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Abstract

Technical systems and system’s components undergo gradual degradation
over time. Continuous degradation occurred in system is reflected in de-
creased system’s reliability and unavoidably lead to a system failure. There-
fore, continuous evaluation of State-of-Health (SoH) is inevitable to provide
at least predefined lifetime of the system defined by manufacturer, or even
better, to extend the lifetime given by manufacturer. However, precondition
for lifetime extension is accurate estimation of SoH as well as the estimation
and prediction of Remaining Useful Lifetime (RUL). For this purpose, life-
time models describing the relation between system/component degradation
and consumed lifetime have to be established. In this contribution modeling
and selection of suitable lifetime models from database based on current SoH
conditions are discussed.
Main contribution of this paper is the development of new modeling strate-
gies capable to describe complex relations between measurable system vari-
ables, related system degradation, and RUL. Two approaches with accom-
panying advantages and disadvantages are introduced and compared. Both
approaches are capable to model stochastic aging processes of a system by
simultaneous adaption of RUL models to current SoH. The first approach
requires a priori knowledge about aging processes in the system and accu-
rate estimation of SoH. An estimation of SoH here is conditioned by track-
ing actual accumulated damage into the system, so that particular model
parameters are defined according to a priori known assumptions about sys-
tem’s aging. Prediction accuracy in this case is highly dependent on accurate
estimation of SoH but includes high number of degrees of freedom. The sec-
ond approach in this contribution does not require a priori knowledge about
system’s aging as particular model parameters are defined in accordance to
multi-objective optimization procedure. Prediction accuracy of this model
does not highly depend on estimated SoH. This model has lower degrees of
freedom.
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Both approaches rely on previously developed lifetime models each of them
corresponding to predefined SoH. Concerning first approach, model selec-
tion is aided by state-machine-based algorithm. In the second approach,
model selection conditioned by tracking an exceedance of predefined thresh-
olds is concerned. The approach is applied to data generated from tribo-
logical systems. By calculating Root Squared Error (RSE), Mean Squared
Error (MSE), and Absolute Error (ABE) the accuracy of proposed mod-
els/approaches is discussed along with related advantages and disadvantages.
Verification of the approach is done using cross-fold validation, exchanging
training and test data. It can be stated that the newly introduced approach
based on data (denoted as data-based or data-driven) parametric models can
be easily established providing detailed information about remaining use-
ful/consumed lifetime valid for systems with constant load but stochastically
occurred damage.

Keywords: Structural health monitoring; wear aging; prognosis; feature
extraction; state classification; remaining lifetime modeling; condition-based
maintenance

1. Introduction

Technical systems operating under different, usually intermittent and
hardly predictable, loading profiles undergo gradual degradation over time.
Examination of degradation mechanisms and modes often entails an exami-
nation of materials rather than the system components. Moreover, different
systems/materials exhibit different types of degradation. For instance, either
gradual degradation of machining tool or sudden tool fracture or breakage oc-
curs due to high operational load (like high pressures, strong fatigue loads)
on machine components during the machining processes [1] [2]. However,
gradual degradation of system ultimately leads to failure, whereas the failure
is defined as a loss of functionality where the system is not capable to per-
form predefined tasks. Time point at which this happens is stated as end of
service lifetime. From that point onwards the system becomes not anymore
functional and has to be phased out of use. For diagnostic (and sometimes
also for prognostics) purposes, the propagation of degradation over time is
often continuously monitored [3] [4]. Benefits achieved by continuous moni-
toring of current systems degradation level are primarily reflected in timely
performed maintenance and operation action targeting to avoid catastrophic
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events (for instance: with life-threatening injuries of humans), or increased
costs of repairment and operation actions if not done in right time. The ben-
efit emphasized here is the possibility for service lifetime extension under the
condition that the information about current level of system degradation is
integrated in control strategy, so as the controller outputs are not generated
solely on the basis of commonly based system parameters but also considers
actual level of system degradation. For these purposes, the tasks to be solved
are: i) estimation of degradation indicator, ii) tuning of controller, and iii)
adaption of the operating conditions. In this contribution, degradation level
is discussed in terms of State-of-Health (SoH) and Remaining Useful Life-
time (RUL) estimation, both of them describing aging of systems/materials
in similar way. The degradation level in case of RUL is expressed percentu-
ally and denotes the lifetime remained up to failure occurrence. If discussed
in reliability framework, Probability of Failure (Pf ) function is used to ex-
press RUL. Concerning T as the moment in time of failure occurrence and t
as expected (predefined) survival time, Pf is expressed as

Pf = P (T − t > x|T < t). (1)

