(x,u,t) exists. Then, there exists a PI-
observer with any dynamics for the system (8), such that lim; . [Z(t) —
z(t)] = 0 for any initial states 2(0), £(0) and f(0) if (A, C) is observable and

i { [ 43T} v, 5

Proof. Using the construction method, we prove Theorem 2. Let L3 = N.
Then, the dynamics (19) of the estimation error of PI-observer (17) becomes

é e 0
i) = Ali- ) &
where A, = {A _LLé,C ]Sf] . Similarly with the proof of Theorem 1, the eigen-
—L2

values of the matrix A, can be arbitrarily assigned by the matrices L; and

L, if and only if the matrix pair <[61 J(\)T] , [C’ O]) is observable, i.e.

sI—A—-N
rank 0 I =n+rn (27)
C 0

holds for all s € C. This condition is equivalent to

mnk{[ég}}:n+r1 (28)

when s = 0 and

rank{[SIgAH:n (29)

when s # 0. This implies that under the conditions in theorem 2 the dynamics
of PI-observer (16) for the system (8) can be arbitrarily assigned. Therefore,
the eigenvalues of A, can be arbitrarily placed at any locations in the left-half
complex plane when the conditions in theorem 2 are satisfied. This means
that the dynamics (26) is stabilizable by means of the matrices L; and L.
When the dynamics (26) is asymptotically stable, its solution will converge
to the equilibrium. Then, from (26) it can be easily seen that

e(t) 0

S [f(t)] B [hmmoo fla,u,t) (30)
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3.5 Known Systems with Arbitrary External Inputs

Theorem 3. Assume that f(z,u,t) is bounded. Then, there exists a high-
gain Pl-observer for the system (8) such that (t) —z(t) - 0 (t > 0) for
any initial states z(0), £(0) and f(0) if

1) (A, C) is observable, which includes

C

CA
rank . =n |, (31)

CA'k—l

where k is the observability index of (4, C),

2) rank{[é](\”} =n+ry; and
3)CN =0

Proof. Let Ly = N. Then, analogously with the proof of theorem 2, it is
easily verified that the dynamics of PI-observer (17) for the system (8) can
be arbitrarily assigned by means of the matrices L and L if the conditions
1) and 2) in theorem 3 are satisfied.

Under the selection of Lz the dynamics (19) of the estimation error be-
comes (26). When A, is stable, the solution to (26) will be also bounded

if f(z,u,t) is bounded. Let {Ll}

L,| =M [Ifi] Then, (26) may be written as

L

é

s S HE el 52
From (32) it follows that

Ce=0 (33)
for p — oo. Differentiating (33) and using (19) give

Cé=C(A—LC)e+CN(f - f) (34)
From the condition 3) and (33) we have

CAe=0 . (35)
In the same way under the condition 1) we can obtain

CAle=0 i=0,1,..,k—1 (36)
Then from (33), (35) and (36) it follows that

e=0 (37)
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due to condition 1). Substituting (37) into (19) gives

f-f=0 (38)

because of the full-column rank of N. Equations (37) and (38) mean that the
estimates # and f of the PI-observer (19) converge to the states z and the
unknown inputs f of the system (8) when p; goes to the infinity. This shows
that £ and f may approximate z and f in the case of high gains.

In [23], [25] furthermore it is shown, that this type of observer also can be
applied in general to systems not completely known with unknown additive
inputs. In contrast to the mentioned works in the meantime the condition
for the application of the PI-Observer to such structures is corrected to the
conditions

p1 — oo and (39)
Z—Q — 00 with Ls = psN. (40)
1

which gives theoretical hints to understand the observed success of the ob-
server technique in robotics and machine-dynamics. In this application the
PIO is applied to known systems with arbitrary external inputs.

4 Modeling and Simulation

Figure 4 illustrates the system to be considered: a torsion-stiff wheelset with
linear springs cyp, Cwy and dampers dyp, dy, for horizontal and vertical
degrees of freedom. The electric drive is coupled with an elastic torsion spring-
damper combination cpw, dyw to the wheelset. The other constants are
the motor inertia @y, the rotational inertia of the wheelset and drive Gy,
and the related mass of the wheelset my . The modeled degrees of freedom
are the motor angle s, the wheel angle oy, the horizontal displacement, of
the wheelset u,,; and the vertical displacement of the wheelset u,,.. Modeled,
but not given in the illustration fig. 4 are also the modal displacements of the
rail ug1, ug2 and the angles for the spatial orientation of the wheelset o1, 2.

