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Abstract— Developing driving behavior prediction and recog-
nition models play a crucial role in Advanced Driving As-
sistance Systems (ADAS). Developing these models generally
requires the use of Machine Learning approaches. Often,
Machine Learning approaches are difficult to interpret. In
this contribution, an Artificial Neural Network (ANN)-based
state machine driving behavior recognition model is developed
to estimate three lane changing behaviors. A state machine
topology defining the relationship between the states (driving
behaviors) is developed. The state transitions to another state or
remains in the same state based on specific conditions defined
by estimations of ANN. Two options are developed: using one
common ANN or using three ANN (for three states). Design
parameters (weights and biases) defined using optimization
describe the ANN estimations when trained. Based on this,
lane changing behaviors for the models are estimated. Data
from three participants were collected. The results show that
this approach performs better than the conventional ANN in
terms of DR and FAR with improvements up to 46 % for DR
and 34 % for FAR. Based on the results, it can be concluded
that the approach introduced realizes high accuracy (ACC),
high detection rates (DR), and low false alarm rates (FAR).

I. INTRODUCTION

Road safety when driving is one of the most important
issue faced by drivers. According to the Department of
Statistics in Germany, 74.4 % of driving accidents are caused
by human driving behaviors making it the main cause of
road accidents in 2019 [1]. In recent years, the use of
Advanced Driving Assistance Systems (ADAS) have been
developed to tackle this issue by helping the driver to maneu-
ver in different situations to avoid errors. Driving behavior
prediction and recognition models play an important role
this development. As the accidents are mainly caused by
driving behaviors, prediction and recognition models should
be individualized. Thus, incorporating the knowledge of
individual driving behaviors into ADAS is able to provide
drivers with information on how to maneuver based on the
driver’s individual driving habits. Recent researches devel-
oped driving behavior prediction and recognition models
based on Machine Learning algorithms. Some of the Ma-
chine Learning algorithms used are Artificial Neural Net-
works (ANNs) [2], Support Vector Machines (SVM) [3], or
Fuzzy Logic (FL) [4]. Two concepts are used to develop
these models. The first concept combines two or more
Machine Learning algorithms to develop the model. In [5],
density-based clustering, SVM, and long short-term mem-
ory model (LSTM) are combined to predict lane changing
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maneuvers. The density-based clustering identifies driving
intentions and the SVM uses this results to label the new
raw data. The LSTM predicts lane changing maneuvers using
the labeled data. The second concept considers the selection
of input features, as the features affect the performance of
the model. Thus, determining suitable features is important
to improve the performance. Common input features are
environmental, driver’s operational, physiological, and eye-
tracker variables. Feature selection methods such as filter and
wrapper methods are used in [6] to select suitable features. In
[7], textural expressions and feature points are considered to
estimate driver’s drowsiness. A state machine-based driving
recognition model is introduced in [8].

One of the challenges is finding optimal parameters of the
recognition and prediction model to improve the performance
of the model. In this contribution, a trainable and inter-
pretable driving recognition model is developed by combin-
ing ANN with a state machine-based approach [8] to estimate
different lane changing behaviors. Here, the state machine’s
topology is more interpretable than Hidden Markov Model
(HMM), while ANN is used as it requires low statistical
training. The objective is to develop a model that generates
optimal estimations with regards to high accuracy (ACC),
high detection rates (DR), and low false alarm rates (FAR).
The state machine determines the final estimation based on
the output of the ANN in the model. Two approaches are
used to develop the model. For training, Non dominated
Sorting Genetic Algorithm II (NSGA-II) is used to generate
optimal parameters. The aim of this contribution is to prove
that this approach performs better than conventional ANN.
In comparison to [8], whereby a state machine approach
considering thresholds of input variables as parameters is
used, in this contribution the state machine is combined with
ANN, with weights and biases of the ANN as parameters.

This contribution is organized as follows: in Section II,
a methodology about the state machine-based approach and
ANN is presented. In Section III, the development of the
recognition model is described. The application is presented
in Section IV, whereby the experimental design and the
method execution are described. The results in terms of ACC,
DR, and FAR including comparisons between the proposed
method and a conventional ANN are presented and discussed
in Section V. Finally, in Section VI, a conclusion is given.

