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ABSTRACT 
This paper deals with development and simulation of the 

nonlinear model of an elastic ship-mounted crane equipped 
with the Maryland Rigging. The model contains three inputs to 
control the planar vibrations due to the planar base excitation; 
the luff angle is proposed to control the elastic vibration in the 
boom, and the length of the upper cable in conjunction with the 
position of its lower suspension point are proposed to control 
the pendulation of the payload. It is observed, through static 
and dynamic testing of the derived model, that moving the 
lower suspension point of the upper cable provides strong 
controllability of the horizontal displacement of the payload, 
while changing the length of the cable can be employed to 
compensate for the vertical displacement. Simulation results 
show that within a considerable range of pendulation 
displacements of the payload, the nonlinear model and the 
linearized one reflect nearly equivalent responses. Hence, with 
the property of strong controllability, the linear model can be 
used efficiently to design the control system, which will be 
discussed later in another paper. 

INTRODUCTION 
This work focuses on the mathematical modeling and 

simulation of an elastic ship-mounted crane with Maryland 
Rigging as shown in Fig. 1. Such a crane is usually used to 
transfer cargo from one ship to another in an open sea. During 
the transfer process, wave-induced motions of the crane can 
produce large oscillations of the cargo being hoisted, which 
endanger the operation of the crane and force the cargo transfer 
to be suspended. 

This problem is discussed in the last few years in several 
publications. Yuan et al. [1] proposed the “Maryland’s 

Rigging” and applied a brake system to the upper cable as it 
passes over the pulley, Kimiaghalam et al. [2] proposed a fuzzy 
controller to limit the pendulation of the payload by changing 
the length of the upper cable, Dadone and Van Landingham [3] 
proposed fuzzy logic for controlling the Coulomb friction in 
the pulley, Kimiaghalam et al. [4] proposed feedback and 
feedforward control law to change the luff angle and the length 
of the rope. Abdel-Rahman and Nayfeh [5] examined the in-
plane and out-of-plane responses of the crane to an in-plane 
excitation and a control effort limited to dry friction and 
viscous damping applied at the pulley. In the mentioned 
publications, the authors based their modeling and design on 
the assumptions that the boom of the crane is rigid, and the 
actuators are strong enough to provide the calculated control 
inputs. In the real world, these assumptions may be difficult to 
realize because the rigid boom is usually massive, which means 
that it may be hard to execute fast motions of the boom as 
calculated and commanded by the controller. 

To contribute in solving this problem, an elastic lighter 
weight boom is considered, and a small modification in the 
configuration of the crane is proposed by adding a limited 
degree of mobility to the lower suspension point of the upper 
cable on which the pulley rides.  

The finite element method is used to model the elastic 
boom dynamics, which is coupled with the dynamics of the 
pulley and the payload. The model employs three independents 
inputs to stabilize the crane operation in the plane of the boom; 
the luff angle to control the elastic vibration, and the total 
length of the upper cable in addition to the position of its lower 
suspension point to control the pendulation of the payload. The 
model is limited to the in-plane oscillations because those are 
dangerous in practical applications. The disturbances acting on 
boom due to ship movements are represented by exciting 
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horizontal and vertical displacements xA(t) and yA(t) applied 
directly to the lower end of the elastic boom as shown in Fig. 1.  

MODEL DEVELOPMENT 
In deriving the mathematical model of the crane, the 

following assumptions are considered: 
� The lower part of the boom (part AB) is elastic, 

while the upper part (part BC) is rigid. 
� The elongation in the cables and the structural 

damping are neglected. 
� The lower suspension point B’ of the upper cable 

is movable along the rigid part of the boom.  
� The pulley (m1) is frictionless. 
� The payload (m2) is considered as a point mass 

and the air resistance is neglected. 
� The luff angle � (t) is actuated by the moment MA

applied directly to the lower end of the boom (A).
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Figure 1.  Elastic Maryland rigged boom crane