Regardless of parameters used to describe degradation level, the determina-
tion of the degradation level is a precondition for lifetime extension. Conse-
quently, deployment of lifetime model establishing relationship between oper-
ating conditions (model input) and degradation parameter (here: RUL) is of
high importance. Thus, a number of lifetime model approaches are proposed
in literature whereas all models can be grouped in data-based, model-based,
and experience-based approaches [1-10]. Whilst model-based approaches at-
tempt to find mathematical description of degradation processes, data-based
approaches typically rely on statistical and artificial intelligence methods
such as Hidden Markov Models (HMM), Neural Networks (NN), Unscented
Kalman Filtering (UKF), and similar. To reveal information about degra-
dation, experience-based approaches take into consideration previous knowl-
edge of processes occurred in the system integrating the same into the model.
Inceptive steps towards systems lifetime determination using cumulative dam-
age model are introduced in the work of Palmgren and Miner [5, 6]. Cu-
mulative damage model requires the knowledge about the relation between
nominal stress and the number of cycles endurable by system under the as-
sumption that the stress is held constant. The effects resulting from the stress
applied to a system whose amplitude lies below predefined material specific
level (so-called endurance limit) are neglected. Moreover, the sequence of
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stress appearance is not considered. It may be concluded, Palmgren-Miner
rule has some shortcomings primarily reflected in aforementioned assump-
tions and model linearity. Due to this, some authors [7, 8] proposed modifi-
cations of Palmgren-Miner rule. Modifications introduced by Henry [7] and
Marco and Starkley [8] considers adding nonlinearities to Palmgren-Miner
model to adapt the same to a specific systems. Contrary to those determin-
istic models, research on lifetime models conducted recently is focused on
stochastic models capable to describe stochastic nature of degradation pro-
cess.
Remaining useful lifetime estimation based on Rainflow Counting Algorithm
(RCA) and Palmgren-Miner rule is introduced in [9]. This approach is used
to model thermomechanical fatigue of semiconductors whose application is
found in a variety of technical systems: wind turbines, speed drives, elec-
tric vehicles, airplanes, and similar. Equivalent temperature is considered as
input. The effect of decreased stress endurability of metals with increased
temperature is considered. To extract information about equivalent tem-
perature, the authors use existing temperature-dependent model based on
continuously monitored power factor. By using proposed time-temperature-
dependent model, better accuracy in RUL calculation of semiconductors is
obtained.
Singleton et al. [10] compare performance of Kalman Filter (KF) and Ex-
tended Kalman Filter (EKF) in RUL estimation of bearings. Different fea-
tures are extracted from measurements originating from experimental tests
done under different operating conditions. Further, time- and time-frequency-
based features (variance and entropy) are calculated and compared with re-
spect to their suitability for prognostics. Presented results proves that the
entropy is more capable to describe gradual damage progression especially in
inceptive degradation phase. Moreover, obtained prediction accuracy using
EKF is better than the accuracy obtained using KF.
Concerning limitations of model- and data-driven-based approaches reflected
primarily as necessary knowledge about underlying physical processes and the
dependency on training data sets. Pecht et al. [11] propose a fusion of both
approaches to assess the RUL. The model deployed in [11] is adapted to RUL
estimation of electronics-rich systems. Performance of introduced model is
illustrated on an example of printed circuit board. To establish a model, the
parameters capable to reveal systems State-of-Health are chosen. Obtained
knowledge about underlying physical processes, consequently the detection
of present anomalies is utilized in this step. Obtained SoH is further used
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to select appropriate data-driven based model (here: physics-based model)
to predict RUL. According to [11], proposed model yields satisfying results
regarding timely performed fault detection, fault criticality determination, as
well as RUL prediction of electronic assemblies. The model can be extended
to other application fields.
In [12], the classification of prognostic models into probabilistic and non-
probabilistic models is proposed. Additionally, the comparison between non-
probabilistic models and self-proposed Wiener process-based model is carried
out by means of RUL prediction efficiency. As that, degradation indicator
is identified using Principal Component Analysis and modeled by Wiener
process. Whilst probabilistic models rely to a large extent to a probability
theory and concern degradation parameter (RUL) as a random variable, non-
probabilistic models rely on observations and measurements captured from
system. Multiple Linear Regression, Neural Networks, and physics-based
models are taken as an example of non-probabilistic models and discussed in
[12] with special emphasize to RUL prediction accuracy. In addition, Wiener,
Gamma, and Brownian processes as an example of probabilistic models are
stated, but are not discussed in detail. Complete analysis is done based on
the data provided through 2008 PHM Data Challenge [13]. By comparison of
non-probabilistic models with Wiener process-based model proposed in [12],
it is shown that RUL prediction using Wiener process provides more accu-
rate prediction in comparison with traditional lifetime modeling approaches.
Possibility to use stochastic process modeling for RUL prediction as one of
approaches towards lifetime modeling is thereby proved.
Further, detailed review of statistical data-driven approaches for systems life-
time estimation with special emphasize to recently developed ones is given in
[14]. The models reviewed in [14] are generally divided into the models rely-
ing on directly observable states and models including non-directly observable
states. As stated in [14], statistical data-driven approaches estimate RUL by
fitting deployed statistical model to previous (past) data captured through
condition monitoring system. These models rely on probabilistic models
and do not consider underlying physical principles. The models taking in
consideration directly observable states as discussed in [14] are regression-
based models, Wiener process, Markovian-based models, and Gamma pro-
cess. Contrary to these models, the models considering indirectly observable
states as stated in [14] are stochastic filtering-based models, hazard mod-
els, Hidden Markov model, and Hidden semi-Markov model. According to
authors, RUL modeling using models with hidden (not directly observable)
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states are more complex due to complex relations between hidden and ob-
served states, but are more closer to practical application as system states
are often not directly accessible (measurable). Regardless of used statistical
model, practical application is still aggravated and the further research is
necessary.
Similarly, Wang et al. [15] infer RUL estimation of gearboxes using two
health indicators extracted based on frequency spectrum of vibration signal.
Both features (here stated as health indicators) are constructed using two
Bayesian networks which are mutually independent. According to [15], early
detection of fault using extracted health indicators is possible. Moreover,
these features along with sequential Monte Carlo algorithm are further used
to predict future State-of-Health of gearboxes and to obtain probability func-
tion of gearboxes failure. Using aforementioned probability function accurate
RUL estimation is possible. Efficiency of proposed model is proved using ex-
perimental data from a gearbox accelerated tests.
It may be concluded from previous discussion that there are a number of
different lifetime models developed over years. Those models have specific
limitations and are not dependent on current SoH. Some models require a
priori knowledge of underlying physical degradation processes, some of them
are dependent on the quality of condition monitoring data to a large extent,
show different model complexity, or faces problems with regard to practical
application. This implies that existing models for RUL estimation are not
adapted to current level of system’s aging. An adaption of RUL models to
current level of system’s aging may contribute to lower prediction error and
justifies the development of the two approaches developed in this contribu-
tion.
Primary contribution of this paper is the development of a new type of
damage accumulation model applicable to tribological systems which inte-
grates the knowledge (using measurements) about current State-of-Health in
the model itself. First approach introduced in section 2 considers Acoustic
Emission energy as input signal to the model, whilst the second one uses
the cumulative sum of AE energy as model input. A detailed description of
both models is given in section 2. Experimental test rig, obtained AE-based
characteristic values, steps towards model validation, as well as discussion
about obtained results are detailed in the third section. The contribution
closes with summary and outlook.
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2. Concept of SoH-based lifetime modeling