II. METHODOLOGY

A. State machine-based approach

The state machine models the behavior with discrete
variable states. The system dynamics in a state machine are
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characterized by a sequence of transitions based on a set
of inputs in which the system can remain in the same state
or switch to another state [9]. A transition from one state to
another is based on specific conditions. Changes in the states
result from the output of a particular system. State machines
are well-known approaches for modeling behaviors. Here,
designers define the parameters and variables required for
modeling [8]. A state machine model has a fixed number of
states. Some of the advantages of the state machine approach
include, easy designing process, quick implementation and
execution processes. It is also easy to track the event that
causes a state change [10].

In this contribution, the state machine approach in [8],
is applied. The lane changing behaviors estimated are lane
change to right (LCR, state 1), lane keeping (LK, state 2),
and lane change to left (LCL, state 3) defined as states. If the
driver is in LK (state 2), the possible next options are further
LK (remaining in state 2), LCR (transition to state 1), or LCL
(transition to state 3). During a lane change maneuver (state
1 or state 3), possible options are further lane change in
same direction (remaining in state 1 or 3) or the lane change
maneuver is over and the driver is LK (transition to state
2). Here, the conditions for transitioning or remaining are
based on environmental and operational variables (inputs)
and parameters. Optimal parameters are generated through
the training process, thus producing an effective estimation
of the driving behaviors.

B. Artificial Neural Network

An Artificial Neural Network (ANN) is a Machine Learn-
ing algorithm that acquires, learns, and stores knowledge
received from the input to produce an output [11]. As
mentioned, Artificial Neural Networks are well-known ap-
proaches for classification and prediction as they can be
trained quickly and are highly flexible [12]. In this contri-
bution, only one hidden layer of ten neurons is considered.
The output layer consists of three neurons each representing
the three driving behaviors (also known as classes), LCR,
LK, and LCL. The LCR output is also denoted as 1, LK
is denoted as 2, and LCL is denoted as 3. The input
layer receives data, which is passed to the hidden layer for
processing and sent to the output layer to generate an output.
Based on the weights, activation functions, and bias values,
predicted probabilities are associated with each neurons
with exception to the neurons in the input layer. Predicted
probabilities of three neurons (classes) in the output layer are
generated, the final estimation of the network is based on the
output neuron that has the highest predicted probability. The
predicted probability is given by

Y = f (
N

∑
i=1

wixi +b), (1)

with wi as the weight, xi as the input at a particular
layer, b as the bias value, f as the activation function, N
as the number of inputs, and Y as the output. As activation
functions, Sigmoid and Softmax activation functions are
used.

III. STATE MACHINE-BASED APPROACH
COMBINED WITH ARTIFICIAL NEURAL

NETWORK DRIVING RECOGNITION MODEL

The aim of this contribution is to establish a model that
combines two trainable systems (ANN and state machine-
based approach) to estimate lane changing behavior. The idea
is to apply the approach to a system with different states.
Therefore, the topology of the state machine-based approach
is used to model states and transitions and the ANN to
model the transition conditions. The model is realized using
two concepts with appropriate inputs and design parameters
denoted as approach I and approach II. Approach I is based
on one common ANN combined with the state machine
approach. Approach II is based on three ANN (representing
the three driving behaviors) combined with the state machine
approach.

A. Integration of ANN in the state machine model

The state transitions are based on certain conditions mod-
eled by ANN estimations. The input data consist of driver’s
operation and environmental variables as these variables play
a major role in driver’s behaviors. The operation variables
are angle of steering wheel (ast ), accelerator pedal position
(aacc), brake pedal position (abrake), indicator (i), and current
lane (l). The environmental variables are time to collision
(TTC) to the vehicle in the front (T TC f ), to the vehicle in the
back (T TCb), to the vehicle in the front left (T TC f l), to the
vehicle in the front right (T TC f r), to the vehicle in the back
left (T TCbl), and to the vehicle in the back right (T TCbr)
[8], [13]. The input variables denote the relationship between
the ego vehicle and surrounding vehicles. The output of the
proposed model is defined by the three driving states, LCR,
LK, and LCL. First, the input variables along with the model
parameters are used to estimate the driving behaviors using
ANN, which are also LCR, LK, and LCL. These estimations
are integrated into the state machine topology as conditions
for a transition or to remain.