Kinematics of the upper cable 
With reference to Fig. 1, assume that L1 and L2 are the 

distances between the pulley and the lower and upper 
suspension points (B and C) respectively. By applying the sine 
law, these distances can be expressed as 
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and the total length of the cable is given by 
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where s and c are the abbreviations for the trigonometric sine 
and cosine functions respectively, �1 and �2 are the angles of L1
and L2 with respect to the horizontal, D is the position of the 
movable suspension point B’ along the portion BC with respect 
to the tip of the boom, and  

6��� �
 (4) 
                            
is the planar orientation of BC with respect to the horizontal, 
and �6 the elastic rotational displacement at node 6, which 
represents the end point of the elastic portion of the boom.  
Manipulating Eq. (3) and utilizing the trigonometric relations to 
isolate �1 yields 
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where Atan2(y,x) is the arctangent function of two arguments; 
it computes the arctangent of the ratio y/x but utilizes the sign 
of each argument to determine which quadrant the resulting 
angle belongs to. 
In order to eliminate �1 from L2, Eq. (2) is written as 
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Using the trigonometric transformations, the above equation 
gives the compact expression of the length L2 as 
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Differentiating Eq. (8) with respect to time gives 
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Kinematics of the pulley  
The global position of the pulley can be described as   
 

221 �cLxx C �
 (12) 

221 �sLyy C �
 , (13) 
               

with
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 , (15) 

where xC and yC are the coordinates of the tip of the boom with 
respect to the inertial reference frame, and w6 is the transverse 
displacement of point B with respect to the x-axis of the boom. 
Differentiating Eqs. (12) and (13) twice with respect to time 
gives the acceleration components of the pulley as 
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Kinematics of the payload
The global position of the payload is expressed as 
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 (19) 

which can be differentiated twice with respect to time to give 
the absolute velocity and acceleration of the payload as 

2
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Kinetics of the payload 
Consider the free body diagram of the payload as shown in   
Fig. 2. Applying Newton’s second law in x-and y-directions 
leads to 
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where T3 is the tension in the payload cable.  
Using Eq. (23) to eliminate T3 from Eq. (22) and inserting Eqs. 
(20) and (21) in the resulted equation gives the differential 
equation of m2 in implicit form as 
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which in view of Eqs. (16) and (17) gives the full nonlinear 
differential equation of the payload in explicit form as 
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Kinetics of the pulley 
Consider the free body diagram of the pulley in Fig. 2. Since 
the pulley is assumed as frictionless, the tension in L1 is equal 
to the tension in L2. Hence, applying Newton’s second law in x1
and y1 directions gives 

112312 )( xmsTccT ��
�� 	�� (26) 

1123121 )( ymcTgmssT ��
��� 	�� . (27) 
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Figure 2: Free body diagram of the elastic and rigid parts 
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Substituting Eq. (23) into Eq. (27) and utilizing Eq. (21) yields 
the magnitude of the tension in the upper cable as 
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Substituting Eqs. (28), (22) into Eq. (26) and using Eq. (20) 
gives the full nonlinear equation of motion of the pulley in 
implicit form  
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Using the trigonometric transformations, it can be shown that 
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which can be inserted into Eq. (29) to give      
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where )( 21 mmM �
 . Using Eqs. (9) and (10) to eliminate 2L�

and 2L��  from Eqs. (16) and (17), and substituting the result in 
Eq. (31) gives the full nonlinear differential equation of  m1 as 
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One important aspect to be mentioned here is that choosing the 
angular coordinates �1 and �2 results in an explicit and 
relatively short differential equation for m1 (Eq. 32), which can 
be too long if the cartesian coordinates are used instead.  

