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Abstract. As one of the most relevant components in rotary machinery, ball 

bearings play an important role in diverse areas. To research bearing health 

state and remaining useful lifetime, several datasets have been developed. 

Among these datasets, Case Western Reserve University (CWRU) dataset is the 

most commonly used for bearing diagnosis. A large variety of approaches are 

applied on CWRU dataset and generating good even the tendency of perfect re-

sults. However, most of these approaches are based on supervised learning ap-

proaches and focus on classification of bearing faults. In this contribution, in 

difference to well-known existing approaches, an unsupervised approach com-

bining autoencoder with k-mean is applied on the CWRU dataset. Firstly, the 

original data are segmented into proper parts. Segments in time domain are 

transformed to time-frequency domain by adjusting the window length and 

window function using Short-Time Fourier Transform (STFT), and an associat-

ed spectrogram is generated. Spectrogram features are extracted using autoen-

coder and clustered using K-mean. Various metrics are used to evaluate the per-

formance of the proposed approach. All metrics values demonstrate that this 

approach could distinguish CWRU bearing from fault-free state to faulty state. 

As a new result, the requirement of related training datasets of the other ap-

proach is – for fault detection – no longer necessary in the future. 
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1 Introduction 

As a tool which provide rotational and linear movements of the device, ball bearing 

plays an irreplaceable role in diverse areas not only in industry but also in fields of 

daily use like in the automobile sector. Once a bearing (or component in it) fails, other 

adjacent components and machines are effected in behavior up to failure. Several 

surveys regarding the likelihood of induction machine failure conducted by the IEEE 

Industry Application Society and the Japan Electrical Manufactures’ association re-

veal that bearing fault is the most common fault type and is responsible for 30 to 40 % 

of all machine failures [1]. To avoid unplanned maintenance shutdowns and unsafe 

working conditions, detecting and identifying defects in bearing at an early stage is 

significant for rotary machinery. Several benchmark datasets are developed to evalu-

ate bearings health state and forecast remaining useful lifetime.  Among these da-
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tasets, Case Western Reserve University (CWRU) bearing dataset is the most cited 

one used to develop and verify bearing fault detection and diagnosis approaches. Ap-

proaches and their performance developed based on CWRU bearing dataset has been 

reviewed in [2]. Although almost all these approaches performed well with the ten-

dency of perfect, most of these approaches are supervised learning. A few approaches 

apply unsupervised learning for distinguish CWRU bearing states. Even if these ap-

proaches use unsupervised learning, metrics for evaluating approaches are still accu-

racy, precision, recall, and specificity which usually used to evaluate supervised 

learning approaches. 

Autoencoder is an unsupervised learning technique which leverage neural networks 

for the task of representation learning [3]. The aim of an autoencoder is to learn a 

lower-dimensional representation (encoding) for higher-dimensional data, typically 

for dimensionality reduction, by training the network to capture the most important 

parts of the input image [4]. A typical autoencoder consists of 3 parts: encoder, bot-

tleneck, and decoder. Encoder is a set of convolutional blocks followed by pooling 

modules that compress the input to the module into a compact section.  The bottle-

neck is a module that contains the compressed knowledge representations. Decoder is 

a module that decompresses the knowledge representations and reconstructs the data 

back from its encoded form. Autoencoders could be divided into different types, such 

as undercomplete autoencoders, sparse autoencoders, contractive autoencoders, de-

noising autoencoders, and variational autoencoders [5]. 

K-means clustering is a popular unsupervised machine learning algorithm. The ob-

jective of K-mean is grouping similar data points together and discover underlying 

patterns. To achieve this objective, a fixed number (K) of cluster in a dataset is im-

portant. For mining data, the k-means algorithm starts with a first group of randomly 

selected centroids, which are used as the beginning points for every cluster, and then 

performs iterative (repetitive) calculations to optimize the positions of the centroids 

[6]. Stopping criteria for k-means clustering are: centroids of newly formed cluster do 

not change; points remain in the same cluster, and maximum number of iterations are 

reached [7]. 

