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Abstract—Although more higher level advanced driver assis-
tance systems (ADAS) are applied to driving, human driver
reliability remains crucial for driving safety. Existing reliability
approaches qualify human behaviors in a static manner. In this
contribution dynamically changing situations are considered: as
example dynamic and situated driving context is used for human
reliability evaluation. The dynamic and situated driving context
requires dynamic solutions for human reliability evaluation. Cog-
nitive reliability and error analysis method (CREAM) provides
the evaluation method for human reliability in industrial fields,
when it is applied to situated context, adaption is required.
Human-related accidents account for the highest proportion of
total accidents. Human experience as an important factor for
driving safety so should be considered when human driver relia-
bility is evaluated. In this contribution, human driver experience
(HDE) is quantitatively characterized for the first time. Three
variables are selected to evaluate HDE in situated driving context.
A new list of common performance conditions (CPCs) in CREAM
to characterize the situated driving context is generated due to
the application limits of CPCs in original CREAM. To determine
the levels in HDE variables and new generated CPCs, fuzzy
neighborhood density-based spatial clustering of application with
noise (FN-DBSCAN) is applied to driving data defining the
membership function parameters. Therefore, HDE and human
driver reliability score (HDRS) in situated driving context are
calculated quantitatively. In this contribution evaluation of HDE
and HDRS is data-driven and the reliance on expert knowledge
is reduced. Next, a new evaluation index, human performance
reliability score (HPRS) is defined. The results show that the
method could quantify and evaluate human driver reliability in
real time.

Index Terms—Human reliability analysis (HRA), modified
CREAM, FN-DBSCAN, fuzzy logic, human experience, situated
driving context

I. INTRODUCTION

With the development of technology, automation has been
applied in a wide variety of fields. In most safety-critical sys-
tems, such as power plants [1], aviation [2], and transportation
[3], automation is applied. Automation has profoundly influ-
enced human behaviors in human-machine systems. Following
the application of automation in human-machine systems,
the importance of humans is increasing as more and more
accidents are related to human errors [4]. In several automated

system transitions between human guidance and automated
processes are possible, so takeover processes may occur. A
reliable transition should be guaranteed to realize continu-
ous and safe operation. For example, when driver assistance
systems of a highly automated vehicle fail, the driver must
take control to avoid an accident. A suitable level of human
driver reliability is required in exactly that moment to handle
a specific take-over situation. Human driver reliability may be
affected by different take-over scenarios. It should be noted
that continuous human operation could be also considered
using similar approaches. From [5], it can be concluded that
employing one common take-over request (TOR) time for all
drivers and critical takeover situations is inappropriate.

The majority of accidents in driver-vehicle systems are
caused by human errors. According to the national highway
traffic safety administration (NHTSA), human factors are to
blame for 94 % of traffic accidents [4]. The driving environ-
ment is increasingly sophisticated as the road traffic framework
is becoming complex, requiring the driver to maintain a high
reliability level at all times while driving. Meanwhile, human
driver experience (HDE) also affects driving safety. For expe-
rienced drivers, the driving process is smooth, and aggressive
driving behaviors are rarely observed. Human experience is
a concept that is difficult to characterize quantitatively. In
situated driving context, with the idea that human reliability
could be evaluated based on dynamic driving variables, human
driver experience estimating by some significant driving vari-
ables from situated driving context could be also considered.
In this case, human driver experience could be evaluated
quantitatively. In this contribution, human driver experience
(HDE) is quantitatively characterized for the first time.

A. Human reliability

Human reliability analysis methods have been proposed to
systematically incorporate for the analysis, prediction, and
prevention of human errors. Over the years, human reliability
analysis (HRA) methods have developed various changes.
These changes are often categorized into generations, the
so-called ”first generation”-HEART, THERP, SPAR-H, etc.,
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and the so-called ”second generation”-ATHEANA, MERMOS,
CREAM, etc [6]. The first and second generation methods,
by any definition, consider task analysis of operating events
as the underlying basis of performance modeling, while time
dimension is less involved. This characterization leads to the
characterization as static approach. When dynamic context has
to be considered, these methods are not suitable, an adaption
should be generated to integrate dynamic features.

The authors of [7] propose that dynamic human reliability
analysis (HRA) should consider the evolution of performance
shaping factors (PSFs). More important, in dynamic HRA,
influences of PSFs can change with time. In static HRA, events
are analyzed for an assumed window of time. For continuous
changing driving context, static HRA is not suitable, so a
definition for dynamic HRA is required.