2.1. General overview

According to literature [12-19], different wear mechanisms and modes
can be distinguished in tribological systems which exhibits sliding or rolling
motion. Structural health monitoring of wear-susceptible systems can be
performed using AE-based monitoring methods, as proposed in [21] or [23].
By wear examination in tribological system clear distinction between three
different degradation phases are noticeable based on AE measurements: i)
run-in phase, ii) permanent wear phase, and iii) wear-out phase [16].

In [16] and [17], a tribological system is considered establishing a new
approach able to distinguish three different wear phases. As system mea-
surements in [16] and [17], AE measurements are used. Based on AE mea-
surements, specific frequency spectrum of AE signal corresponding to signal
energy is used to distinguish different wear phases. At first glance, higher
amplitudes of AE energy are evident at the very beginning and at the end cor-
responding to run-in and wear-out phase, respectively. Additionally, higher
amplitudes are noticeable in some time periods between run-in and wear-
out phases. The fact that different phases can be differentiated concerning
energy of AE signal is utilized for lifetime model establishment and model
parameter optimization. General overview of proposed concept is given in
Figure 1. Based on the continuously measured AE signal using piezoceramic
sensor a suitable feature extraction (here: using signal transformation in
time-frequency domain) is realized. Using AE energy or integrated energy
in combination of the trained lifetime model, RUL estimation can be done.
The same data still can be used for Fault Detection and Isolation (FDI).