Evaluating the performance of an unsupervised learning algorithm is different with 

respect to the used metrics to supervised learning algorithms. Unsupervised learning 

evaluation metrics depend on the class of unsupervised algorithms such as dimension-

ality reduction algorithms, clustering algorithms, and generative models [8]. Cluster-

ing algorithms are evaluated based on some similarity or dissimilarity measure such 

as the distance between cluster points [9]. If the clustering algorithm separates dissim-

ilar observations apart and similar observations together, it performs well. According 

to whether labels are available, two classes statistical techniques to validate results for 

cluster learning: internal validation and external validation. Internal metrics define the 

quality of a clustering algorithm without external labels by using the idea of cohesion 

and separation while external metrics can be understood as an equivalent the evalua-

tion metrics of supervised algorithms [10]. Among external metrics, purity is a simple 

and transparent evaluation measure. Normalized mutual information (NMI) can be 

information-theoretically interpreted. The rand index (RI) penalizes both false posi-

tive and false negative decisions during clustering while adjusted rand index (ARI) 
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measures the similarity of two assignments ignoring permutations. F-measure sup-

ports differential weighting of these two types of errors. 

According to [2], most approaches applied to CWRU bearing dataset are based on 

supervised learning to classify different bearing states. According to authors 

knowledge, at present only a few approaches apply unsupervised learning to cluster 

bearing states. Besides, for unsupervised learning approaches applied to CWRU bear-

ing dataset, metrics applied to evaluate their performance are accuracy, recall, and 

precision, which are usually applied for evaluating supervised learning approach. In 

this paper, unlike other approaches, a new unsupervised approach combing autoen-

coder and K-mean is applied to cluster different bearing states in CWRU dataset. 

Furthermore, metrics applied for proposed approach are external metrics like purity, 

RI, ARI, and NMI which are also different with other approaches. The first step of 

proposed approach is data selection - suitable measurements are selected among 

whole dataset. Then, measurements are divided into segments. Afterwards, segments 

in time domain are transformed from time domain to time-frequency domain by 

Short-Time Fourier Transform (STFT) and spectrograms are acquired. Finally, fea-

tures of spectrograms are extracted by autoencoder and clustered by K-mean. The 

performance of the proposed approach is evaluated by external metrics. All results 

show that the proposed approach could distinguish faulty and fault-free states well. 

The structure of this contribution is arranged as follows: CWRU bearing dataset 

and test rig are shown in Section 2. In Section 3 the proposed approach will be pre-

sented in detail.  Results of the proposed approach are presented in Section 4. Finally, 

conclusions from calculating process are drawn in Section 5. 

2 CWRU bearing dataset  

Case Western Reserve University (CWRU) bearing data center provides access to ball 

bearing test data for normal and faulty bearings. As shown in Figure 1, the test stand 

consists of a 2 hp reliance electric motor, a torque transducer/encoder, a dynamome-

ter, and control electronics [11]. Motor bearings are seeded with faults using electro-

discharge machining (EMD). Faults ranging from 0.007 to 0.040 inches in diameter 

are introduced separately at the inner raceway, ball and outer raceway. Faulted bear-

ings are installed into the test motor and vibration data was recorded for motor loads 

of 0 to 3 horsepower. Vibration data are collected using accelerometers, which are 

placed at the 12 o’clock position at both the drive and fan end of the motor housing. 

During some experiments, an accelerometer is attached to the motor supporting base 

plate as well. Data are collected for normal bearings, single-point drive end and fan 

end defects at the samples rate of 12 kHz. For drive end bearing, vibration data are 

also collected at 48 kHz. 
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Fig. 1.  Test rig of CWRU bearing dataset [11] 

3 Proposed approach 

Measuring time for each condition in CWRU bearing dataset is from 10 seconds to 40 

seconds, besides, the data are collected at 12,000 or 48,000 samples per second. 