To integrate simulation data to HRA, one option to over-
come this is to vary PSF to generate PSF levels dynamically. In
the so-called ”second generation” HRA approaches, cognitive
reliability and error analysis method (CREAM) approach pro-
vides a list of common performance conditions (CPCs) which
are the main factors describing operation context. The states of
these CPCs do not evolve with time in original CREAM unless
CPCs are adjusted. It is necessary to understand scenarios if
CPCs need to be adjusted. A list of CPCs characterizing the
main features in situated driving context was proposed in [8].

B. Human experience

Human experience comes in discontinuous blips. The pars-
ing of experience naturally corresponds to the aggregates
of the mindfulness/awareness practitioner as known from
the description of brain researchers [9]. In general, human
experience is related to the operator’s familiarity with specific
situations. Human experience of a specific task is measured
by the amount of time a person devotes to that task. For
example, driving mileage is used as criteria for experienced
drivers. In [10], as criteria an experienced driver should have
held a driver’s license for at least 3 years, a minimum annual
mileage of 15,000 km in the last year, and has to be very
familiar with the experiment scenarios. For an inexperienced
driver, a maximum annual mileage of 15,000 km and little or
no experience of driving in experiment scenarios are applied.
In [11], a quantitative method to calculate human experience
in takeover task is proposed. According to the description,
human experience is a suitable number, which is related to the
individual’s familiarity with takeover scenarios. It is an equa-
tion related to non-driving related tasks (NDRT), assessment
of the moment of conflict (AMC), scenario development rate
(SDR), and number of conflicting units (NCU). The approach
to compute human experience is based on the idea that human
experience can be quantified based on a number of variables
that are closely related to the task.

In this contribution, the so-called ”second generation” tech-
nique CREAM [12], is used to investigate human reliability
in a situated driving context. On the other hand, human driver
reliability analysis in a dynamic driving context is less studied
and therefore the approach is restricted. A modified CREAM

approach combining different driving experiences is generated.
The fuzzy neighborhood density-based spatial clustering of
application with noise (FN-DBSCAN) and genetic algorithms
are applied for automatically generation of membership func-
tions of CPCs and variables in human driver experience
(HDE). Integration of fuzzy logic applied to CREAM has been
considered also in other studies [13]. Another concept applied
to this focus is situation awareness (SA). In SA the general
focus is given to the humans ability to perceive relevant
features from the situation and to predict comsequences fro
the own actions. The related experience is implicitly addressed.
The whole approach works as a description. The newly intro-
duced approach in this contribution addresses similar aspects
but introduces a formalized approach leading to numerical
quantification. Due to the reliability-based approach can be
expected that generating numerical values indicating the newly
introduced approach is the adequate approach.

In this contribution, the approach applied is firstly published
in [14]. Human driver experience (HDE) is considered and
quantitatively estimated with some relevant variables from
situated driving context for the first time. In addition, in this
contribution, dynamic human reliability analysis and human
experience is more detailed explained, the fluctuation of HDE
with time in driving process is mapped, and the new human
performance reliability score (HPRS) combining the result of
HDE is discussed in detail.

The following sections make up this contribution: Section
II introduces theoretical backgrounds such as CREAM and
fuzzy logic. In Section III, the HDE and modified CREAM are
proposed, the FN-DBSCAN method is applied to cluster driv-
ing data for the determination of CPCs levels, and a genetic
algorithm is used to automatically find the relevant variables
in FN-DBSCAN. The experiment and results are discussed in
Section IV, human performance reliability score (HPRS) is
generated to assess human driver reliability in situated driving
context. The conclusion and outlook are provided in Section
V.

II. THEORETICAL BACKGROUND

A. CREAM

The CREAM approach is a practical approach for analyzing
performance and forecasting outcomes.

Contextual control mode
Human cognition model utilized in CREAM methodology

to show human behaviors is indicated as contextual control
mode (COCOM). The degree of control that human operators
have over situations or context is believed to be the most
important criterion for evaluating human performance and reli-
ability. The fundamental step for determining the relationships
between context and human reliability is the degree of control
[12]. Scrambled control, opportunistic control, tactical control,
and strategic control are the four control modes specified in
CREAM. Each control mode compares to distinctive human
reliability interval with strategic control having the highest
reliability and scrambled control having the lowest.