Tribological system Piezoceramic sensor Data acquisition Feature extraction
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Figure 1: General overview

Model Type I. The first model proposed here relies on a state machine ap-
proach to establish relation between damage accumulated in the system and
accompanying consumed lifetime. The state machine suggested here is based
on four machine states whereas these four states can, but do not have to,
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correspond to three different phases mentioned above. Each state as well as
transitions from one state to another is defined according to a priori iden-
tified thresholds, illustrated as tr1, tr2, tr3, and trDIFF (Figures 2 and 3).
For this approach it is assumed that the thresholds are defined by experts.
They are equal for different experiments. Based on one training example,
the thresholds can be defined. The states are defined as follows: i) state S1

is defined as the state with high changes in the system at the beginning of
service lifetime (initial use of the system), ii) states S2 and S3 are the states
with small and high changes in the system successively occurred between
first use of the system and loss of functionality, and iii) state S4 is a state
characterized by loss of functionality.
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Figure 2: State selection according to predefined thresholds

Initial state is STATE 1, denoted as S1 in Figure 2. Possible transition
from state S1 is only to state S2 and occurs when the threshold tr1 is exceeded
and model input exhibits decreasing trend. Once state S2 is reached, it is not
possible to return to state S1. Possible transitions from state S2 are to states
S3 and S4. If threshold tr2 is exceeded and model input shows increasing
trend, state S3 is reached. Otherwise, if threshold trDIFF is exceeded showing
simultaneously increasing trend of model input, state S4 is reached. Once S4

is reached, it is not possible to return to other states. State S2 can be reached
also from state S3 in case that threshold tr2 is exceeded and the decreasing
trend of model input is detected. As long as the thresholds tr1, tr2, tr3, and
trDIFF are not exceeded, machine state would not be changed. In this case,
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thresholds are fixed and are not used for optimization of model parameters.
Additionally, decreasing or increasing trend of input into the model is

determined and utilized in machine state determination. Once the state is
recognized, appropriate mathematical description of lifetime model is chosen
to estimate consumed (remaining) lifetime. This simultaneously means that
four different lifetime models, each of them corresponding to one machine
state, have to be deployed.

Lifetime models
deployment

Expert
knowledge

Lifetime model
database

©SRS 2016

State selection
module

Measured data Lifetime model
selection module

Remaining
lifetime

prediction

Predefined thresholds

Lifetime model parameters
optimization (NSGA-II)

Training
data sets

Offline

Online

0 2000 4000 6000 8000 10000 12000
0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000 12000
0

0.2

0.4

0.6

0.8

1

trDIFF

tr2

tr3

tr1

0 2000 4000 6000 8000 10000 12000
0

0.2

0.4

0.6

0.8

1

Predefined states

S2S1 S2 S3 S4S2S2S3

Increasing/decreasing trend

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 2000 4000 6000 8000 10000 12000

Figure 3: Concept of SoH-based lifetime modeling using lifetime model selection based on
actual machine state

Mathematical formulation used to describe relation between degradation
parameter and consumed (or remaining) lifetime valid for particular state is
identical in all four states, but the parameters accompanied to the model are
not the same. As that, the same functional form models relation between
degradation parameter and consumed (or remaining) lifetime, but model pa-
rameters have to be optimized for each particular state individually, as listed
in Table 1. Parameters to be optimized according to recognized machine
state are ax0-ax8, where x denotes a particular machine state. Accordingly,
four different states require the optimization of 36 model parameters, which
means 9 parameters per state. Mathematical equations describing aforemen-
tioned relations are listed in 3.
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TABLE 1: Mathematical formulations of lifetime models for Model Type I (based on [25])

STATE 1 LT = a10 +
a11

1 + ea12(F1−a13)
+

a14

1 + ea15(F1−a16)
+

a17

1 + ea18F1

STATE 2 LT = a20 +
a21

1 + ea22(F1−a23)
+

a24

1 + ea25(F1−a26)
+

a27

1 + ea28F1

STATE 3 LT = a30 +
a31

1 + ea32(F1−a33)
+

a34

1 + ea35(F1−a36)
+

a37

1 + ea38F1

STATE 4 LT = a40 +
a41

1 + ea42(F1−a43)
+

a44

1 + ea45(F1−a46)
+

a47

1 + ea48F1

Changes in consumed lifetime are denoted as LT and extracted feature (in
this case measured operation parameter) as F1. The determination of opti-
mal values of unknown model parameters is performed using Non-dominated
Sorting Genetic Algorithm (NSGA-II). The optimization algorithm is used in
the application to define unknown model parameters by optimization. Non-
dominated Sorting Genetic Algorithm is used in its original form proposed
by Song [24].

The algorithm used here is a sort of Genetic Algorithms (GAs). The
approach provides simultaneous optimization for more than one objective
function. By comparing GA with NSGA-II, it is worth to emphasize that
so-called pareto non-dominated fronts using NSGA-II are formed of best
ranked individuals, whereas the ranking is done based on euclidean distance.
Defined objective functions here are closely related to the minimization of
discrepancies between experimental and estimated data sets. Model param-
eters are considered as a population of NSGA-II, whilst different values of
model parameters provide different trade-off between defined objectives. As
that, the objectives are seen as conflicting objectives and the optimization
of model parameters can be carried out using NSGA-II. Further details are
given in [24].

Features utilized for optimization of model parameters as well as for model
validation are explained in detail in the next section.