B. Two concepts for modeling the transition-state relation

For approach I (Fig. 1), transition or remaining conditions
are defined by the outputs of one common ANN, which are
LCR, LK, and LCL as previously described. For a transition
from state 2 (LK) to state 1 (LCR) or state 3 (LCL) in the
proposed model, the output of ANN should be LCR (1) or
LCL (3) respectively as well, at that time point. Similarly,
for a transition from state 1 or state 3 to state 2, the output
of ANN is denoted as LK (2). If the conditions are not met,
the model remains in the same state.

Following the same integration and transition process as
approach I, the conditions in approach II (Fig. 2) are based
on the ANN corresponding to the current estimated state,
whereby three networks are defined as ANN (right), ANN
(keep), and ANN (left) (Fig. 2). The possible outputs for the
three networks are listed in Table I. If the estimation of ANN
is same as the current state, then the model remains in the
same state.



TABLE I: Outputs of the three ANN.

ANN models Possible outputs (denotations)
ANN(right) LCR (1), LK (2)
ANN(keep) LCR (1), LK (2), and LCL (3)
ANN(left) LK (2), LCL (3)
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Fig. 1: State Machine and one ANN diagram (approach I).
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Fig. 2: State Machine and three ANN diagram (approach II).

C. Defining parameters by optimization

The design parameters associated with ANN, which are
weights and biases, affect the performance of the overall
model to estimate the driving behaviors. Thus, the definition
(training) of these parameters by optimization is necessary to
develop optimal estimates of the model. In this contribution,
NSGA-II[14] is used to define the optimal design parameters
in the training process. Some of the important features of
NSGA-II include, diversity preserving method (crowding
distance), and emphasizing on non dominated solutions [15],
[16]. The optimal design parameters are developed with

respect to maximal accuracy rates (ACC), detection rates
(DR), and minimal false alarm rates (FAR). The equations
related to ACC, DR, and FAR are defined as

ACC =
T P+T N

T P+T N +FP+FN
, (2)

DR =
T P

T P+FN
, and (3)

FAR =
FP

T N +FP
. (4)

Thus, the performance of the overall model can be evalu-
ated using ACC, DR, and FAR by comparing the estimated
and the actual driving states at each time point. Suitable
objective functions are chosen to evaluate the optimization
process, whereby the actual and estimated driving states
are compared to minimize the deviation between them. The
objective functions are defined as

f1 = (1−DRright)+FARright , (5)

f2 = (1−DRkeep)+FARkeep, and (6)

f3 = (1−DRle f t)+FARle f t . (7)

The objectives are defined for evaluating the three states.

IV. APPLICATION OF DEVELOPED METHOD

A. Design of the experiment

The driving data sets were obtained using a driving sim-
ulator, SCANEeRT M at the Chair of Dynamics and Control
(University of Duisburg-Essen) (Fig. 3) to perform driving
simulations [8], [13].

Fig. 3: Driving simulator, Chair of Dynamics and Control (SRS).

The scenario in this experiment is based on a four lane
highway with two directions. The driving environment is
a normal environment. The driver can perform different
maneuvers while driving with other surrounding vehicles
participating in the driving simulation. For an example, the
driver is able to overtake a slow moving vehicle ahead and
move back to the initial lane after overtaking. Following the
rules in Germany, the driver can only overtake from the left.
The data sets were obtained for training and testing from
three participants ages between 25 to 30 years, all of which
held a valid driving license. The training data set is based on



a 40 minute manual drive and the test data set is based on a
10 minute manual drive [8], [13]. Each training and test data
set corresponds to one driver. The current lane number of
the ego vehicle, lt is determined through the vehicle’s center
point. This can be used to determine the actual driving states
by comparing the lane numbers at different time points. If
the current lane number lt and the previous lane number
lt−1 are the same, then the ego vehicle is in the same lane
and lane keeping (LK) is defined. If the current lane number
is higher than previous lane number, then this suggests a
left lane change (LCL), while if the current lane number is
lower than the previous, a right lane change (LCR) is defined.
Based on Fig. 4, the time at which a lane change occurs is
defined by tlane and the time of last significant change in
the angle of steering wheel is defined as tangle which is the
starting time of a lane changing behavior. Thus, the lane
changing behavior is defined by the time interval between
tangle and tlane [8], [13].

Fig. 4: Lane changing in highway.

B. Training and test process

The training and test processes are based on the input
variables and the actual driving states. The data sets were
trained in the following manner:

1) Input variables and actual driving states are given into
the state machine combined with ANN model.

