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Abstract—Human reliability is one of the key issues in driver-
vehicle systems as human-related accidents accounts for the
highest proportion of total accidents. Furthermore, the behaviors
of drivers become increasingly essential for driving safety as the
driving context is of increasing complexity. Cognitive reliability
and error analysis method (CREAM) provides the evaluation
method for human reliability in industrial fields, when it is
applied to situated context, adaption is required. In this contri-
bution, a modified fuzzy-based CREAM approach is introduced
to evaluate human driver reliability in situated driving context
using the data collected from driving simulator. Firstly, a new
list of common performance conditions (CPCs) characterizing the
situated driving context is generated due to the application limits
of CPCs in CREAM. Secondly, to determine the levels in the
new generated CPCs, fuzzy neighborhood density-based spatial
clustering of application with noise (FN-DBSCAN) is applied to
driving data defining the membership function parameters, which
reduces reliance on expert knowledge and can better characterize
human behaviors individually. Next, a new evaluation index,
human performance reliability score (HPRS), is proposed for
the quantitative and dynamic evaluation of human reliability.
The results show that the new proposed method could quantify
and evaluate human driver reliability in real time.

Index Terms—Human reliability analysis (HRA), modified
CREAM, FN-DBSCAN, fuzzy logic, situated driving context

I. INTRODUCTION

In driver-vehicle systems, the role played by human drivers
is increasing important, as most of the accidents are related to
human errors. The national highway traffic safety administra-
tion (NHTSA) states that 94 % of traffic accidents are related
to human factors [1]. With the increasingly complex road
traffic system, driving context is becoming complicated, which
requires the driver to maintain a high level of reliability at all
times while driving. Although some advanced driver assistance
systems (ADAS), such as forward collision warning system
and lane keeping assistance system, have been developed to
assist driver and therefore to make driving safer, human driver
is still the key to ensure driving safety [2].

Human reliability is a common concept in probability
assessment context, for example, marine engineering [3] and
spaceflight application [4]. Human reliability analysis (HRA)
is a sophisticated method to calculate human error probability
(HEP), which is quantified by the ratio of occurrences of
errors to number of opportunities for errors. Human reliability

analysis methods have been proposed to systematically incor-
porate for the analysis, prediction, and prevention of human
errors. Over the years, HRA methods have developed various
changes. These changes are often categorized into generations,
the so-called ”first generation”-HEART, THERP, SPAR-H,
etc., and the so-called ”second generation”-ATHEANA, MER-
MOS, CREAM, etc [5]. The first generation of HRA methods
are developed based on the idea that human naturally fails to
perform tasks because of inherent deficiencies, just like me-
chanical or electrical components. Therefore, human reliability
is characterized by the characteristics of the performed tasks
[6]. The core assumption of the second generation of HRA
methods, however, is that environment or context is considered
as the most significant factor affecting human reliability.
The first and second generation methods, by any definition,
consider task analysis of operating events as the underlying
basis of performance modeling, while time dimension is less
involved. This characterization leads to the denotation as
static approaches. When detailed dynamic context must be
considered, these methods are not suitable, an adaption should
be generated to characterize the dynamic features.

As the likelihood of human error occurrences and the
possibilities of gathering relevant data are much more promis-
ing in road traffic than other human-in-loop related industry,
driving data could be used for HRA. The driving context
is dynamically changing in real time, which is significantly
different from other industrial scenarios, determines human
driver reliability is also changing in real time. Even with
the widespread use of ADAS, the role of humans in the
driving process has not diminished, and human reliability still
needs to be considered seriously. For example, when driver
assistance systems in a highly automated vehicle fail, take-
over action from the driver is needed to avoid accidents.
A suitable level of human driver reliability is required in
exactly that moment of requested human performance of a
specific take-over situation. Different take-over conditions may
have impacts on human driver reliability. From [7], it can
be concluded that it is inappropriate using one general take-
over request (TOR) time regardless the individual drivers and
critical takeover situations. In this contribution the problem
description is prepared related to the dynamic driving context
and the existing approaches, as the performance shaping
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factors (PSFs), such as training or state of stress, in the existing
approaches are designed for static operating situation, when it
is applied to dynamic driving context, the existing approaches
are not useful any more, as PSFs in dynamic driving context
are totally different where factors like ego-vehicle speed and
acceleration mainly affecting human driver reliability.

