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A Review of HMM-based Approaches of Driving
Behaviors Recognition and Prediction

Qi Deng and Dirk Söffker

Abstract—Current research and development in recognizing
and predicting driving behaviors plays an important role in the
development of Advanced Driver Assistance Systems (ADAS).
For this reason, many machine learning approaches have been
developed and applied. Hidden Markov Model (HMM) is a
suitable algorithm due to its ability to handle time series data
and state transition descriptions. Therefore, this contribution
will focus on a review of HMM and its applications. The aim
of this contribution is to analyze the current state of various
driving behavior models and related HMM-based algorithms. By
examining the current available approaches, a review is provided
with respect to: i) influencing factors of driving behaviors
corresponding to the research objectives of different driving
models, ii) summarizing HMM related methods applied to driving
behavior studies, and iii) discussing limitations, issues, and future
potential works of the HMM-based algorithms. Conclusions with
respect to the development of intelligent driving assistant system
and vehicle dynamics control systems are given.

Index Terms—Machine Learning Methods, Hidden Markov
Model, Driving Behaviors Prediciton, State and Intent Recog-
nition, and Advanced Driver Assistance Systems.

I. INTRODUCTION

Many people die or are injured yearly due to traffic ac-
cidents. The World Health Organization (WHO) provided a
global status report on road safety in 2015 and showed that
more than 1.2 million people are killed each year on the
roads [1]. Therefore much attention has been paid on driving
safety over the years. Investigation conducted by the National
Highway Traffic Safety Administration (NHTSA) in 2015
[2] assigns the most critical reason for traffic accidents to
drivers accounting for 94 %. Individual driver factors in the
driving process and road traffic accidents are mainly reflected
in driver’s own behavior. Therefore, the research of driving
behavior is meaningful for traffic safety.

Nowadays many institutions have conducted research on
driving behavior prediction. Different machine learning al-
gorithms like Artificial Neural Networks (ANN) , Dynamic
Bayesian Networks (DBN), Support Vector Machines (SVM),
Fuzzy Logic (FL), Random Forest (RF), Convolutional neural
network (CNN), and Hidden Markov Models (HMM) are ap-
plied for learning and modeling driver’s decision. Some review
papers summarized the driving behavior studies with focus on
the driver behavior characteristics identification [3] [4], the tac-
tical driving behavior prediction [5], the driver drowsiness and
distraction detection [6], the driving style identification [7] [8],
and the human behavior recognition through visual monitoring
[9] or human emotional states [10]. However, these review
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papers only summarize and discuss specific aspects of driving
behaviors, like driving styles, drowsiness, etc. In addition, the
authors often summarize popular algorithms. The derivation
of popular algorithms or other approaches developed are not
discussed. In [11] a taxonomy of 200 models is constructed
around different modeling tasks including state estimation,
intention estimation, trait estimation, and motion prediction.
However, specific information about model input, output, and
explanation/discussion of algorithms are not presented in this
survey [11].

Some related algorithms such as HMM, Neural Network
(NN), Fuzzy rule-based classifier, and Gaussian Mixed Model
(GMM) are compared in the review paper [3]. The authors
listed the advantages and disadvantages of the four algorithms
considered, and pointed out that the HMM algorithm demon-
strate a high accuracy and a very good performance in real-
time driving behavior prediction. Compared with other popular
algorithms, the HMM and DBN are designed as a probabilistic
graphical model. One advantage is that it is easier for a
human to understand directly the probabilistic relationships
between the nodes. However, the DBN is more complicated
than HMM in terms of network definition. In addition, driver’s
driving behaviors are based on the driver’s own experiences,
habits, and the current traffic environment. During driving,
driver’s behaviors cannot be measured directly but can be
inferred by analyzing measurable parameters described current
driving situation. The upcoming behavior is stochastic and
only depends on the present state. Therefore, driving behaviors
can be described as a hidden Markov process [12]–[14]. The
HMM algorithm has an advantage for handling time series data
and stochastic signal process. For these reasons, the HMM
algorithm is suitably applied for driving behavior or other
human behavior studies [3]. In 2016, the authors of [15] re-
viewed machine-learning techniques for statistical analysis and
modeling of driver behavior. The authors also pointed out that
HMM has been successfully applied to model driver behavior
using large amounts of driving data. Additionally, only a few
HMM-based approaches are summarized in [15]. Nowadays,
there are a large number of driving behavior researches devel-
oped by HMM-based approaches. In general, the design ideas
of these HMM-based approaches are roughly divided into
two categories: HMM-derived and HMM-combined. However,
review papers focusing on introducing and surveying HMM
and HMM-based methods in this field are not available yet.
Therefore, this contribution aims to summarize popular HMM-
based approaches applied in driving behavior studies in the
past 6 years.

The following section will present the influencing factors
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as well as the main research objects of current researches.
Moreover, this contribution summarizes popular HMM-based
methods of recognizing and predicting driving behaviors.
Finally, the discussion on the applications, advantages, and
disadvantages of the mentioned methods, limitations, as well
as the development trends of driving behavior models will be
concluded.