Common performance conditions (CPCs)



The operation context is represented by nine CPCs, which
are the most important components. These are adequacy
of organization, working conditions, adequacy of MMI and
operational support, availability of procedures/plans, number
of simultaneous goals, available time, time of day (circa-
dian rhythm), adequacy of training and experience, and crew
collaboration quality. Each CPC has several different levels,
and corresponding expected effects on performance reliability
which are improved, not significant, and reduced.

When the impact on performance reliability of each CPC
is decided, CPC score can be recognized as [

∑
reduced,

∑
improved]. A relation map between CPC score and control
modes is used to distinguish the control mode. As a result,
human error probability (HEP) interval is defined with the
determination of control mode.

B. Fuzzy logic

Lotfi Zadeh establishes fuzzy logic based on the previous
work on fuzzy set theory [15]. In [15], a fuzzy set A in the
universe of discourse X, is defined by a membership function
µA, which correlates each element x in X to a real number in
the interval [0,1], where the degree of membership of x in A
is denoted by the value of µA.

The height, core, and support parameters are the most
important aspects of a membership function. The height of a
fuzzy set A can be represented with the mathematical function

height(A) = max{µA(x)|x ∈ X}, (1)

which indicates the highest value of the membership function.
Any number between 0 and 1 can be the height domain.

The core of the membership function can be defined math-
ematically by

core(A) = max{x|x ∈ X,µA=1}, (2)

where the core contains all elements x which are characterized
by full membership in the set, in this case with a value of 1.

The support of a membership function of a fuzzy set A can
be expressed by

supp(A) = max{x|x ∈ X,µA(x) > 0}, (3)

where the support contains all elements x which are charac-
terized by a nonzero membership in the set.

III. NOVEL APPROACH FOR DYNAMIC MODELING OF
HUMAN PERFORMANCE RELIABILITY

As an example for the new approach in this work driving
data are used and clustered using FN-DBSCAN to reduce the
effects of expert knowledge on the results and to reflect the
driving behavior characteristics of diverse drivers [16]. The
automatically generated membership functions are correspond-
ing to the related levels and expected effects on performance
reliability of CPCs. As result, human driver reliability score
(HDRS) is calculated. The fuzzy-based CREAM approach to
evaluate human driver reliability was firstly established in [14].
With the consideration of HDE, the human driver performance

reliability can be evaluated using human performance reliabil-
ity score (HPRS) [8]. In section III, the methods to obtain
HPRS are introduced.

A. New List of CPCs

A new list of CPCs for the new application domain must
be generated when using CREAM in another domain. A new
set of CPCs is offered, based on the results of [8], to assess
human reliability in the driving domain. These nine CPCs are:
number of surrounding vehicles, time to collision (TTC), ego-
vehicle speed, longitudinal acceleration, lateral acceleration,
traffic density, number of available lanes, actual lane, and
general visibility conditions. Number of available lanes and
actual lane are not taken into account in this contribution.

B. Human driver experience (HDE) variables

The selection of variables to characterize human driver
experience (HDE) is critical due to the effect on the result
calculation. In [10], driving mileage as a selection criteria is
proposed for the evaluation of experienced and inexperienced
driver. This criteria is appropriate for the qualitative classifi-
cation, but for quantitation of HDE in specific situations, it
is invalid. In [11], the idea that human experience could be
calculated by variables related to specific scenario is generated.
In continuous driving process, HDE is dynamically varying
with situations driver encountered. Therefore, the variables
which are able to characterize situated driving context and
define driver’s safe and unsafe driving behavior should be
selected. In [17], the combination of speed and acceleration to
define the safety aspects of the driver’s behavior is chosen. It is
assumed that this two variables can clearly describe the motion
of ego-vehicle, and are fundamental to define the behavior of
driver. A safety domain or threshold calculated by ego-vehicle
speed and acceleration to distinguish between safe and unsafe
driving conditions is determined. So within the thresholds,
driving behavior is evaluated as safe, otherwise, it is unsafe.

In this contribution, three variables are selected to quantify
HDE, which are ego-vehicle speed, longitudinal acceleration,
and lateral acceleration.

C. Automatic generation of membership function

Classical neighborhood density analysis is used in standard
DBSCAN approach to determine the core points (and noise
points) of clusters. A core point is defined as the number of
points in a specific radius larger than a certain threshold [18].
On the other hand, FN-DBSCAN generates core points using
fuzzy neighborhood cardinality.