2) Using NSGA-II, a set of design parameters is gener-
ated.

3) Based on the optimal parameters generated, the ANN
within the model generates the predicted probabilities
for the three different behaviors at different time points.
This determines the estimations/outputs of ANN.

4) Based on the estimations of the ANN, the estimations
of the proposed model are determined using the state
machine topology.

5) For approach II, the NSGA-II determines the design
parameters associated with all three neural networks.
Using the state machine topology, the transition con-
dition is based on the estimation of the ANN corre-
sponding to the current state to determine the output.

6) The actual states and the estimated states from the
proposed model will be compared to derive the ACC,
DR, and FAR. The objective functions are evaluated.

7) The process (1) to (6) is repeated until convergence
and the optimal model is obtained.

The generation size used is 200 with a population size
of 90, which are inputs/options for NSGA-II to describe the
number of iterations for training.

Testing is conducted by two steps:
1) The trained model is applied to the test data set for

state estimations.
2) The actual driving states (from test data set) and

estimated driving states are compared.

V. RESULTS

Comparing the real and estimated lane changing behaviors
to evaluate the similarities, enables the evaluation of ACC,
DR, and FAR for different test data sets. In Figures 5 to 7,
the real states and the estimated states of test data set 1, test
data set 2, and test data set 3 corresponding to drivers 1, 2,
and 3 are shown based on the trained model, using approach
II. Also, training data sets are referred as data sets in the
figures and tables.
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Fig. 5: Real and estimated driving states for test data set 1
(training based on data set 1).

The drivers make the choice by assessing the traffic
conditions and of the drivers’ free will. Based on the results
presented, a close fit between the estimated and real states for
all three data sets can be observed with some inconsistencies.
A close fit between the estimated and real states are also
achieved when approach I is applied. The training and test
process were repeated several times.

Tables II to IV, show the ACC, DR, and FAR results of
different test data sets based on a model using approach II.
When a model is trained using a data set from a driver, the
corresponding test data set and whole data sets (combined
training and test data sets of a driver) from other drivers
are used for test. This is done to prove the generalibility of
the proposed approaches. For reference, training, test, and
whole data sets 1, 2, and 3 correspond to drivers 1, 2, and
3 respectively.

Table II shows ACC, DR, and FAR for test data set 1,
whole data set 2 (combined training and test data set 2), and
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Fig. 6: Real and estimated driving states for test data set 2
(training based on data set 2).
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Fig. 7: Real and estimated driving states for test data set 3
(training based on data set 3).

whole data set 3 (combined training and test data set 3) when
the model is trained using data set 1.

TABLE II: Evaluation of metrics of different test data sets
(data set 1).

State Metrics Test data
set 1 [%]

Whole data
set 2 [%]

Whole data
set 3 [%]

Overall ACC 92.71 93.69 82.40
Right ACC 97.41 96.80 87.04

DR 89.92 79.24 92.88
FAR 1.64 2.15 13.24

Keep ACC 92.71 93.69 82.40
DR 93.42 94.90 81.14
FAR 13.30 17.05 5.85

Left ACC 94.77 96.79 95.35
DR 83.87 86.71 95.35
FAR 4.58 2.67 4.65

Based on Table II, the ACC and DR of right, keep, and
left maneuvers are generally higher than 80 %, sometimes
higher than 90 %. The highest accuracy is ACCright at 97.41

%. Low FAR are generally achieved for the test data sets.
Thus, when model is trained using data set 1 and tested using
the test data sets, high ACC, DR, and low FAR are achieved
for the different states.

Table III shows ACC, DR, and FAR for test data set 2,
whole data set 1, and whole data set 3 when training using
data set 2.

TABLE III: Evaluation of metrics of different test data sets
(data set 2).

State Metrics Whole data
set 1 [%]

Test data
set 2 [%]

Whole data
set 3 [%]

Overall ACC 89.16 92.43 74.89
Right ACC 96.67 95.41 85.06

DR 84.86 72.86 87.88
FAR 2.75 3.54 15.08

Keep ACC 89.27 92.43 74.90
DR 89.32 94.30 73.21
FAR 11.24 26.64 9.31

Left ACC 92.38 97.02 89.83
DR 90.26 73.86 93. 24
FAR 7.51 1.90 10.35

Here, the overall accuracy for test data set 2 is 92.43 %.
The ACC and DR for the right, keep, and left maneuvers
are also higher than 80 % (some are higher than 90 %) with
a few exceptions which have values higher than 70 %. The
highest ACC is ACCle f t with an accuracy of 97.02 % in test
data set 2. The FAR are also low in most test data sets, with
a few exceptions like FARkeep in test data set 2, at 26.64 %
and FARright in whole data set 3, at 15.08 %.