II. INFLUENCING FACTORS OF DRIVING BEHAVIORS

In this contribution, the driving behavior is not only a real
action or a specific behavior, but also includes the reactions
when drivers realize driving tasks denoted as driver’s driving
patterns, driver’s intentions, driving maneuvers, trajectories of
the vehicle, etc. In this section, the main topics (common
influencing factors) of driving behaviors are summarized and
their current corresponding researches are introduced.

A. Driving styles

Due to the driver’s character, psychological status and other
factors, driving behaviors could be categorized into many
driving styles. Sagberg et al. [16] state that driving style
depends on the individual driver and it is a habitual driving
way. The authors point out that in the existing literature
labeling of driving styles are commonly defined by common
sense. In current driving style contributions [16]–[18], ag-
gressive driving is a very common term. Aggressive driving
behaviors include driving without obeying the traffic rules,
such as over speed limit driving, sudden accelerating, sudden
braking, abrupt lane changing, or sharp turning. These driving
behaviors will lead the driver/vehicle to risks or even accidents.
Therefore, one of the purposes of driving style studies is to sort
out these aggressive driving. It is helpful to develop ADAS,
because when a dangerous driving behavior is recognized,
the driver can be warned immediately. At the same time, the
driver’s behaviors will be guided to improve traffic safety.
To detect aggressive driving behaviors, in many driving style
analysis studies, normal (safe/defensive) driving is given as a
referent [17]. As explained in [16], dangerous and safe driving
styles can be divided into different levels. Several different
terms are used to label global driving styles, like calm, careful,
aggressive [16]. However, it still lacks an unified conceptual
standard to clearly distinguish these styles. In the existing
contributions, the levels, the terms, and the concepts of driving
styles depend on author’s own definitions.

Aggressive driving can be classified based on physiological
signals, biometric information, or vehicle driving state like
vehicle velocity, acceleration, etc. In [18] a FL-based model
is developed to classify driving styles into below normal
(BN), normal (N), aggressive (A), and very aggressive (VA).
Longitudinal / lateral acceleration and velocity are selected
as inputs and collected from a 2-axis accelerometer. Based
on fuzzy rules the output of the system is used to classify the
individual driving behaviors into the different driving styles. In
[17] aggressive driving style is classified using 3-axis (lateral,
vertical, longitudinal) accelerometer data. The authors com-
pare using one acceleration signal alone or combining two or
three of them to recognize driving styles. The results are shown

that using longitudinal acceleration signal the aggressive and
safe driving style can be more effectively classified.

In addition to judging aggressive driving, driving style anal-
ysis is also used for reducing fuel consumption. In [19] Bao et
al. proposed a method for predicting the driving style to search
a personalized eco-friendly style. The drivers were divided into
three classes including calm, normal, and aggressive driving
based on Learning Vector Quantization (LVQ) neural network.
Based on the predicted driving style, current traffic (congestion
and average speed of each road), time, and road type, the
fuel-consumption-minimizing route could be determined. In
[20] Derbel et al. summarize existing driving style studies
with HMM and propose an approach for calculation of car
insurance fee through estimating the driver aggressiveness.

From these researches it can be concluded that the study of
driving styles/patterns cannot only be used for warning drivers
to avoid dangerous driving and related problems, but also
for calculating car insurance fees, improving fuel economy,
and other aspects. The information about driving styles is
obviously helpful to develop driving assistant systems. Based
on different types of drivers these systems can give drivers
suitable suggestions to fit their driving habits.

B. Fatigue driving

Fatigue driving is another important driving style leading to
traffic accidents. The drivers inattentiveness, tiredness, drowsi-
ness, or sleeping during the driving process refer to fatigue
driving. The National Highway Traffic Safety Administration
[21] reported that about 90000 accidents involved fatigue
driving in 2015. Driver fatigue detection research can be
divided into two main categories: based on driver behavior
and on vehicle behavior.

Based on driver behavior means selecting driver’s own
characteristics or patterns as inputs, such as physiological pa-
rameters or biometric information. The driver’s physiological
parameters include electroencephalogram (EEG), electroen-
cephalogram (EOG), electrocardiogram (ECG), etc., which
can indicate driver’s mental fatigue and psychical fatigue.
Therefore, in some researches these parameters are used to
determine whether drivers are fatigue. In [22] the authors pro-
pose a feature-extraction method to extract drowsiness-related
features from the EEG, EOG, and ECG signals. These features
are used to classify the drivers fatigue into different levels. In
addition, the authors compare the differences between using
only one signal or using a combination of different signals.
The conclusion of the research shows that the ideal results
cannot be obtained with ECG or EOG alone. However, a high
classification accuracy can be achieved using only EEG, or
using a combination of EEG+ECG, or EEG+EOG.