Dynamics of the rigid part (BC)
As shown in Fig. 1, the position of the center of gravity of 
member BC with respect to the inertial reference frame O-x0y0z0
can be represented as  
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where 00 ˆandˆ yx are unit vectors in the directions x0 and y0

respectively, with 
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The component of the acceleration of point G in the lateral 
direction of the boom can be expressed as 
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Applying Newton’s second law to member BC (Fig. 2) in the 
lateral direction gives 

� � yBCBCB GmcgmssTQ ��
������ ����� )()( 21 , (37) 

where mBC denotes the mass of member BC, and QB is the shear 
force at point B. Substituting Eqs. (28) and (36) in Eq. (37) 
yields 
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By eliminating 1y��  from Eq. (38) the explicit expression of the 
shear force at the boundary between the elastic the elastic and 
rigid parts can be expressed as 
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Similarly, the moment equation about point B can be written in 
the form  
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Therefore, the final expression of the bending moment at point 
B can be expressed as 
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In view of the free body diagram of the elastic part (Fig. 2), the 
calculated QB and MB can be considered as the exciting loads 
which couple the dynamics of the elastic and rigid parts 
together.   
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Figure 3: Geometry of a single boom element, all axial force  
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Dynamics of the elastic part (AB)

For deriving the finite element model of the elastic part, 
the effects of rotary inertia, transverse shear deformation, and 
the axial force are neglected.  Accordingly, with reference to 
the single element shown in Fig. 3, the equation of motion in y-
direction has the form 
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V
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where m represents the mass per unit length of the boom and ay 
is the absolute lateral acceleration of the element located at x,
such that 
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Substituting Eq. (46) into Eq. (45) and utilizing the relation 
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where 
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represents the distributed lateral load acting on the part AB.
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Figure 4 shows the free body diagram of a single finite element 
of length h, the element force vector (acting on the nodes i and 
i+1) can be expressed as  
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where Ne is the 4�1 cubic interpolation functions vector which 
relates the transverse displacement )(�w to the node variables 
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iiiie ww ][ 11 ��
 ���  [6]. The element mass and 

stiffness matrices are also defined as 
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where eN !! denotes the second derivative of Ne with respect to 
the local coordinate �.
Since p(x,y) varies linearly with the position of the element (x),
each element has a different force vector whose magnitude 
depends on the location of the element along the boom. 
Therefore, to calculate the integration in the right hand side of 
Eq. (50), equation (49) can be rewritten as 
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with
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where h$$ �0  is the local longitudinal axis of the element, 
and xi locates the element under consideration with respect to 
point A as shown in Fig. 4. Then, inserting Eq. (53a) into Eq. 
(50) and carrying out the integration yields 
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By dividing the boom into five elements (i = 1,…,5), the mass 
matrix, the stiffness matrix, and the nodal force vector can be 
easily constructed by the assembling process [6] to give the 
equations of motion that governs the elastic vibrations as 
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where M and K are the 12�12 constant symmetric mass and 
stiffness matrices respectively, F is the 12�1 nodal force vector 
and 
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is the 12�1 nodal displacement vector with wi and �i
representing the nodal translational rotational displacements 
respectively at node i with respect to the x-axis of the boom. 
It is obvious that the total load vector (F) is equal to the nodal 
force vector f resulting from the assembling process due to 
p(x,y) plus the force vector r due to the external loads at the 
boundaries (A and B) of the boom (Fig. 2), i.e. 
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and 
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BBAA MQMQ
r (59) 
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Because the boom is clamped at x = 0, the translational and 
rotational displacements must be zero, w1 = 0 and �1 = 0. 
Therefore, Eq. (55) can be partitioned to take the form 

,
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1
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�

KK
KK

�
�
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��
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(60) 

where 

,]00[][ 111
TTw 

 �� (61) 

.][ 66222
Tww �� �
� (62) 

       

In view of Eq. (60), the equations of motion of the boom can be 
expressed as 

,2222222 F�K�M 
��� (63) 

and the reaction force QA and the luff moment MA at point A
can be obtained from 

1212212 F�K�M 
��� (64) 
            

Notice that, the force vector in Eq. (63) is coupled with the 
nonlinear differential equations of m1 and m2 through the 
boundary reactions QB and MB, which are expressed previously 
in their final nonlinear form in Eqs. (40) and (43). These two 
equations can be used to eliminate QB and MB from Eq. (63), 
which in conjunction with Eqs. (32) and (25) represent the 
nonlinear equations of motion of the complete crane. These 
equations contain the variables � (t), L(t), and D(t) as inputs to 
control the vibrations in the crane. Notice also that in view of 
Eqs. (12,13, 18 and 19) and with the knowledge of w6, �6, �2, 	2 
and the three inputs; the position of m1 and m2 with respect to 
the base of the boom (A) can be easily computed. 
It may be more realistic to introduce the luff moment MA(t)
instead of the luff angle � (t) as an input to control the elastic 
vibrations in the boom. Therefore, the equation that relates 
them to each other can be directly extracted from Eq. (64) as 