FN-DBSCAN algorithm
The fuzzy neighborhood membership function could be

defined as

Nx(y) =

{
1− d(x,y)

dmax if d(x, y) ≤ ε,
0 otherwise,

(4)

where d(x, y) represents the distance between any points x and
y, whereas ε determines the maximal threshold of the distance
between points.



To further improve the sensitivity of the points that are
at various distances from their neighbors, the neighborhood
membership functions dependent on the variable k is expressed
as

Nx(y) = max{1− kd(x, y)

dmax
}. (5)

The fuzzy neighborhood set of point x ∈ X with parameter
ε1 is expressed as

FN(x; ε1) = {< y,Nx(y) > | y ∈ X,Nx(y) ≥ ε1}, (6)

where ε1 defines the minimal threshold of the neighborhood
membership degree, Nx refers to any membership function
that describes the neighborhood relation between points.

A point x is defined as a fuzzy core point with parameters
ε1 and ε2 if it fulfills the requirement of

cardFN(x; ε1, ε2) ≡
∑

y∈N(x;ε1)

Nx(y) ≥ ε2, (7)

Nonetheless, expert knowledge is inevitable to determine
the value of the parameters variables ε1, ε2, and k. Further
details regarding ε1 and ε2 are given in [19]. To lessen the
reliance of parameters on expert knowledge, it is suggested
that the number of preset parameters is reduced from 3 to 1.
ε is defined as the average distance between adjacent data

ε =

∑m−1
i=1 d(xi, xi+1)

m− 1
, (8)

where d(xi, xi+1) represents the distance between the i-th data
point and its adjacent neighboring data point while m is the
total number of data points. A data point y has a neighborhood
degree of Nx(y) > 0 if it is closer to a data point x than the
average distance between adjacent data.

The relation of variable k with respect to ε can be repre-
sented by

k =
dmax

ε
. (9)

The parameter ε1, which specifies the radius of the mem-
bership threshold of data points to be included in the fuzzy
cardinality, is set to 0. As a result of ε in Eq. 8, a neighbor-
hood consisting of relatively close points is considered and
therefore these data points could also be included in the fuzzy
cardinality. Given that ε1 > 0, the density requirement towards
the center of the neighborhood could be increased. Thus, only
fuzzy cardinality threshold ε2 needs to be determined.

Optimization of ε2 using genetic-based algorithm
Genetic algorithms reflect the natural selection process

in which only the fittest combinations are picked from a
population to generate the following generation.

Generally, a population of random generated individuals to
an optimization problem is first initialized. Each individual’s
chromosomes (or genotypes) can be mutated and altered [20].
Selection, genetic recombination, and replacement are key
pahses in genetic algorithm.

The roulette wheel is the most common technique of select-
ing. The selection is proportional to its relative fitness value,
which is proportional to the sum of the population’s fitness

values. Individuals with the five greatest fitness values are
picked via roulette to undergo crossover and mutation in this
contribution, boosting the algorithm’s probability of obtaining
an optimal ε2 value.

Application of genetic algorithm and FN-DBSCAN
The value of parameter ε2 is evaluated using genetic al-

gorithm to automatically generate membership function with
FN-DBSCAN. For the clustering algorithm FN-DBSCAN to
define core and support parameters of the membership func-
tions, the ε2 is used as the sole parameter. When core and
support parameters are calculated, the membership functions
of driving data could be generated.

D. Human performance reliability score (HPRS)

The CPC score is calculated using the sum of reduced
and improved expected effects on performance reliability [

∑
reduced,

∑
improved] in the original CREAM technique. The

control mode can then be determined.
In this contribution, new CPCs are described in III A.

The CPC levels are determined by data clustering. Here
membership functions are generated assigning different levels
and corresponding expected effects on performance reliability.
Therefore, each CPC score is calculated.

The HDE is the sum of the mentioned three variables,
including ego-vehicle speed, longitudinal acceleration, and
lateral acceleration. The HDRS is the sum of all listed CPCs.
The new human performance reliability score (HPRS) is the
sum of HDRS and HDE.

Each membership function is labeled to represent the ex-
pected effect on the performance reliability of the driver. The
CPC score for the entire duration of driving simulation is
calculated according to the membership degree of each data
point. The final HPRS can be calculated by adding up the
seven CPC scores and three variables in HDE relative to time.