The other measures of driver’s characteristics are through
the analysis of eyelid blinking, eye movement, eye closure,
head pose, etc. to detect fatigue driving. In [23] Qin et al.
focus on the analysis of eye closure of the driver. The authors
extract two-dimensional Discrete Cosine Transform (2D-DCT)
feature of each eye images. Two HMMs are trained based on
eye opening and closure images, respectively. The states of the
two HMMs are calculated at the same time. The recognition
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result with the highest likelihood is used to determine the
fatigue statues of the driver. Lee and Chung [24] use a dynamic
Bayesian network framework to evaluate the driver fatigue.
Two sensors are used to collect data including eye movement
and photoplethysmograph (PPG) signal. If the calculated driver
fatigue reaches a defined threshold, the drivers will be warned.

In addition to the aforementioned researches based on
studying the driver’s own characteristics, analyzing the vehicle
situation is also used to detect driving fatigue. The driver’s
maneuvers could be estimated to determine whether there is
fatigue driving. Generally this method is using the current
vehicle status including the distances between the vehicle and
other vehicles, deviations from lane position, steering wheel
angle, velocity, acceleration, as well as other controller-area-
network (CAN) signals. For example, in [25] an approach is
given for detecting driver fatigue based on HMM. Signals are
processed according to three independent modules including
vision, audio, and other-signals module. The inputs of vision
and audio modules are video and voice respectively. The
module namely ‘other-signals’ use heart rate, steering wheel
position, gas, brake, and clutch pedal positions as inputs to
detect driving fatigue. The three modules are independent from
each other and final results are fused using the output of each
module.

As shown in the mentioned researches, the fatigue driving
behaviors can be determined from analysis of the driver and
the vehicle states. Physiological parameters or biometric infor-
mation are often used for fatigue driving detection. However,
drivers are required to wear an appropriate equipment like
helmet to collect data. It is impractical for drivers in real
driving. To avoid this, possible solutions are through analyzing
the state of the human eyes and the state of vehicle. In this
case, drivers are not required to wear equipment, the data can
be collected by eye trackers, camera, or the vehicle CAN bus.
This can be achieved in driving assistance systems.

C. Drunk driving

The National Highway Traffic Safety Administration
(NHTSA) reported that in 2014 the accidents due to drunk
driving accounted for 31% of the total accidents in the United
States [26]. Obviously, drunken driving is one of the major
causes of traffic accidents.

In [27], a drunk driving recognition model is devel-
oped by analyzing the driver’s state. The integrating multi-
physiological variables such as blood alcohol concentration,
eye movement, and head movement are selected as inputs,
which are collected by drunken breath analyzer and image
capture devices. The authors propose a simple graphical model
integrating all the informations to recognize the abnormal
driving behaviors. The results show that the fatigue and drunk
driving behavior can be detected in a simulated environment.
In addition to the driver state, the vehicle state is also often
used to determine drunk driving. In [28] the authors select
CAN bus data such as GPS, torque, engine RPM, vehicle
speed, acceleration, etc. to detect drunk driving patterns. Using
machine learning algorithm (Logistic Regression) the drunk
driving patterns can be classified with an accuracy of 82 %.

Dai et al. [29] propose a system for detecting drunk driving
only using a smart phone. Using smart phone the orientation
angles and accelerations of the mobile phone are collected
to determine the lateral and longitudinal acceleration of the
vehicle. Through the both accelerations two behavioral clues
including lane changing (drifting, swerving, etc.) and speed
changing (suddenly accelerating and braking) can be detected.
Finally, by considering these two information the model based
on pattern matching techniques can judge whether the driver
is a drunk driver. In [30] the authors propose a context-aware
driver behavior system for detection of different behaviors,
which include normal, drunk, reckless, and fatigue driving. By
collecting contextual information about the driving environ-
ment, the abnormal behavior can be detected, in the meanwhile
other vehicles on the road will be warned to avoid traffic
accidents.

The recognition of drunk driving is similar to fatigue driv-
ing, which can be analyzed through the driver’s and vehicle’s
state. The difference is that physiological parameters of drunk
driving recognition is based on blood alcohol concentration
instead of using EEG, EOG, etc.

D. Driving skill

In general, driving skills can be defined as the drivers
actions that are independent on the drivers conscious attention
[31]. Driving skills are reflected by human drivers manually
controlling vehicles to achieve specific driving tasks, such as
speed changing, steering, gear shifting, etc. However, each
driver has his own individual driving skills. To realize intelli-
gent driving and improve driver assistance systems, it seems to
be helpful to analyze these individual characteristics of driver.
The main idea of driving skill prediction is that by learning a
driver’s historical driving behavior, to determine and to predict
the behavior of the driver in the future for different driving
situations. Before the driver is making decisions, advice will
be given or the driver will be warned early enough before a
risky action is taken.

Deng et al. [32] propose to use HMM in determining
driver intention for vehicle maneuvers including keep lane and
change lane left/right on the highway. The authors in other
studies focus on the prediction of the ego vehicle velocity
[13] [14], lane-changing trajectory [33] [34], driver intention
to stop the vehicle at an intersection [35] [36], or other driving
maneuvers like stop/non-stop, change lane left/right, and turn
left/right [37].