In this contribution, human reliability in situated driving
context is analyzed with the so called ”second generation”
approach, CREAM [8]. However, reports on human driver
reliability analysis in situated or dynamic driving context are
limited as how to characterize the situated driving context in
HRA is less considered. Therefore, a fuzzy logic-modified
CREAM approach is generated for human reliability quan-
tification and evaluation in situated driving context. Actually,
integrating fuzzy logic into CREAM has been also discussed
in other works [9]. This contribution is organized as follows:
in Section II, theoretical backgrounds including CREAM
and fuzzy logic are introduced. In Section III, the modified
fuzzy-based CREAM is proposed, the FN-DBSCAN method
is applied to cluster driving data for the determination of
CPCs levels, meanwhile, in order to automatically determine
the related parameters in FN-DBCAN, Genet algorithm is
applied. The experiment and results are discussed in Section
IV, human performance reliability score (HPRS) is generated
to evaluate human driver reliability in situated driving context.
The conclusion is provided in Section V.

II. THEORETICAL BACKGROUND

A. CREAM

The CREAM approach is a practical approach for perfor-
mance analysis as well as attendant prediction. This approach
is able to conduct a retrospective analysis of historic events
and a prospective analysis for the design of high-risk systems
or processes. The core idea of CREAM is that human error is
shaped by both context and human nature [8], although both
are assumed as static.

Contextual control mode
Human cognition model used in CREAM methodology

to model human behaviors is denoted as contextual control
mode (COCOM). It is assumed that the degree of control
that human operators on situations or context is the most
important index to estimate human performance and human
reliability. Meanwhile, the degree of control can be determined
by the context under which human operators perform their
tasks. Finally, the degree of control is the core mechanism to
determine the relations between context and human reliability
[10]. Four control modes are defined in CREAM, which are
scrambled control, opportunistic control, tactical control, and
strategic control. Each control mode corresponds to different
human reliability interval in which strategic control has the
highest reliability and scrambled control is related to lowest
reliability.

Common performance conditions (CPCs)
Nine CPCs are defined as the most significant factors

representing the operation context. These are adequacy of

Fig. 1. Relations between CPC score and control modes (adapted from [8])

organization, working conditions, adequacy of MMI and op-
erational support, availability of procedures/plans, number of
simultaneous goals, available time, time of day (circadian
rhythm), adequacy of training and experience, and crew col-
laboration quality. Each CPC has several different levels,
and corresponding expected effects on performance reliability
which are improved, not significant, and reduced.

When the effect on performance reliability of each CPC
is determined, CPC score can be identified as [

∑
reduced,∑

improved], where
∑

reduced represents the sum of reduced
effects on performance reliability and

∑
improved means

the sum of improved effects on performance reliability. The
control mode is then identified with a relation map between
CPC score and control modes which is shown in Fig. 1.
Therefore, human error probability (HEP) interval is defined
with the determination of control mode. The original CREAM
approach is mainly applied in human reliability analysis in
industry fields. It is advised to generate new CPC lists adequate
for application domains [11].

B. Fuzzy logic

Fuzzy logic is an approach intended to model the im-
precise modes of reasoning that play an essential role in
the remarkable human ability to make rational decisions in
an environment of uncertainty and imprecision [12]. It is
established on the degree of truth of a logically compound
proposition which can obtain any value between 0 and 1 rather
than assuming an extremity value of truth (1) or false (0) found
in standard Boolean logic.

Fuzzy logic was generated by Lotfi Zadeh based on his
earlier work on fuzzy set theory [13]. In [13], a fuzzy set A
in the universe of discourse X, is defined by a membership
function µA, which correlates each element x in X to a real
number in the interval [0,1], where the degree of membership
of x in A is denoted by the value of µA.



The main features of a membership function are the height,
core, and support parameters. The height of a fuzzy set A can
be represented with the mathematical function

height(A) = max{µA(x)|x ∈ X}, (1)

which indicates the highest value of the membership function.
The domain of height can be any value in the range of 0 to 1.

The core of the membership function can be defined math-
ematically by

core(A) = max{x|x ∈ X,µA=1}, (2)

where the core contains all elements x which are characterized
by full membership in the set, in this case with a value of 1.

The support of a membership function of a fuzzy set A can
be expressed by

supp(A) = max{x|x ∈ X,µA(x) > 0}, (3)

where the support contains all elements x which are charac-
terized by a nonzero membership in the set.

Membership functions of fuzzy sets can be in various
shapes, and the three widely used shape of membership
functions are triangular function, trapezoidal function, and
Gaussian function. Trapezoidal membership functions are cho-
sen in this contribution to describe the membership degree
of CPCs. The advantages of using trapezoidal membership
functions are mainly due to its simplicity and popularity [14].
The reliability of a trapezoidal membership function is also
higher compared to the reliability of a triangular membership
function [15].