Model Type II. Conversely to the modeling approach introduced in previ-
ous section where the selection of lifetime model is conditioned by machine
state recognition, the model selection concerning Model Type II is based
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Figure 4: Concept of State-of-Health-based lifetime modeling by tracking predefined
thresholds exceedance

primarily on appropriate feature extraction and an included thresholds op-
timization. According to optimized thresholds and differential of extracted
features showing its increments, three different behaviors i, ii, and iii are
modeled. Here, i) denotes no significant change in lifetime consumption, ii)
denotes noticeable, but not significant change in lifetime consumption, and
iii) denotes significant change in lifetime consumption. Here, aforementioned
states are defined in accordance to the behavior observed in practice. Con-
trary to Model Type I where thresholds are fixed and not concerned in model
parameters optimization, here the optimization of thresholds is considered as
the thresholds are integral part of the model. Accordingly, optimized model
parameters obtained using NSGA-II are the thresholds of Model Type II and
they are the same for different experiments. Extracted features have to be
capable to reflect monotonically increasing character of the degradation as
lifetime model selection is based solely on threshold exceedance (Figure 4).

Accordingly, the relation between degradation parameters and consumed
(or remaining) lifetime cannot be modeled using the same functional form.
Therefore, different mathematical formulations have to be chosen. Math-
ematical relations are listed in Table 2. Particular mathematical model is
selected in accordance with predefined threshold exceedance. As already
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TABLE 2: Mathematical formulations of lifetime models for Model Type II

WITHOUT
SIGNIFICANT
CHANGE

LT = b10 +
b11

1 + eb12(F2−b13)
+ b14F2 + b15F

b16
2 +

b17

1 + eb18F2

NOTICEABLE,
BUT NOT
SIGNIFICANT
CHANGE

LT = b20 +
b21

1 + eb22(F2−b23)
+

b24

1 + eb25(F2−b26)
+ b27e

b28(1−F2)

SIGNIFICANT
CHANGE LT = b30 +

b31

1 + eb32(F2−b33)
+

b34

1 + eb35(F2−b36)
+

b37

1 + eb38F2

pointed out, thresholds are defined by using NSGA-II optimization algo-
rithm, so that the thresholds as well as model parameters are simultaneously
optimized. Model parameters to be optimized are bx0-bx8, while are bx9-bx12
are thresholds accompanied to aforementioned changes of consumed lifetime
(tr1, tr2, tr3, trDIFF ). Similarly, LT denotes changes in consumed lifetime
and F2 denotes extracted feature capable to describe monotonical increase
of degradation indicator over time. Features F2 utilized for optimization of
model parameters and validation are explained in detail in the next section.

3. Experimental validation

3.1. Experimental setup and monitored system variables

As already stated in section 2, experimental data sets are required for
lifetime model training and validation. For purpose of wear examination
in a concrete tribological system, operation variables to be used for model
training and validation, namely measurements gathered through continuous
health state monitoring, have to be capable to describe wear effects. In
the tribological system (depicted in Figure 5 and setted up at the Chair of
Dynamics and Control, University of Duisburg-Essen) two operation vari-
ables are used as variables capable to reveal wear initiation and propagation:
hydraulic pressure and Acoustic Emission [16, 17]. Any of these two vari-
ables/measurements captured from real system can be used as training or
validation data sets as both of them describe in similar way occurred tribo-
logical effects in the system. In this contribution, only AE measurements are
used.
The system consists of two metallic plates sliding against each other. Sur-
face areas of plates are not the same but are in ratio 1:5. The plate with
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larger surface area is fixed and performs no movement, whilst the plate with
smaller surface area performs linear movements. The plate is driven by hy-
draulic cylinder whereas the movement trajectory is in advance planned and
programmed. This means, the plate moves forward and backward in exactly
predefined time intervals. The movement is performed in time interval of 40
s followed by an idle time of 70 s, which is considered as one cycle. As may
be seen in Figure 5, normal force is applied targeting to accelerate aging.
The test are done under variable friction and lubrication conditions.
Tribological system is equipped with a set of sensors. For purpose of RUL
estimation, AE measurements are utilized. Acoustic Emission waves are
measured using a piezoelectric sensor. It is important to emphasize that AE
signal is a signal of low amplitude whereas frequency bandwidth in which AE
signal appears covers frequency bandwidth up to 1 MHz. Due to this, mea-
surement chain consist of preamplifier and FPGA-module with integrated
high-frequency A/D converters, as depicted in Figure 5. Such measurement
chain provides possibility for capturing continuous AE signal. It should be
noted that this approach is not based on counts, peaks, or similar facts typ-
ical for AE-based measurements. Those measurements are used in this case
alongside appropriate signal processing technique to reveal damage in the sys-
tem. Short-Time Fourier Transformation (STFT) is applied to continuous
AE signal, so that the obtained values correspond to each cycle (explained
above). Here, the energy of AE signal corresponding to a particular cycle is
obtained. Only one characteristic value for a given cycle representing energy
of AE signal is calculated. The dependencies and variations of piezoceramic
sensor coupling on quality of captured AE data is not examined. Conversely,
for measuring hydraulic pressure no amplifier or specific measurement chain
is required.