The goal of driving skill researches in this section is
mainly to predict the driver’s next actions and also to avoid
misoperations of the driver or give suggestions for the next
step. However, the main purpose of driving styles/patterns,
fatigue driving, and drunk driving researches is to identify
whether the drive is abnormal or not. Thus, the driver will be
suggested to change the driving style or to stop driving.

E. Traffic environment

Another important factor affecting driver behavior is related
to different driving scenes, such as highway and inner-city
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scenarios. For different driving environments, driving behav-
iors are also different. There are relevant studies of driving
behaviors for some typical traffic environment. The main
cause of accidents in highway are speed and lane changes.
The authors of [36], [38], [39] focus on lane-change or
speed-change [13], [14], [34] prediction in highway scenarios.
Another highway scenario discussed is at highway lane drops,
such as in [40] [41]. The authors studied driving behaviors
entering a highway. The driving behaviors in this scenarios are
mainly considered whether the driver need to change lane, i.e.
merge and non-merge behaviors. Other studies like [42]–[44]
discuss the behaviors at an inner-city intersection. The driving
behaviors in the inner-city are complex, they mainly include
acceleration, deceleration stopping, turning, driving through
the intersections with or without traffic signals.

III. EXISTING HMM-BASED APPROACHES

In this section existing HMM-based approaches evaluating
and classifying driving behaviors will be discussed and sum-
marized.

A. HMM and HMM-derived approach

Hidden Markov Model (HMM) is applied for estimation of
unmeasured states, therefore, it is widely applied in fields of
driving behavior estimation.

1) HMM: According to [45] an HMM describes the rela-
tionship between two stochastic processes which consists of a
set of unobserved (hidden) states and a set of observable states
respectively. The hidden state and observation symbol at time
t are defined as St and Ot respectively. Thus a hidden state
sequence is S = {S1,S2, ...ST} and an observation sequence is
O = {O1,O2, ...OT}, where T is the length of the sequence.
To train HMM the Baum-Welch algorithm [45] is used to
estimate the maximum likelihood model parameters.So from
a given observation sequence O and its corresponding hidden
state sequence S, the parameters of the HMM can be computed
and adjusted to best fit the both sequences. Based on the saved
HMM, the most probable sequence of driver’s behaviors which
has the highest probability, can be calculated by using Viterbi
algorithm.

In [37], the authors propose to use HMM in determining
driver intention for a variety of vehicle maneuvers including
stop/non-stop, change lane left/right and turn left/right. To
predict a trajectory of a lane changing, Liu et al. [34] es-
tablish two HMMs including normal lane change model and
dangerous change model, which are trained based on normal
sample data and crash data respectively. In [32], the HMM
algorithm is applied for driving behaviors prediction, where
a prefilter is used to process and combine signals to form
features for the HMM recognition process. Three different
driving intentions namely: lane change left, lane change right,
and lane keeping are modeled as hidden states for the HMM.
The results show that the evaluation metrics including all
accuracy (ACC), detection rate (DR), and one minus false
alarm rate (1-FAR) values are larger than 80 %.

2) Hierarchical HMM: The hierarchical HMM (HHMM)
is a multi-level HMM derived from HMM [46]. Like HMM,
the HHMM algorithm contains a set of hidden states and a
set of observations. The difference from HMM is that the
states of HHMM contains three different kinds including root
states, internal states, and the production states. Root and
production states indicate states of the highest and lowest
levels HMM respectively. Only production states contain an
observation probability distribution matrix, i.e. observations
are generated directly from production states. Each state of
high-level HMMs (root and internal states) can be considered
as a low-level HMM, that means each root and internal state
serves as a probabilistic model [46]. Therefore, HHMM can
be used to describe the relationships between each HMMs.

In [47] the authors propose a system for estimation and
prediction of driver/vehicle behaviors in autonomous vehicles.
Four different HMMs are trained according to four different
scenarios, which include turning left/right, going straight,
and stopping at an intersection. The results show that using
this method driver behaviors can be successfully predicted.
The authors present an extension through using HHMM for
prediction process. The driver states are the low-level HMMs,
so the relationship between them can be estimated by the
high-level HMMs. In [48] an HHMM approach is used to
develop a rollover warning system of heavy duty vehicle. The
authors point out that using lateral acceleration and roll angle
the lateral slip and rollover behaviors of heavy duty vehicle
can successfully be detected with a high accuracy of 99.7 %.

Unlike common HHMM, in [49] a Multi-Layer (3-layer)
HMM approach is proposed and developed for predicting
lane changing behaviors. The approach is based on situation-
specific HMMs combined with thresholds, for which related
parameters are adapted during a training phase. The first layer
is considered to predict the driving behaviors using only one
signal as input. The inferential results from the first layer are
given to the second layer, and the second layer only considers
some selected information, such as all velocities, all distances,
etc. Only the third layer considers all information. All sub
HMMs of each layer are calculated in parallel and all of them
can be used to predict driving behaviors. The results show that
the accuracies of lane changing to right and lane changing to
left are more than 90 %.