Therefore, it is impossible to calculate all data. To overcome this problem, the first 

step is to select suitable data. If one measurement is considered as one sample, sam-

ples are too little to be trained. To increase sample quality, measurements are divided 

into different segments. Segments in time domain are transformed to time-frequency 

domain by STFT, and associated spectrograms are generated. Then, spectrogram fea-

tures are extracted using autoencoder and clustered using K-mean. Flowchart of pro-

posed approach is presented in Figure 2. 

 

 
Fig. 2.  Flow chart of proposed approach 
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3.1 Data selection 

Measurements in CWRU represent three different conditions: fault-free baseline 

(BA), faulty bearing located at drive end (DE), and faulty bearing located at fan end 

(FE). When measuring data for baseline and faulty bearing at fan end, sampling rate is 

12 kHz. When measuring data for faulty bearing located at drive end, sampling rate 

are in both 12 kHz and 48 kHz. Since sampling rate of 12 kHz is applied to all meas-

urements, to keep samples under same sampling rate in subsequent calculations, only 

data with 12 kHz sampling rate are considered. In addition to that, another character-

istic of CWRU dataset is that some measurements contain data from 1 channel (sensor 

located at DE) and some contains data from 3 channels (sensors located in basement, 

DE, and FE separately). In the proposed approach, both DE and FE channels data are 

applied for fault-free state. For faulty bearing located at drive end and at fan end, only 

the nearby accelerometers data are adopted. In other words, when faulty bearing is 

located at DE, data from DE channel are used, when faulty bearing is located at FE, 

data from FE channel are used. 

 

3.2 Measurement segmentation 

In CWRU bearing dataset, data for each operating condition are only measured once 

with 204 measurements in CWRU bearing dataset in total. Since data are at the core 

of machine learning, a large amount of training data plays a critical role in making the 

machine learning models successful. To train a machine learning model, the sample 

number must be suitably large. Measurement segmentation is an efficient technique 

for increasing samples. As bearings belong to rotating machinery, the segmentation 

length is designed by it’s speed. Under different motor load, the motor speed is di-

verse, from 1797 rpm (0 HP), 1772 rpm (1 HP), 1750 rpm (2 HP), to 1730 rpm (3 

HP). In other words, under different motor loads, data in each round are 400, 406, 

411, 416 with an average of 408. To get a complete spectrogram of one round, the 

segmentation length should consider in the minimum one round. The segment length 

is settled at 408, 512 (1.25 time data for each round), and 1000 (almost 2.5 times of 

one round data) firstly. Final results shows that when segment’s length is 1000, the 

result is the best. One segment is shown in the left of Figure 3 (left).      

    
Fig. 3.  Left: one segment; Right: spectrogram of one segment 
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3.3 Segment transformation 

For each segment in time domain, time-frequency transform is an efficient way to 

generate features in time-frequency domain. To analyze non-stationary signals, Short-

time Fourier transform is one of the most straightforward approaches for performing 

time-frequency analysis. Short-time Fourier transform partitions the time-domain 

input signals into several disjointed or overlapped blocks by multiplying the signal 

with a window function and applying the Discrete Fourier Transform (DFT) to each 

block. For random signals, Hanning window is often the preferred window function 

choice to manipulate a portion of the signal to reduce errors in the discrete Fourier 

analysis. The window length can help to balance time resolution and frequency reso-

lution. Other parameters like the number of overlapped samples, numbers of DFT 

points, and STFT frequency range also affect spectrograms. By adjusting these pa-

rameters, spectrograms (Figure 3 (right)) are obtained. 

 

3.4 Feature extraction 

Spectrograms are not easy to distinguish as a large number of pixels are contained. 

Features extraction and compression are important steps to be realized before cluster-

ing spectrograms. Autoencoder can capture the most important features present in 

data. A whole encoder consists of three parts, namely: encoder, bottleneck, and de-

coder. In the encoder step, the model reduces input data dimensions and compress 

them into an encoded representation. Bottleneck is the lowest possible dimension 

which contains the compressed representation of input data. In the decoder step, the 

model reconstructs data from the encoded representation to be as close to the original 

input as possible [12]. In the proposed approach, only encoder part is applied since 

the main goal is spectrograms’ feature extraction and compression. Compare with 

principal component analysis (PCA) which can also reduce dimensionality of large 

datasets, encoder could form nonlinear dimensionality reduction. As original spectro-

gram size is very large to maintain features, in the proposed approach, the bottleneck 

size is assumed as 200. Meanwhile, the epoch is assumed as much as 1000 for model 

training. 