III. MODIFIED FUZZY-BASED CREAM APPROACH

In this contribution the CREAM approach is modified to
implement the approach to dynamic and situated contexts.
This is done by proposing a new set of CPCs describing
the main features affecting human performance reliability
in a dynamic or situated driving context [16]. However, in
[16], the levels of CPCs are determined by literature research
and expert experience which can not properly distinguish the
characteristics of driving behaviors of different drivers to some
extent. For example, when determining the levels of time
to collision (TTC), two thresholds of 2.5 s and 5.5 s are
determined. When TTC ≥ 5.5 s, human driver has enough time
to complete different options, like lane changing, or braking,
so the effect on on performance reliability is improved. The
case TTC of 2.5 s could be regarded as the lower threshold
that should be avoided in normal traffic conditions [17]. When
TTC ≤ 2.5 s, driver abilities to handle the situation are limited,
so the effect on performance reliability is reduced [16].

Therefore, to avoid the effects of expert experience on
results, at the same time, to reflect the driving behavior
characteristics of different drivers, with the introduction of
fuzzy logic, the driving data of drivers are clustered using
a density-based clustering algorithm with fuzzy neighborhood
relation, fuzzy neighborhood density-based spatial clustering
of application with noise (FN-DBSCAN) [18]. The automat-
ically generated membership functions are corresponding to

their respective levels and expected effects on performance
reliability of CPCs. Finally, the human driver performance re-
liability is evaluated using human performance reliability score
(HPRS) [16]. Therefore, section III is the part introducing
applied methods to obtain HPRS.

A. New List of CPCs

When applying CREAM into another domain, a new list
of CPCs adapting the new application domain has to be
generated. To evaluate human reliability in a driving domain,
a new list of CPCs is introduced based on [10] and [16].
These nine CPCs are number of surrounding vehicles, time
to collision (TTC), ego-vehicle speed, longitudinal accelera-
tion, lateral acceleration, traffic density, number of available
lanes, actual lane, and general visibility conditions. In this
contribution, number of available lanes and actual lane are not
considered as effecting the performance reliability. The driving
data can be clustered according to the FN-DBSCAN algorithm,
and different clusters relate to the effects on performance
reliability. In this case, the levels in CREAM approach is only
determined by obtained driving data, which could represent
driving behaviors individually.

B. Automatic generation of membership function

In the standard DBSCAN approach, classical neighborhood
density analysis is applied to determine the core points (and
noise points) of clusters. A core point is defined if the number
of points in a specific radius is larger than a certain threshold
[19]. On the other hand, FN-DBSCAN implements fuzzy
neighborhood cardinality to generate core points. For the
generation of membership function, the core and support pa-
rameters of a trapezoidal membership function are determined
using the core and support points based on the fuzzy density-
neighborhood of the centroid of clusters.

FN-DBSCAN algorithm
The fuzzy neighborhood membership function could be

defined as

Nx(y) =

{
1− d(x,y)

dmax if d(x, y) ≤ ε,
0 otherwise,

(4)

where d(x, y) represents the distance between any points x and
y, whereas ε determines the maximal threshold of the distance
between points.

To further improve the sensitivity of the points with different
distances to the neighbor points, the neighborhood member-
ship functions dependent on the parameter k is expressed as

Nx(y) = max{1− kd(x, y)

dmax
}. (5)

The fuzzy neighborhood set of point x ∈ X with parameters
ε1 is expressed as

FN(x; ε1) = {< y,Nx(y) > | y ∈ X,Nx(y) ≥ ε1}, (6)

where ε1 defines the minimal threshold of the neighborhood
membership degree, Nx refers to any membership function
that describes the neighborhood relation between points.



A point x is defined as a fuzzy core point with parameters
ε1 and ε2 if it fulfills the requirement of

cardFN(x; ε1, ε2) ≡
∑

y∈N(x;ε1)

Nx(y) ≥ ε2, (7)

Nonetheless, the parameters ε1, ε2, and k must still be
defined using expert knowledge. Further details regarding ε1
and ε2 are given in [20]. To decrease the dependency of
parameters on expert knowledge, it is suggested a way to
reduce the pre-defined parameters from 3 to 1. ε is defined
as the average distance between adjacent data

ε =

∑m−1
i=1 d(xi, xi+1)

m− 1
, (8)

where d(xi, xi+1) represents the distance between the i-th data
point and its adjacent neighboring data point while m is the
total number of data points. Therefore, if a data point y is
closer to a data point x than the average distance between
adjacent data, data point y then has a neighborhood degree of
Nx(y) > 0.