3) Bayesian Nonparametric HMM: Hierarchical Dirichlet
Process (HDP)-HMM: One main issue in HMM is that the
number of assortment of hidden states must be set before
training, so each hidden state must be defined before mod-
eling. If the assortment of hidden states increases, the model
complexity also increases. If any of the assortments of the
hidden states has not been defined during the training phase,
consequently the whole model is incomplete and incorrect.
To solve this problem, Hierarchical Dirichlet Process (HDP)-
HMM was proposed by [50] [51]. As a Bayesian non-
parametric alternative for standard HMM, it is used without
fixing the number of assortments of hidden states. In 2007
Fox et al. [52] proposed a Sticky HDP-HMM, which is an
extension of HDP-HMM. It’s frequency of transition between
hidden states is reduced compared to the HDP-HMM model.

In [53] [54] [55] [56] the authors assume that contextual



5

information of driving behavior has a double articulation
structure, which is similar to language, i.e., the driving be-
havior is a sequence of “driving words”. A “driving word”
is a sequence of “driving letters”. In [56] steering angle,
brake pressure, and accelerator signals are selected as input.
Different segments of input signals are generated as “driving
letters”, which are considered as short-term behavior unit.
A long meaningful behavior unit is named as a “driving
word”, such as “start”, “turning right”, “following a leading
vehicle”, etc. Here, the sticky HDP-HMM is used to find
meaningful segmentations (“driving letters”) from driving be-
havior. Nested Pitman-Yor language model (NPYLM) [57] is
used to combine and sequence meaningful chunks (“driving
word”). Based on these chunks the driver’s intention can
be estimated. It is worth to mention that sticky HDP-HMM
with NPYLM is a development of an unsupervised learning
method, i.e. “driving letters” and “driving words” are unknown
before training. Therefore, the evaluation method is different
from common methods that use accuracy or detection rate to
evaluate the prediction performance. In [56] three experiments
are used to verify the model performance. The results of the
first experiment indicate that more than two next “driving
letters” are correctly predicted using a developed NPYLM
with sticky HDP-HMM method. The results of the second and
third experiments show that the averaged prediction time are
17 s and 8.9 s respectively. The sticky HDP-HMM approach
is also used to develop a general framework to learn and
recognize lane-change interactions of the ego vehicle with its
surrounding vehicles on highways [58].

In [59] a new framework for driving style analysis is
developed by combining Hierarchical Dirichlet Process and
Hidden Semi-Markov Model (HDP-HSMM) derived from
HDP-HMM. After comparing with HDP-HMM and sticky
HDP-HMM, the authors in [59] state that HDP-HSMM is
able to segment driving patterns as expected, but HDP-HMM
cannot learn driving patterns as expected. Furthermore, the
sticky HDP-HMM method is denoted as sensitive to data
fluctuation. According to [59], HDP-HSMM performs best
among them.

4) Auto-Regressive HMM (AR-HMM) and Beta Process
Autoregressive (BP-AR)-HMM: As illustrated in Fig. 1, Auto-
Regressive HMM (AR-HMM) is similar to standard HMM,
but it has one more weight matrix W which consists of
probabilities of moving from one observation to another. Abe
et al. [60] applied AR-HMM for modeling and predicting
driving trajectory behaviors. Different driving behavior models
can be switched by analyzing gas pedal stroke and brake pedal
stroke.

Similar to an HMM, the AR-HMM needs to determine
the number of choosing hidden states (driving behaviors),
i.e. the number of classes. To avoid this problem, Fox et
al. [61] propose the Beta Process AR-HMM (BP-AR-HMM),
which combines the nonparametric Bayesian technique and
AR-HMM. Therefore, this BP-AR-HMM model can produce
infinite state. The total number of states can be determined in
theory, but cannot be defined before training. In [62] the author
apply BP-AR-HMM to predict the driving behavior, histori-
cal driving behaviors will be segmented into discrete states,

(a)

(b)

Fig. 1: Compare the HMM and the AR-HMM
(a) Sequence of standard HMM
(b) Sequence of AR-HMM

which are produced by BP-AR-HMM. Each discrete state
corresponds to an AR model. The observations in [62] consider
accelerator opening rate, brake pressure, and the steering angle
signals. Using the BP-AR-HMM, driving behaviors including
brake pressure and steering angle are predicted. The results
show that, compared with HMM, AR-HMM, and HDP-HMM,
the BP-AR-HMM has the smallest mean absolute error (MAE)
which is about 0.05-0.2 MPa between the measured and
predicted brake pressure values.

5) Summary: It can be concluded that, the approaches
derived from HMM are based on similar ideas, the HMM’s
characteristic of time series is mainly considered and used in
these algorithms. Driving behaviors will be decomposed into
multiple layers tasks. The lowest level task is to recognize
each specific operation, such as acceleration, deceleration, and
steering wheel signals. Obtained results of the lowest level will
be given as inputs to higher level to identify driving behaviors
like go straight, turn left/right. It is worth pointing out that
these methods are proven to be effective in predicting driving
behaviors. One possible reason is that signals and driving
behaviors change always over time, and the current driving
behavior is always affected by the previous one.