Features of AE signal are further used as input to lifetime model: for
the first model energy of AE signal, and for the second model cumulative
sum of energy of AE signal is used. Here, energy of AE signal per cycle is
understood as damage increment whereas accumulated damage is defined as
a cumulative sum of damage increments.

3.2. Experimental results

Four data sets, namely Z15, Z20, Z21, and Z24, obtained from tests
conducted under different operating conditions are used as training data
sets, whilst two additional data sets are used for model evaluation, Z22 and
Z16. The same training/evaluation data sets are used within both proposed
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models. Concerning Model Type I characteristic values of AE energy are
used as input into the model and corresponds to F1 in the equations listed
in Table 1. Taking in consideration Model Type II, not characteristic values
of AE energy but their cumulative sum is used as an input. Cumulative sum
of AE energy corresponds to F2 in the equations listed in Table 2.

Model Type I. Values of previously listed parameters in Table 1 after opti-
mization procedure is performed, are given in Table 3. Experimental and
estimated data sets are compared in Figure 6. Training data sets (Z21, Z22,
Z15, and Z20) and accompanying experimental and estimated values of life-
time are shown in the upper plot of Figure 6. Similarly, model validation
using validation data sets (Z16 and Z24) is depicted in the lower plot of
Figure 6.

TABLE 3: Optimized parameters of Model Type I
ax0 ax1 ax2 ax3 ax4 ax5 ax6 ax7 ax8

STATE 1 -0.122 0.247 -0.202 0.143 0.023 0.06 -0.310 -0.018 0.084

STATE 2 0.173 -0.178 0.365 -0.200 -0.039 -0.034 0.05 -0.16 0.315

STATE 3 0.075 0.21 0.263 0.113 -0.113 0.333 -0.122 -0.055 0.085

STATE 4 -0.084 0.298 -0.168 -0.103 -0.285 -0.384 0.014 0.155 -0.414

Model Type II. Values of optimized model parameters, which are previously
listed in Table 2, are given in Tables 4 and 5. Comparison of experimental and
estimated data sets is illustrated in Figure 7. Similarly as for Model Type I,
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training data sets (Z21, Z22, Z15, and Z20) and accompanying experimental
and estimated values of lifetime are shown in the upper plot of Figure 7,
whereas validation results for Z16 and Z24 are shown in lower plot of Figure
7.

TABLE 4: Optimized parameters of Model Type II
bx0 bx1 bx2 bx3 bx4 bx5 bx6

WITHOUT
SIGNIFICANT
CHANGE

-176
10e-5

3
10e-5

92
10e-5

103
10e-5

4
10e-5

67
10e-5

-207
10e-5

NOTICEABLE, BUT
NOT SIGNIFICANT
CHANGE

12
10e-5

-57
10e-5

165
10e-5

-170
10e-5

71
10e-5

166
10e-5

75
10e-5

SIGNIFICANT
CHANGE

85
10e-5

100
10e-5

-253
10e-5

-208
10e-5

-236
10e-5

-254
10e-5

255
10e-5

TABLE 5: Optimized parameters of Model Type II
bx7 bx8 tr1 tr2 tr3 TDIFF

WITHOUT SIGNIFICANT
CHANGE

248
10e-5

-162
10e-5

NOTICEABLE, BUT NOT
SIGNIFICANT CHANGE

142
10e-5

-301
10e-5

0.5988 0.6931 0.5903 0.9094

SIGNIFICANT CHANGE -300
10e-5

-108
10e-5

In Table 4, thresholds noted as tr1, tr2, tr3, and tDIFF are correlated
to differential of cumulative sum of AE energy, whereas threshold trDIFF is
used to indicate that the change has even happened.

3.3. Discussion about obtained results

Root Squared Error (RSE), Mean Squared Error (MSE), and Absolute
Error (ABE) are used as performance criteria to compare efficiency of two
proposed approaches/models. Some other criteria can also be used to obtain
a measure of model accuracy, but here the focus is set to RSE, MSE, and
ABE. Root Squared Error, Mean Square Error, and Absolute Error are
defined as
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TABLE 6: RSE, MSE, and ABE measures obtained using validation data sets
RSE MSE ABE

Z16 - Model Type I 67.1641 0.0924 12167

Z16 - Model Type II 120.8769 0.2992 21169

Z24 - Model Type I 101.7152 0.2119 21704

Z24 - Model Type II 142.6347 0.4166 20679

RSE =

√√√√ n∑
n=1

(estimated value− experimental value)2,

MSE =

n∑
n=1

(estimated value− experimental value)2

n
,

ABE =

n∑
n=1

|estimated value− experimental value|,

(2)

respectively. Concerning proposed two modeling approaches and two valida-
tion data sets (not training data sets), RSE, MSE, and ABE are calculated
and the results are listed in Table 6. A detailed look at Table 6 reveals that
the results obtained using (Model Type I ) are slightly better in comparison
with the results obtained using (Model Type II ).