" # " #

" # .25
60

26313
420

2
0

2
2

232
2

2

AMmhhfh

hwh
h
EIhwhmh

���


����

�

��

��

����
(65) 

This implies that � (t) is now a generalized coordinate added to 
the other generalized coordinates of the system, which 
increases the order of the overall model by 2, and the full 
nonlinear mathematical model of the complete crane is the 
coupled Eqs. (65), (63), (32) and (25) with MA(t), L(t), and D(t)
as control inputs and AA yx ���� and  as unwanted disturbance 
inputs. 

Derivation of the equilibrium point  
At the equilibrium point, it is clear that 

,002

0201







	
��

(66) 

and the elastic translational and rotational displacements vector 
)( 0� can be computed from Eq. (55) by setting ���  and the time 

dependent terms in F equal to zero, i.e. 

.0
1

0 FK� �
 (67) 

By inserting Eq. (66) into Eq. (5) the magnitude of �20 can be 
expressed as 

,cos 0
0

01
02 ��

�

�
��
�

�

 � �� c

L
D

(68) 

where 

.0600 ��� �
 (69) 

Similarly, the magnitude of MA0 can be calculated from Eq. (65) 
as

" # .
60
526 0

2
02

2
0230 �� cmghhwh

h
EIM A ���
 (70) 

Expanding the model about the equilibrium point 
To study the complex nonlinear model, Taylor series is 

utilized to expand the nonlinear terms about the equilibrium 
point, which is characterized by Eqs. (66-70). Then, by keeping 
only linear and quadratic terms, the equations of motion of the 
crane can be written in the form 

,2100 nuBuBuBqKqM ���
� ddcc ������ (71) 
            

where 
Tww ][ 226622 	���� %%%%%%%
 �q (72) 

is the 13�1 generalized displacement vector, and 
T

Ac DLM ][ %%%
u (73) 

is the control input vector, and 
T

AAd yx ][ ������ 
u (74) 

is the disturbance vector, M0 and K0 are 13�13 total mass and 
stiffness matrices respectively, B1 and B2 are 13�3 input 
matrices, Bd is the 13�2 disturbance matrix, and all nonlinear 
terms are collected in the 13�1 vector n. The structure of M0,
K0, B1, B2 and Bd is not explicitly described for the sake of 
conciseness. 

The idea behind writing the equations of motion in the 
form given in Eq. (71) is to isolate the nonlinear terms in order 
to find analytically and by simulation which of them are 
important and which can be neglected; this is useful because it 
may be very difficult to design the control system for the 
current full nonlinear MIMO model due to its high complexity. 
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ANALYSIS AND SIMULATION RESULTS 

Studying the influence of the variables L and D on the 
equilibrium position of the payload 

With the computed generalized displacements at the 
equilibrium configuration, the equilibrium position of the 
payload with respect to the base of the crane can be calculated 
from Eqs. (18) and (19) such that 

02020400603

0220 )(

���� cLcLswcL
xxx AA

���


�

(75) 

                      

,

)(

02020400603

0220

lsLsLcwsL
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����


�


����
(76) 

where 02L can be computed from Eq. (8) as 
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��cDL
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L (77) 

To investigate the influence of the input variables in displacing 
the equilibrium position of the payload; the following 
parameters of a small model constructed for the task of 
experimentation are choozen: 

GPa.207,12

,m1088.1kg,2.1kg/m,2.1

,01.0kg,5,m/s81.9,5.0

,4,,5,2m,5.0

2
4

49
212

2
40

4043434
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�

ELmI

Imm

mmmgLD

LLLlLhLLL

BCBC

BC
(78) 

Figures 5 and 6 illustrate the influence of the variables L and D
on displacing the equilibrium position of the payload for 
different values of �, it can be recognized from Figure 5 that 
for all possible values of �, changing L can efficiently displace 
y20 with a negligible effect on x20. In addition, it can be noted 
from Figure 6 that for � < 1.0 rad., which is the normal 
operating configuration of the crane, the input D can change x20
considerably with a little effect on y20. Therefore, it can be 
shown that the variable D can be used efficiently to control the 
horizontal coordinate x2, whereas, the variable L can be 
employed to control the vertical coordinate y2.