In general, the steps to obtain HPRS are as follows:
Step 1 Executing genetic algorithm to generate optimal ε2
Step 2 Applying the FN-DBSCAN algorithm to obtain core

and support values of membership functions
Step 3 Assigning membership functions to different CPCs and

variables levels to determine each CPC score and HDE
Step 4 Adding all seven CPC scores together to generate

HDRS
Step 5 Adding up HDRS and HDE to generate the final HPRS

IV. EXPERIMENTS AND RESULTS

A. Description of data generation platform

A driving simulator SCANeRTM studio as shown in Fig. 1
is used to collect driving data. The simulator realizes a 270◦

view of the driving environment with five monitors, steering
wheel, pedals, and base-fixed driver seat.

B. Experimental results analysis

Example data sets from two scenarios (scenario 1 and
scenario 2) are contributed by a participant.



Fig. 1. Driving simulator laboratory, Chair of Dynamics and Control, U DuE

Both scenarios’ membership functions (ego-vehicle speed,
time to collision, longitudinal acceleration, and lateral accel-
eration) are generated, here the membership functions of four
CPCs in scenario 1 are shown in Fig. 2. In Fig. 2, there are
three membership functions that could be assigned to three dif-
ferent levels, and these levels correspond to different expected
effects, which are improved (score of 1), not significant (score
of 0), and reduced (score of -1). The CPC score is calculated
based on the core and support points, and the membership
degree of each data points on membership functions.

Fig. 2. Menbership functions of four CPCs in scenario 1

The human driver experience (HDE) is calculated by the
sum of three parameter scores. The HDE of scenario 1 is
plotted in Fig. 3. It is observed that HDE varies over time
driving the driving process. The main reason is that slight
changes in longitudinal and lateral acceleration during driving
lead to very steep shape and close distance of membership
functions.

The human driver reliability score (HDRS) is calculated by
using the summation of all seven CPC scores with respect to
time. The HDRS of scenario 1 is then plotted in Fig. 4.

The human performance reliability score (HPRS) is the sum
of HDE and HDRS, therefore, the HPRS of scenario 1 and
scenario 2 are plotted in Fig. 5 and Fig. 6.

To evaluate HPRS with time, the control mode deter-
mination system in the original CREAM method needs to

Fig. 3. HDE of scenario 1

Fig. 4. HDRS of scenario 1

be translated into a new time-related scaling system. From
original CREAM approach, the CPC score is identified as
[
∑

reduced,
∑

improved]. It can be concluded that each
control mode is located in a specific interval when CPC score
is indicated by the number in the manner as [

∑
improved -∑

reduced]. The numbers of all strategic mode are larger than
4, tactical mode are between -1 and 4, most of opportunistic
mode are between -5 and -1, and all scrambled control are
less than -5. By this translation, HPRS could be evaluated
with time.

Fig. 5. HPRS of scenario 1

Fig. 6. HPRS of scenario 2



It can be observed that HPRS are above opportunistic level
in both scenarios. The HPRS values corresponding to the level
of different control modes are determined from [8]. For a more
detailed discussion the differences for HDRS and HPRS, the
results from 600 s to 720 s are magnified. It can be detected
that although the changing trends of the two values are roughly
similar, the related intervals are different. Meanwhile, it can
also observed that the fluctuation trend of the HPRS curve
is mainly affected by longitudinal and lateral acceleration by
comparing HDE curve and HPRS curve.

In [8], the HPRS is presented in Fig. 7. The CPC levels
in [8] are determined by literature research and expert knowl-
edge. The human driver reliability score (HDRS) is the sum
of CPC scores different from the HPRS calculation method in
[8] as the weight λ in [8] is switching between the discrete
-1 and the discrete +1. Therefore, HPRS values jump between
integer values. Due to the application of fuzzy logic in this
contribution, the CPC score could be any value from -1 to +1.

Fig. 7. Unfuzzified HPRS of scenario 1 [8]

V. CONCLUSION AND OUTLOOK

In this contribution, a new approach defining the situated
and dynamic human reliability measure with the consideration
of human driver reliability is used and extended. By combining
human driver reliability into the established approach in [14],
a new HPRS to evaluate human reliability in situated driving
context is generated.

The main innovation of this contribution is quantitatively
characterizing human driver experience with three variables in
situated driving context for the first time and generating a new
HPRS combining the effects of HDE for dynamic modeling
of human reliability. This approach is the foundation for the
realization of online estimation of human reliability, and the
new concept HPRS becomes a visualization-oriented step for
online estimation of human reliability. In the next steps, filter
approach could be applied to acceleration data therefore to
decrease the fluctuation of HPRS curve. This contribution
establishes the foundation for further evaluation between
automation and operator’s takeover.
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