According to Figures 6 and 7, it is noticeable that the deviation between
estimated and experimental data sets is not high. Small deviation obtained
concerning validation data sets as well as calculated error metrics prove the
efficiency of both proposed models to establish a relation between measured
(operation) variables and degradation related indicators (for instance: dam-
age increments).
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Figure 6: Experimental and estimated service lifetime using Model Type I : Upper four
plots - training datasets; lower two plots - validation datasets
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Figure 7: Experimental and estimated service lifetime using Model Type II : Upper four
plots - training datasets; lower two plots - validation datasets

In addition, a detailed analysis based on an identical metrics is carried
out with special emphasis to model applicability to lifetime prognosis. In
these terms, it would be assumed that not all incomes of measured operation
variables are available (as it is case in practice if the system is still func-
tional). Number of assumed available incomes is given in percentages of all
incomes and varied in steps of 10%. Accordingly, 10%, 20%, 30%, 40%, 50%,
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60%, 70%, and 80% of available incomes are considered. For prognosis pur-
poses, incomes which are not available are considered as constant and equal
with respect to the last available income. In Figure 8 two different cases
describing experimental test Z16 are illustrated. The two cases compare the
results using 40% and 80% of incomes. It can be seen that the accumulated
damage over the complete service lifetime for Z16 equals to 90. In detail,
this means that 40% of all incomes are incomes obtained between 0 and 36
of accumulated damage (red line), whereas 80% of all incomes are incomes
obtained between 0 and 72 of accumulated damage (blue line). Based on
this approach, it is assumed that there are no more changes in damage incre-
ments. This case is rarely if ever seen in practice, but still can be utilized for
model evaluation and examination of its applicability for prognosis purposes.
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Figure 8: Graphical illustration of an assumption that only a number of incomes of Z16 are
available: accumulated damage over complete service lifetime is 90, considered available
incomes: 40% and 80% of all incomes up to the EoL (red and blue line, respectively), all
incomes beyond 40% and 80% of all incomes held constant

Obtained results concerning varying number of available incomes applied
to both models and both evaluation data sets are depicted in Figures 9, 10,
11, and 12. According to presented results, there is no significant impact
of number of available incomes to estimated consumed lifetime, briefly: the
estimation procedure is able to estimate the lifetime from the very begin-
ning (20 % of expected life time). ’Available incomes’ denote the amount
of data used for estimation of the upcoming lifetime behavior. As example
the meaning of 30% of available incomes is that 30% of the data are used
to estimate the used lifetime behavior for the period of useful lifetime from
31 to 100% and therefore predict the End-of-Lifetime (100%), which is by
definition equal to D=1.

Using Model Type I, this can be explained as: i) machine state catched
up at the time after which the increment is considered constant is real (ex-
pected) machine state of the majority of the next, currently unavailable,
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incomes, and ii) machine states 1, 3, and 4 are similar and can in turn be
modeled using similar mathematical model. If damage increments are held
constant, machine state would also be held constant and possibly not cor-
rectly recognized. Even machine state is not correctly recognized, it would
be compensated by a model. If this is not the case (for instance in Figure
10), second plot (20% of available incomes)), prognostic error would be high.

Similar situation concerning Model Type II can be justified as: i) state
change is rarely occurred due to high threshold tDIFF (0.9094 of 1, Table 5),
and ii) only if high change in damage increment is detected (above 0.9094),
the state would be changed. This means, aforementioned relations would
often be modeled using only one mathematical equation (Table 2). It has
to be emphasized, that threshold tDIFF , preventing state change when not
necessary, is optimized using NSGA-II as threshold tDIFF is an integral part
of the model. Additionally to the results shown in Figures 9, 10, 11, and 12,
RSE, MSE, and ABE are calculated for each above mentioned case and
presented in Table 7.