B. HMM-combined approach

Except for using HMM-derived approaches, HMM is often
combined with other algorithms to improve the performance.
Usually in this case, HMM and other algorithms are used to
complete different tasks respectively.

1) Artificial neural network (ANN)-HMM: In addition,
HMM is often combined with other algorithms. Different
from HMM’s derivative algorithm, in combination methods,
HMM and other algorithms are used to complete different
tasks respectively. For example in [63] Boyraz et al. propose
a method to determine a driving maneuver in an urban road
scenario. An ANN is used to recognize and classify driving
maneuvers based on different signals, such as steering wheel
angle and speed. These labels are classified by ANN and then
use to train the HMM. In the final phase, driving maneuvers
of Right Turn, Left Turn, U-Turn, Roundabout, Emergency
Brake, and Reversing can be predicted based on HMM. In
addition driver performance is also classified from 1 (best) to
8 (worst) using HMM. In [13] [14], a prediction method of ve-
hicle speed is presented. By using neural network (NN) models
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the average traffic speeds can be predicted, afterwards the
estimated traffic speeds are given as inputs to predict individual
vehicle speeds based on HMM. Zhang et al. [64] propose a
deep neural networks (DNN)-HMM approach. Acceleration
data are collected as inputs. The DNN approach is used to
extract features from the row sensor data, by solving the
observation probability distribution of HMM can be modeled
automatically. This solves a disadvantage of HMM that HMM
usually needs to manually define observations (features of
inputs) relying on the experience of the researchers. In [65] an
approach combining HMM and ANN is constructed to iden-
tify driving intention and to predict maneuvering behaviors
on cornering, where HMM is used to predict three driving
behaviors including emergency steering, normal cornering, and
straight line driving. Then HMM prediction results are used as
a guideline to train ANN, so specific steering angle is obtained
by ANN. This solves a disadvantage of ANN which needs
a lot of training samples. The results show that the steering
angle can be successfully predicted, where the result has a low
absolute deviation of real and predicted steering angles.

2) Support Vector Machine (SVM)-HMM: As a two-class
classifier, a SVM is a supervised machine learning method.
As known the approach is transforming data into a suitable
space divided by hyperplanes. It’s pattern classification is
based on current observations, but not on context. If the current
analyzed observations are interference signals, wrong results
will be obtained. In addition, driving behaviors are dynamic,
the decisions of the drivers at each time point will be affected
by driving behaviors at the last time point. The HMM approach
has an advantage of being able to analyze dynamic data and
the temporal evolution of states. Due to the driving behaviors
in different driving styles are not the same, in the same driving
environment the drivers make different decisions. Using one
HMM it is difficult to classify these driving behaviors of
different drivers. Also here HMM results are depending on
which hidden state has the largest output probability, i.e. the
maximum log-likelihood. However, when the input features
are not obvious, it may lead to small differences between
the log-likelihoods. Therefore, it is difficult to distinguish
some easily confused driving behaviors using HMM. To
avoid this problem, a SVM-HMM approach is proposed in
current researches. For example in [66], the SVM is used to
distinguish different driving behavior styles like normal and
fatigue driving styles. For each driving style a corresponding
HMM is used representing the upcoming driving behaviors.

The SVM-HMM based model is usually applied to pre-
dict or recognize the driving behavior of different driving
types/patterns. The general flowchart of the system based on
SVM-HMM is shown in Fig. 2. Here a SVM is used to
distinguish different driving patterns. For each driving pattern
a corresponding HMM is trained with respective observation
sequences (i.e. training samples). The whole model including
SVM and all HMMs is trained and saved in training phase. In
test/application phase, the SVM can determine which driving
pattern a test data set belongs to, and then switch to the
corresponding HMM.

In [66] the authors choose SVM-HMM for detection of
driver drowsiness. Here two different HMMs are trained for

Fig. 2: Flowchart using SVM-HMM

drowsy or non-drowsy. The SVM is used for determining
which HMM should be used. Similarly, Aoude [67] apply
SVM-HMM for estimating driver behavior at intersections.
The drivers are classified into compliant or violating type. In
[68] the authors propose a framework to predict accident of
vehicle collision on a straight two-lane highway. The SVM is
used to classify a Leaving Lane scene (LL) and a Remaining in
Lane scene (RL) based on the vehicle’s trajectory. The HMMs
are trained for each lane scene respectively and predicting
whether the driver will have an accident.