 

3.5 Feature clustering 

Features of spectrograms are not easy to distinguish. Clustering is an exploratory data 

analysis technique used for mining data structure. The task of clustering is identifying 

data subgroups in the way that data in the same cluster are very similar while data in 

different clusters are very different. A cluster contains a centroid and a boundary. To 

define the centroid and boundary, iterative calculation is needed until desired or ap-

propriate result is achieved. K-mean algorithm is an iterative algorithm that tries to 

partition the dataset into K pre-defined distinction non-overlapping clusters and each 

data belongs to only one group [13]. According to CWRU bearing dataset, the first 

step is to cluster vibration signals between fault-free and faulty. So the value of K is 

determined by two. Initial two centroids are selected randomly and the sum of 

squared distance between data points and centroids are computed. Data points are 
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assigned to the closer cluster. Afterwards, new centroids are computed by taking the 

average of all data points that belong to each cluster. The iterative calculation is stop 

when two centroids of newly formed cluster are stable.  

4 Results  

To evaluate the performance of proposed approach, external metrics like purity, rand 

index, adjusted rand index, normalized mutual information, and F-measure are ap-

plied in this contribution. Purity is the percent of the total number of objects (data 

points) that are classified correctly ranging from zero to a tolerance limit. The disad-

vantage of purity is that it is impossible to tradeoff between the quality of the cluster-

ing and the number of clusters. Normalized mutual information which measures the 

similarities between two labels of the same data can balance the cluster quality and 

cluster numbers. One advantage of NMI is that it can be applied to compare different 

cluster models that have different number of clusters. Another commonly used metric 

for clustering algorithms is the rand index. Rand index is a similarity measure com-

paring two clusters by considering all pairs of samples and counting pairs that are 

assigned in the same or different clusters in the predicted and true clusters. However, 

the major problem with the RI is that the expected value of rand index of two random 

cluster or partition does not take a constant value. To solve the problem, adjusted rand 

index is introduced where the generalized hypergeometric distribution considered as a 

random model. Besides the metrics above, F-measure is used for evaluating the pro-

posed approach. 

To verify the suitability of the proposed approach on the CWRU dataset, samples are 

divided into training and test groups. The ratio between training and test samples 

number is 9:1. As shown in Table 1, all the metrics value for both training and test are 

1 which means that samples can be clustered into two groups totally by proposed 

approach. In other words, the proposed approach can distinguish fault-free and faulty 

state in CWRU bearing dataset perfectly. 

Table 1. Results 

Training Test 

Purity RI ARI NMI F-measure Purity RI ARI NMI F-measure 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

5 Conclusion  

As one of the most cited benchmark datasets, CWRU bearing dataset has been applied 

to verify new approaches and related performance results. The CWRU dataset data 

are labeled, consequently, more of the applied approaches are supervised approaches. 

In this contribution, a new unsupervised approach is raised to cluster data in CWRU 

bearing dataset. Data are selected, segmented, and transformed from time domain to 

time-frequency domain. Afterwards, autoencoder is utilized for spectrograms’ feature 



8 

extraction and compression. These compressed features are clustered into two clus-

ters: fault-free and faulty by K-mean. 

    Using the labeled data, external evaluation metrics of the proposed approach is 

possible. Results using purity, rand index, adjusted rand index, normalized mutual 

information, and F-measure are consequently 100 %. This means that the proposed 

unsupervised approach could distinguish fault-free and faulty state in CWRU bearing 

dataset. For further work, more bearing states in CWRU should be distinguished by 

adjusting the values of K. Furthermore, beside external metrics, internal metrics could 

also be employed to estimate the approach.  
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