The relation of parameter k with respect to ε can be
represented by

k =
dmax

ε
. (9)

Furthermore, parameter ε1 defines the radius of the mem-
bership threshold of data points to be included in the fuzzy
cardinality is given the value of 0. As a result of ε in
Eq. 8, a neighborhood consisting of relatively close points
is considered and therefore these data points could also be
included in the fuzzy cardinality. Given that ε1 > 0, the density
requirement towards the center of the neighborhood could be
increased. Thus, only fuzzy cardinality threshold ε2 needs to
be determined.

Optimization of ε2 using genetic-based algorithm
Genetic algorithm is generally utilized as a way to pro-

duce efficient solutions to optimization and search problems
by introducing biologically inspired operators like mutation,
crossover, and selection [21]. This algorithm represents the
process of natural selection where only fittest individuals are
chosen from a population to produce offspring of the next
generation.

Generally, a population of random generated individuals to
an optimization problem is first initialized. Each individual
has chromosomes (or genotypes) which can be mutated and
altered [22]. These chromosomes contain solutions to an
optimization problem and are generally represented by binary
strings. In each generation, individuals go through selection
and are modified or mutated to produce new offspring for the
next iteration. The algorithm ends when maximum number of
generation is reached or suitable fitness level of the population
has been obtained.

The standard selection method used is roulette wheel selec-
tion. The selection is based proportional to its relative fitness
value, which is proportion to the sum of all fitness values
in the population. In this contribution, individuals that have
the five highest fitness value in the population are selected via

roulette to undergo crossover and mutation, thus increasing the
probability of the algorithm to obtain an optimum ε2 value. In
genetic terminology, individual selected to undergo mutation
or crossover is known as parent while the offspring is known
as child. The ε2 value of the individuals is also called a gene.

If the parent is selected for mutation, a random value
within the range of [0,1] will be added or subtracted to the
parent gene. On the other hand, two parents are selected using
roulette to undergo crossover. Instead of exchanging genes
between chromosomes, the mean value of the parent’s gene
will be selected as the child. In both cases, if the child has
a higher fitness level than at least one of the individual in
the population, the child replaces the individual that has the
lowest fitness value in the population. This cycle repeats until
the generation size is reached.

Application of genetic algorithm and FN-DBSCAN
To generate membership function automatically with FN-

DBSCAN, the value of parameter ε2 is estimated by genetic
algorithm. The ε2 values of the population are taken as the
sole parameter for the clustering algorithm FN-DBSCAN to
define the core and support parameters of the membership
functions. The training data is normalized and clustered using
the parameter ε2. The centroid of the cluster, or the closest
point to the mean value of all data point is then found.
Direct and dense neighbors of each centroid are then obtained
to derive the core and support points of the membership
functions.

C. Human performance reliability score (HPRS)

In the original CREAM approach, the CPC score is based
on the sum of reduced and improved expected effects on
performance reliability [

∑
reduced,

∑
improved]. Then the

control mode can be identified.
In this contribution, new CPCs are described in III A.

The CPC levels are determined by data clustering, when
membership functions are generated, they will be assigned to
different levels and their corresponding expected effects on
performance reliability could be determined. Therefore, each
CPC score is calculated. The human performance reliability
score is the sum of each CPC score, but it is different from
the HPRS calculation method in [16] as the weight λ in
[16] is switching between the discrete -1 and the discrete +1.
Therefore, HPRS values fluctuate between integer values. Due
to the application of fuzzy logic in this contribution, the CPC
score could be any value from -1 to +1, so HPRS fluctuates
smoother compared with the results in [16].

With the crisp data, the membership functions of four
CPCs, ego-vehicle speed, time to collision, lateral acceleration,
and longitudinal acceleration are automatically generated, the
membership functions of traffic density and general visibility
conditions in both scenarios are not considered as the traffic
density is low, and general visibility condition is constant,
so their effects on performance reliability is considered as
improved, no membership functions are needed. For the CPC
of number of surrounding vehicles, the CPC score can be
directly translated using the crisp data.