3) Fuzzy logic (FL)-HMM: Fuzzy logic (FL) is an exten-
sion of Boolean logic (classical logic), in which the degrees of
truth may be any real number between zero and one defined
by related membership functions labeled and denoted with
linguistic variables. The approach is used to present vague
estimations and verbal descriptions, based on experiences.
For this reason, in [69] Ding et al. introduce a lane-change
intention recognition method based on FL and HMM. Here a
Comprehensive Decision Index (CDI) is designed using FL to
represent the driver’s estimations about the current surrounding
traffic. The CDI is calculated through three parameters, which
include the ratio of the average traffic speed of original lane
and target lane, Enhanced-Time-to-Collision, and the ratio of
the real as well as the ideal distance from the ego-vehicle
to the vehicle in front. Afterward, estimated CDI values can
be used as input to train HMM. Finally, driver’s intention
including lane keeping, transition state, and lane change can
be recognized through the trained HMM. By analyzing the
test data sets including 69 lane change intention, in total
65 intentions are correctly identified with a short delay gap
about 1.67 s. The authors in [70] proposed a newly developed
approach Fuzzy Logic-based Hidden Markov Models (FL-
HMM). The FL approach is used for additional distinction
of driving scenes into very safe, safe, and dangerous driving
scenarios. Afterwards, a corresponding HMM is trained for
each driving scenes respectively and predicting the driving be-
haviors. Three different driving behaviors including left/right
lane change and lane keeping are modeled as hidden states
for these HMMs. High accuracies of 93 % and 91 % for
lane changing to right and lane changing to left are observed
respectively.

4) Gaussian Mixture Model (GMM)-HMM: In [71] a Gaus-
sian mixture model (GMM) combined with HMM (GMM-
HMM) is proposed to predict drivers braking behaviors. The
GMM is used to model stochastic relationships between driv-
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ing situations and braking actions. After learning the GMM
parameters, HMM is applied to estimate drivers braking behav-
iors based on the mixture components of GMM. The obtained
results show that the accuracy, sensitivity, and specificity
reach 89.41 %, 83.42 %, and 97.41 % respectively. Lefevre
et al. [72] develop a driver model based on GMM-HMM
and its two application examples. One is used to predict
lane departures on the highway and the other is to predict
acceleration while lane keeping. The obtained results show
that the proposed driver model can successfully predict and
therefore avoid all 65 lane departure instances. In addition,
the acceleration are also estimated correctly. By comparing
the results of predicted acceleration, the author pointed out
that the performance of a personalized/individualized model
is always better than an average/general model. Similarly, in
[73] Gaussian mixture regression (GMR)-HMM is applied to
develop a lane-departure warning system. For each driver, an
individualized model is established to predict the upcoming
lateral vehicle trajectory. The authors also discussed some
influencing factors, some of them depend on the design of the
system and can be tuned according to different design require-
ments. Other factors like vehicle dynamics, road curvature, and
driver state depend on the design of experiments and the states
of vehicles/drivers, which do not affect the algorithm/system.
Based on [73], the authors further propose a new Bounded
Generalized GMM-HMM method derived from GMM-HMM
[74], which performs better than GMM-HMM. However, due
to its structural complexity, it has more computational costs
than GMM-HMM.

5) Summary: The modeling ideas of HMM combined with
other algorithms can be concluded using three common forms.
First, the classification result of HMM (/other algorithms) can
be used as input of other algorithms (/HMM), such as in [65]
results of HMM are guiding to train ANN, and in [69] results
of FL are given as inputs to HMM. Second, parameters like
observation probability distribution of HMM can be modeled
by other algorithm [64] [72]. Third, other algorithms are used
to distinguish different driving styles/patterns/scenarios, then
HMMs are trained and used to recognize driving behaviors
for different situations [68]. Using the combined approaches,
it is able to utilize both of the advantages of HMM and the
respective other algorithms. It was proven that, the HMM
combined with other algorithms have better performance than
a common HMM or a conventional algorithm used alone [64]
[70].

IV. DISCUSSION

In this contribution different types of driving behavioral
researches and related typical research objects are introduced.
In existing studies, the various algorithms were proposed to
recognize and predict human driving behaviors.

Each algorithm has it’s characteristics and therefore advan-
tages and disadvantages. They may perform well in different
domains or different data sets. In this section, a brief compar-
ison between different algorithms is given to explain which
algorithm is suitable in which context.

A. Application

Related features as well as the application fields and a brief
comparison of the data collection approaches are summarized
in table I. According to the summary in this table, conven-
tional machine learning algorithms like ANN, SVM, FL, RF,
CNN, HMM, and HMM-based approaches are used in recent
years for research related to driving behavior recognition and
prediction. As the most popular method for deep learning,
the CNN algorithm is not commonly used for this field
because in most of the cases the inputs for CNN are images.
It’s worth to mention that DBN and HMM are capable to
handle temporal data. In comparison to HMM, DBN requires
complex definition of the network, and perform poorly on high
dimensional inputs. However HMM is not able to utilize raw
data directly and requires data processing upfront. The detailed
strength and weakness of all algorithms are discussed in the
below subsection.