As a quick check to ascertain the capability of D to control 
the horizontal oscillation of the payload, the linearized open 
loop model ( 0n 
 ) with � = &/4 and the given parameters in 
Eq. (78) are considered. By closing the loop using delayed 
feedback [7,8] of the horizontal displacement of the payload 
(%x2) and assigning roughly the value of the controller gain and 
the applied time delay such that 2.0|| max '%D , it can be noted, 
as shown in Fig. 7, that the oscillation amplitude of the payload 
can be significantly reduced. 

On the other hand, it can be easily confirmed that the crane 
is completely state controllable by rewriting Eq. (71) in the 
state canonical form and observing that the corresponding input 

matrix has no rows with zeros and/or linear dependent values 
for all values of � under consideration.      
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Effect of D and � on the fundamental frequency of the 
crane 

Figure 8 illustrates the variation of the fundamental 
frequency with respect to changing D for different values of �.
In Fig. 8(a), the boom is considered to be relatively rigid (EI is 
large). Therefore, it can be noted that the fundamental 
frequency undergoes a little decrement as the operating luff 
angle decreases; this is reasonable because of the geometrical 
behavior of the rigging, which produces lower restoring 
moment due to the lower ratio of the vertical displacement to 
the horizontal displacement of the pulley m1 as � gets smaller. 
In Fig. 8(b), an elastic boom is considered, and it can be noted 
that the natural frequency is smaller for higher values of the 
luff angle because the horizontal component of the transverse 
deflection experienced by the boom, which is proportional to 
sin(�), has more contribution in affecting the side to side 
motion of the vibrating rigid components. 

Effect of the nonlinear terms on the simulation 
results 

To examine the effect of the nonlinear terms on the 
response of the crane in the operating range, the model is 
simulated for different values of �, L and D such that, in the 
first step, the full nonlinear model is simulated for several 
initial conditions and base excitations. In the next step, the 
nonlinear terms in n are eliminated and simulation is conducted 
again to find their influence in the overall response. Simulation 
results show that within a considerable operating amplitudes of 
the generalized displacements, the response of the nonlinear 
model is close to the linear one obtained by eliminating all 
nonlinear terms, i.e. by setting .0n 
  To mention a sample of 
these results, Figs. 9 and 10 illustrate the responses of the 
linearized and nonlinear model for � = &/4 and an initial 
velocity of rad/s.5)0(2 
	�  It can be noted that the response of 
the linear model coincides with that of the nonlinear one with 
only a small difference, observed in the elastic displacements 
(as shown in w6 and �6); this small difference can be ignored in 
the control system design process due to the complexity that 
may be introduced by considering such small nonlinear effects.  

In Figs. 11 and 12 the linear and nonlinear responses due 
to horizontal base excitation at 95% of the fundamental 
frequency of the crane are shown, it is noted that the obtained 
results highlight those obtained previously in the free vibration 
case. Therefore, it is obvious that with the controllability of the 
crane, the linearized model can be used to find a suitable 
control law. On the other hand, the full nonlinear model can be 
used in addition to the linearized one to simulate the designed 
closed loop control system. This will be discussed in detail in 
another paper.  
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CONCLUSIONS 
The nonlinear equations of motion of the elastic crane are 
derived in their final explicit form, the nonlinear model is 
investigated by simulations for different values of crane 
parameters and the results were compared with those obtained 
from the linearized model about the corresponding equilibrium 
configuration. The results show that, within a considerable 
operating range of the generalized displacements, the linearized 
model can be used efficiently for the task of designing the 
control system of the crane.    
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