Next, Table IV shows ACC, DR, and FAR for test data set
3, whole data set 1, and whole data set 2 when the model is
trained using data set 3.

TABLE IV: Evaluation of metrics of different test data sets
(data set 3).

States Metrics Whole data
set 1 [%]

Whole data
set 2 [%]

Test data
set 3 [%]

Overall ACC 94.19 92.06 93.32
Right ACC 97.99 96.49 98.59

DR 87.39 73.07 91.55
FAR 1.48 2.25 1.14

Keep ACC 94.20 92.06 93.32
DR 94.80 93.58 93.71
FAR 11.39 21.39 11.04

Left ACC 96.18 95.57 94.73
DR 89.47 84.23 86.80
FAR 3.47 3.83 4.89

The highest ACC in this table is ACCright , at 98.59 %.
Similar to others, the DR values are also higher than 80 %
(higher than 90 % for DRkeep) with some exceptions. The
FAR values are low for for FARright and FARle f t , however
it tends to be higher for FARkeep. From the analysis of all
results, high ACC, DR, and low FAR are generally achieved
when the model is tested using different data sets resulting
in an optimal model. This proves the generability of this
method. Approach I also produces ACC and DR values
higher than 80 % and low FAR values when the model is
trained and tested.



Comparisons between the mean performances of approach
I, approach II, and a conventional ANN (from Matlab
toolbox) are presented using the same three test data sets
in Table V. For an example, the overall accuracy here, is the
mean overall accuracy obtained from the test data sets 1, 2,
and 3 based on different approaches when the training data
sets 1, 2, and 3 are used for training. The rest of the metric
means are also evaluated the same way.

TABLE V: Mean comparison of ANN, ANN-based state machine
approaches I and II.

States Metrics Conventional
ANN [%]

Approach I
[%]

Approach II
[%]

Overall ACC 81.95 84.09 92.82
Right ACC 93.72 91.58 97.31

DR 46.79 77.97 84.78
FAR 4.17 7.03 2.11

Keep ACC 82.37 84.67 92.82
DR 85.77 86.88 93.81
FAR 51.39 23.93 16.99

Left ACC 87.81 91.97 95.51
DR 40.98 69.29 81.55
FAR 9.90 5.07 3.79

Based on mean performances shown in Table V, approach
II has better performances than the conventional ANN and
approach I for all metrics. Approach I also performs better
than the conventional ANN for most of the metrics, with
the exception of ACCright and FARright . Approaches I and II
perform significantly better particularly in DRright , FARkeep,
and DRle f t . Thus, this shows that the proposed approaches
perform better than the conventional ANN. In addition, the
mean elapsed times of each approach are also evaluated
based on training process. The conventional ANN is the
fastest one (16 seconds) and the developed approaches take
longer time (approach I: 641 seconds, approach II: 2413
seconds).

VI. CONCLUSIONS

In this contribution, an ANN-based state machine driving
behavior recognition model is developed to estimate lane
changing behaviors based on the optimal parameters. Here,
the estimations from ANN serves as a condition if a transition
between states can occur in the state machine, producing the
estimate of the proposed model. The model is trained using
NSGA-II to generate optimal parameters. From the results,
high ACC, high DR, and low FAR are achieved. The ACC
and DR achieved for most of the test data sets are better
than 80 % up to 98 %. While low FAR for different states
are generally achieved, FARkeep tends to be higher. Two
approaches of the model are developed, whereby one model
uses one ANN with the state machine based approach, while
the other model uses three ANN. Comparisons between
the conventional ANN and the proposed approaches are
done. The proposed models perform significantly better than
the conventional ANN especially in DRright , FARkeep, and
DRle f t . For future works, incorporating eye tracking variables
like gaze quality to evaluate the model’s performance will be
considered. Another aspect to consider is applying the model

for classifying driving styles during lane changes, such as
aggressive, etc.
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