B. Advantages and disadvantages

In comparison to other algorithms like ANN, SVM, CNN,
RF, etc., an HMM is designed as a probabilistic graphical
model. One advantage of HMM is that the probabilistic
relationships between the nodes can be easily interpreted.
Based on the principle of HMM, the current state also depends
on the state at the previous moment [3]. Therefore, another
advantage of HMM is that it has the ability to handle dynamic
data and temporal pattern recognition. Using HMM the class
label is determined by the calculated probability, rather than
obvious boundaries. In addition, through the summarization
and comparison of various researches, the authors in [3] con-
clude that the HMM algorithm has a high accuracy and a very
good performance in real-time driving behavior prediction. It
was also proven in other researches, eg. in [37] that high
accuracies between 82-90 % can be achieved when predicting
lane changing, turning, and stopping behaviors.

The major limitation of HMM is that the number of assort-
ment of hidden states must be known before training, therefore
this algorithm is not suitable for long-term forecasting systems
[3]. However, some researches have shown that HMM-derived
algorithms could effectively solve these problems, such as
Sticky HDP-HMM [52] [56] and BP-AR-HMM [61]. Other
algorithms [13] [14] [66] [68] [69] based on a combination
with HMM were proposed to improve the performance of
driving behavior model, such as NN-HMM, SVM-HMM, FL-
HMM, and other similar algorithms.

C. Open problems and future outlook

Although a variety of HMM-related approaches can be
used to establish driving behavior model, there are still some
problems that need further research to resolve.
• The HMM is commonly combined with other algorithms

or derived into new approaches to improve and to achieve
the desired performance of the driving behavior model.
However, it would cause an increased complexity and
computational cost of the model. Therefore, the reduction
of model complexity need to be considered before the
design.
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• Driving behavior model established using all mentioned
HMM-related approaches can only be trained offline
through the learning of historical experience, which limits
their adaptive capabilities. To accommodate new prob-
lems during the driving, the solutions of online learning
need to be addressed in the future.

• Each driver has his own individual characteristics, the
development of the driving behavior model for unique
driver is helpful for the vehicle to become more human
friendly. However, datasets performed by different driver
require models with different predefined parameters (de-
sign parameters). Setting these parameters values with
better performance manually will be very tedious. There-
fore, it is necessary to find an effective way to determine
these design parameters.

• Hyperparameters defined the structure of HMM-based
model need to be preset, e.g. the number of hidden states
of conventional HMM, the number of hidden layers of
HHMM, etc. In addition, for Bayesian Nonparametric
HMM, the number of assortment of hidden states depends
on the size of the training data. How to adjust these
parameters can be discussed in further research.

• In addition to the prediction of ego vehicle behavior (a
single driver behavior), the prediction and recognition
of multi-vehicle interaction is also an important topic
of current researches. Reliable predicting the movement
of surrounding vehicles plays an important role in the
development of autonomous vehicles. This contribution
does not detail this point which can be considered as an
important influencing factor in future work.

V. SUMMARY AND CONCLUSIONS

Due to the importance of driving safety and efficiency, the
research of human driving behaviors prediction is being fo-
cused in recent years. In this contribution, the most commonly
used HMM-related algorithms in this field are introduced and
summarized.

The HMM algorithm is widely used in temporal pat-
tern recognition and therefore, appropriate for human be-
havior/intention recognition and prediction. However, review
papers focusing on introducing and comparing the various
HMM-based methods in this field are not available. Therefore,
this contribution emphasizes on the researches for conven-
tional HMM, methods derived from HMM, and combination
methods based on HMM for the driving behavior recognition.
The modeling ideas of the combination methods are also
summarized in this contribution to facilitate future researches
in this field.

To effectively and comprehensively compare the relevant re-
searches in this field, the applications (objectives) are grouped
into different categories in this contribution. The objectives
are mainly referring to the driving styles or the personal
state of the drivers, for instance, normal/aggressive driving,
fatigue, drunk, driving skills / maneuvers / intentions of ego-
vehicle, etc. Thus, for future researches in this field with
similar objectives, the researchers can easily find and apply
the most appropriate approaches summarized in this contribu-
tion. In this contribution actual HMM approaches are briefly

illustrated and compared using an example representation to
compare typical tasks of human driver’s behavior recognition
and prediction. For the first time a complete comparison of
HMM-related human driving behavior researches obtained
from a representative scenario is done, clearly pointing out
the differences, advantages and disadvantages of the different
HMM-derived and HMM-combined approaches. As outcome
of the contribution the reader can now immediately choose a
suitable HMM-related approach or develop new approaches
based on existing methods and design ideas to solve the
corresponding driving behavior recognition and prediction
problems. Furthermore, this contribution is also used to inspire
new ideas to improve the performance of HMM-based models.
Therefore, this contribution will be used to guide the direction
of the driving behavior research and support the development
of intelligent driving assistant systems as well as vehicle
dynamics control systems.
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driving style determination by means of a situation based analysis of the
vehicle data,” in IEEE Conference on Intelligent Transportation Systems,
2011, pp. 1698–1703.

Qi Deng received the Dr.-Ing. degree in mechani-
cal engineering from University of Duisburg-Essen,
Duisburg, Germany, in 2020. Her current research
interests include modeling and prediction of driv-
ing behaviors and applications of machine learning
methods.
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