Detailed insight into the results shown in Table 7 reveals that the results
obtained using Model Type I are in general slightly better than those obtained
using Model Type II. Despite the fact that the results obtained using Model
Type II are not as precise as those obtained using Model Type I, the results
obtained using Model Type II show monotonical trend and have no sudden
high peaks of values (what is equal to sudden higher prediction error) as it is
the case with the results obtained using Model Type I (red marked values in
Table 7). The deviation between estimated and real lifetime in dependence
of the number of available incomes is depicted in Figure 13. No significant
impact in this case is noticeable.
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TABLE 7: Statistical variables concerning varying number of available incomes of Z24
Available
incomes

RSE - Z16 * MSE - Z16 * ABE - Z16 * RSE - Z24 * MSE - Z24 * ABE - Z24 *

10% 31.7/232.23 0.0206/1.105 6227/44693 112.2/182.5 0.2578/0.6826 23199/33942

20% 69.9/144.3 0.1/0.426 12612/28809 704.3/129 10.1/0.341 125267/24461

30% 70.1/115.54 0.1/0.273 12643/23720 78.5/29.92 0.126/ 0.018 16832/5640

40% 70.1/92.64 0.1/0.175 12637/19560 69.17/43.39 0.098/0.0385 14137/7829

50% 70.07/77 0.1/0.122 12628/16412 106.7/76.20 0.233/0.118 22638/12721

60% 67.5/91.2 0.0933/0.1705 12216/17440 92.04/103.5 0.1734/0.219 19831/16370

70% 67.1/106.5 0.092/0.2326 12162/19604 101.4/122.6 0.21/0.308 21655/18637

80% 67.2/115.1 0.092/0.2714 12179/20605 101.5/135.9 0.211/0.3786 21672/20055

* First values presented in table cells are obtained using Model Type I ;
second values presented in table cells are obtained using Model Type II .
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Figure 9: Lifetime prognostics using Model Type I : Available number of incomes varies
(Z16)
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Figure 10: Lifetime prognostics using Model Type I : Available number of incomes varies
(Z24)
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Figure 11: Lifetime prognostics using Model Type II : Available number of incomes varies
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Figure 12: Lifetime prognostics using Model Type II : Available number of incomes varies
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TABLE 8: Selection of different groups of available data sets for model parameter opti-
mization
Data set
Test run

Z15 Z16 Z21 Z22 Z24 Z20

1 Training Test Training Training Test Training

2 Test Test Training Training Training Training

3 Training Training Test Test Training Training

4 Test Training Training Test Training Training

5 Test Training Training Training Test Training

6 Training Training Test Training Training Test
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Figure 13: Prediction of End-of-Lifetime concerning different number of available mea-
surements obtained using Model Type I and Model Type II

The effects by using different groups for training and test to generate the
model parameters are shown in Figure 14. Groups of particular data sets used
for model training or evaluation are given in Table 8. Here, six groups are
chosen. The prediction of End-of-Lifetime estimation under the assumption
that varying number of incomes are available is discussed. From Figure 14
it can be concluded that estimated and experimental EoL are found in the
limits of +/-4% for Model Type I and +/-7% for Model Type II. It can be
stated the results are independent from the data sets used for training and
test. Using simple fold cross-validation approach, the results are not affected
(as shown graphically).
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Figure 14: Prediction of End-of-Lifetime concerning different number of available mea-
surements organized by an n-Fold training and test data set variation usingModel Type I
and Model Type II

Both proposed models also have limitations. If evident changes are present
in measured data, proposed models provide high efficiency concerning prog-
nostic purposes due to higher probabilities for accurate State-of-Health de-
tection and higher sensitivity of the model to sudden changes occurred in
the system. A lack of noticeable changes in measurement data lead to am-
biguous State-of-Health determination and consequently to higher prediction
error. If no evident changes are present, it is difficult to detect state changes
(Model Type I ) or optimize thresholds (Model Type II ) what lead to higher
prediction errors (Figure 14).

4. Summary and conclusion

A novel consumed (remaining) lifetime modeling strategy is introduced
in this paper. Conversely to previous modeling approaches reviewed in sec-
tion 1, a multi-stage model is proposed to consider different current states of
health status of the system to be observed. State-of-Health in Model Type
I is concerned through lifetime model selection using state-machine-based
selection module, whereas the same is in Model Type II obtained through
thresholds optimization according to current value of accumulated damage.
Obtained results including simple fold cross-validation prove the capability
of models to describe the relation between system degradation and system’s
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lifetime. Root squared error, mean squared error, and absolute error are used
as performance criteria for both proposed models. The models are deployed
using experimental data (energy of Acoustic Emission signal). Applicability
of the models is illustrated on the data obtained from the tribological sys-
tem. Here, contact partners perform sliding motion under exactly predefined
operation conditions. These models can also be adapted to other applica-
tion fields, such as for the lifetime prediction of machining tools whereas the
change in mechanical properties of the material have to be described using
lifetime models.
As an outlook, further examination on increased number of available ex-
perimental data sets can be done. This will primarily enable correlation of
particular models to particular operation conditions.
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