The equations of motion are given by

; duvw | . cMwW
<PM+9—(<PM—<PW)+9—(<PM—<PW) =M(t) (41)
M M
. dvuw , . . CMW 2rT,
Gw+ 2 (pw —pu)+ 5 (pw —pu) = o (42)
2d 2¢C 27,
Uy + —wuwx + —Uya = — (43)
My Moy My
. 2d,, . 2 2N
Uy + —wuwz + ﬂU’u)z =— -9 (44)
m'u) w mw
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Fig. 4. Tllustration of the wheelset to be considered

with the time-dependent normal contact load N, N. The equations are cou-
pled with the equations for the (modal) rail vibration and mainly due to
the kinematic equations for the tangential contact force. The corresponding
equation for the slip 7 is in absence of the absolute velocity of the bogie in
the shown simulation example

p=1-2W _ fwz (45)

YM  TPM

This definition denotes some kind of averaging slip, and has to used with-
out loss of generality to get not only the elastic slip considering the elastic
horizontal displacement of the wheelset. For practical purposes (with the
possibility to measure the absolute speed) the usual definitions using the ab-
solute speed vy can be used.
It should be noted, that there also exists a kinematical coupling between the
rail, the elastic contact and the disturbance height Az

d=1ug + ugr — Uy + Az (46)

of the rail. For the following simulations Az (as a stochastic value) works as
an exitation. The whole model results as a nonlinear system with 10 elastic
degrees of freedom. The main features of this model are taken from [13].

To get realistic adhesion characteristics the friction coefficient p is stochasti-
cally modified. So a much more realistic characteristic as given by the Shen-
Hedrick-Elkins model (4)—-(6) as shown in Fig. 5 is available.
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Fig. 5. Adhesion characteristic with stochastically modified friction coefficient

It should be noted that the PIO-design is independent from this structural
and parametrical information. For the PIO only the known parts of (41)—(43)
are used, the parts including 7 and the other equations are only used for
the system simulation model.

4.1 Simulation Results

For the simulations the input is the torque M (t) as a step function.

In Fig.6 the results for M (t) = 5- 10 Nm and for the PI-Observer using the
two measurements s and wu,,, are depicted. The upper plot shows the time
behavior of the tangential contact force T¢ (marked as o) and its estimation
(marked as +). Then the adhesion characteristic — that is T¢ /N depending
on the slip i — is shown. Here the absolute value of 7 is used to get the rolling
condition n = 1 with the used slip definition (45). This first plot shows that
the observer works very well in the case of using two measurements.

Next the observer is used with only the measurement of ¢, and the same
torque size as in the first simulation. Fig. 7 shows the results of that simu-
lation. Again the estimation of the time behavior of the contact force works
quite well but the adhesion characteristic is only roughly estimated.

For the same settings as in the first simulation but with a torque twice as
there the results are given in Fig. 8. This shows that the success is indepen-
dent of the height of the input.

The applied torque for the following simulations is again M (t) = 5 - 10* Nm.
For an observer with two measurements with additional noise the results of
the simulation are shown in Fig. 9. The estimation of the time behavior as
well as the estimation of the adhesion characteristic is close to the real run
of the curve.
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Figure 10 shows the result for an observer with two measurements with higher
noise than shown in the results given with Fig. 9. An additional difference to
the case before is the consideration of a shorter time slice of the simulation.
This resolution displays less good estimations of the curves.

Contact force and Estimation [Two Measurements with Noise]
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Fig. 10. a) Time behavior of the contact force and b) adhesion characteristic

5 Concluding Remarks and Future Aspects

In this contribution the application of the Proportional-Integral Observer
(PIO) for model-based model validation purposes within the rail-wheel-sub-
grade modeling is shown. As a first example the reconstruction of the con-
tact behavior (usually modeled by contact models) is realized and therefore
a scheme for contact model validation is implemented. Using a theoretical
model of a elastic supported wheelset with a nonlinear contact model it can
be shown by simulations that the linear PIO-scheme is able to estimate the
nonlinear tangential contact forces. This inside view into the unmeasurable
contact situation gives the base for advanced adhesion control strategies.

The next step is to replace the simulation model by a real system and to com-
pare the observer values originated with real measurements with the model
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values of the model to be validated. In other applications this comparison
shows satisfying result [1].

Further as an other example the detection of voids within the subsoil is aimed.
In this additional application the observer estimates the stiffness coefficients
within the subsoil with the aid of measurements of the normal forces and the
sleeper angle.
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