For the validation of the generated membership functions,
5-fold cross validation method is applied. The data set is
first divided into 5 randomly generated folds of equivalent
sizes. One fold is then taken as test data while four of the
remaining folds are used as training data. This process repeats
for a total of 5 times, where each fold is used as test data
once. The membership functions that best describe the data set
of each CPCs are chosen to calculate the CPC scores. Each
membership function is then labeled to represent an expected
effect on performance reliability of the driver. The CPC score
for the entire duration of driving simulation is then calculated
according to the membership degree of each data point. The
final HPRS can then be calculated by adding up all seven CPC
scores relative to time.

In general, the steps to obtain HPRS are as follows: Step
I: Execute genetic algorithm to generate optimal value of ε2.
Step II: FN-DBSCAN algorithm is applied to obtain core and
support values of membership functions of each CPC. Step
III: Assign membership functions to different CPC levels to
calculate each CPC score. Step IV: Add up all seven CPC
scores to generate final HPRS. In this contribution, genetic
algorithm and FN-DBSCAN are used as tools for ordering
and classifying behaviors and situations.

IV. EXPERIMENTS AND RESULTS

A. Description of data generation platform

A professional driving simulator SCANeRTM studio as
shown in Fig. 2 is used to collect driving data. The simulator
realizes a 270◦ view of the driving environment, a rear view
mirror, and two side mirrors. For controlling ego-vehicle, a
base-fixed driver seat, steering wheel, and pedals are used.
Data describing ego-vehicle dynamics (e.g. speed, steering
angles, etc.) and surronding interacting vehicles status (e.g.
lateral shift, TTC, etc.) relative to ego-vehicle are collected
allowing evaluation driver interaction behaviors as well as to
be used for human driver reliability analysis.

Fig. 2. Driving simulator laboratory, Chair of Dynamics and Control, U DuE

B. Experimental results analysis

Example data sets from two scenarios (scenario 1 and
scenario 2) are contributed by a participant that has a driving
license for 8 years. The participant drives approximately 250
kilometers weekly and has experience in driving simulator.

The membership functions of the four CPCs (ego-vehicle
speed, time to collision, longitudinal acceleration, and lateral
acceleration) of both scenarios are generated, here the mem-
bership functions of four CPCs in scenario 1 are plotted as
shown in Fig. 3. There are three membership functions in Fig.
3, which could be assigned to three different levels, and these
levels relate to different expected effects, which are improved
(score of 1), not significant (score of 0), and reduced (score of
-1). The CPC score of ego-vehicle speed is calculated based
on the core and support points, and the membership degree of
each data points on the membership functions.

Fig. 3. Menbership functions of four CPCs in scenario 1

The human performance reliability score (HPRS) is then
calculated by using the summation of all seven CPC score with
respect to time. The HPRS of scenario 1 and scenario 2 are
then plotted in Fig. 4 and Fig. 5. It can be observed that HPRS
are above tactical level in both scenarios, only for a very short
time in scenario 1, HPRS are below tactical level.To analyze
what actually happened at that moment, the status of each CPC
at that moment should be considered. It is found that at 779
s, the scores of the other six CPCs are rough the same except
for the CPC score of surrounding vehicle decreasing from 1
to 0, which leads HPRS to decrease below the tactical level.

In [16], the HPRS is also presented, but the CPC levels
in [16] are determined by literature research and expert
knowledge. In this contribution, the new HPRS is obtained by
fuzzy logic-based data clustering method. In order to compare
the difference between these two HPRS based on different
methods, the HPRS obtained from the same data (scenario 1)
in [16] is presented as shown in Fig. 6. It can be observed that
the fluctuation of new HPRS generated in this contribution is
more smoothly than the results in [16], which indicates more
realistic changes in human reliability during driving.

V. CONCLUSION

In this contribution, a new approach defining the situated
and dynamic human reliability measure is established. Based
on the CREAM approach, a fuzzy logic-modified CREAM
approach is generated to characterize the situated driving



Fig. 4. HPRS of scenario 1

Fig. 5. HPRS of scenario 2

Fig. 6. Unfuzzified HPRS of scenario 1 [16]

context and to quantify human driver reliability. The results
show that the HPRS obtained based on fuzzy logic-based
data clustering method can properly evaluate human driver’s
reliability in real time. The HPRS generated with the new
approach in this contribution indicates more realistic changes
in human reliability during driving compared with the
HPRS in [16]. The main innovation of this contribution
is the modeling of the human reliability dynamization. In
the next steps, some other data clustering methods, like
clustering-based method with expectation-maximization (EM)
and genetic-based membership function parameter-estimation
(GMFPE) could be applied with CREAM. The approach
will allow future automation systems including warnings,
assistance, or fully automated control to be established for
the avoidance of human errors.
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