
Prediction of human driver behaviors based on
an improved HMM approach

Qi Deng, Jiao Wang and Dirk Söffker1

Abstract— Research and development of predicting driving
behaviors play an important role in the development of Ad-
vanced Driver Assistance Systems (ADAS) for assisting drivers.
In this contribution, an approach is developed based on Hidden
Markov Model (HMM) for predicting human driving behaviors.
Three different driving maneuvers including left/right lane
change and lane keeping are modelled as hidden states for the
HMM. Based on observations (training), the HMM approach
is able to calculate the most possible driving behaviors using
observed sequences. Furthermore, the observed sequences are
also used for training of HMM in the modeling process. To
improve the prediction performance of the model, a prefilter
is proposed to quantize the collected signals into observed
sequences with specific features.

In this contribution the definition of a suitable prefilter will
be discussed and finally optimized. The approach focuses on the
definition of optimal prefilters. Here optimality is defined as the
optimal segments describing a quantized prefilter mapping the
vehicle’s environment to quantized states. In combination with
related HMM-based results in terms of accuracy, detection, and
false alarm rates an optimal parameter set of the prefilter can be
determined. Using experimental data from real human driving
behaviors (taken from driving simulator) it can be concluded
that the optimal definition of the prefilter can increase the
detection rate and accuracy, and in the meanwhile decrease
the false alarm rate. The effectiveness of driving behaviors
prediction has been successfully proved by comparison with
other methods in this contribution.

I. INTRODUCTION

Driver Assistance Systems are systems developed to assist
the human driver and therefore to make driving safer and
better. Typical assistance systems focus on avoiding traffic
accidents using warnings with respect to detect dangerous
scenes. The predictions of these assistance systems are
calculated based on physical variables such as distances
and vehicle speed, etc. These physical variables describe
the vehicle state and the driving environment. Although the
vehicle state and the driving environment are relevant for
current driving safety assessments, the most common cause
of accidents is related to human behavior. Therefore, an as-
sistance system should help the driver to detect possibly im-
proper behaviors. However following general driving rules,
drivers will usually choose the most appropriate operations
based on their own driving experiences and habits. Driver‘s
driving behaviors are assumed as individual. Therefore, the
driving assistance systems should be adjusted based on the
analysis of individual driving behaviors to improve traffic
safety as well as realize intelligent driving. The individual
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driving behaviors depend on many factors including current
environment conditions, individual driving characteristics,
and so on. Thus, the driver’s intention and the next driving
action cannot be easily and directly measured by physical
variables.

To establish a model of driving behaviors, some ap-
proaches have been proposed. For example, neural network
(NN) models have been used in predicting the acceleration
distributions for vehicle following on highways [1]. In [2]
dynamic Bayesian networks (DBN) are used for estimation
and prediction of acceleration as well as turn-rate for car-
following and lane-change in a 4-way-intersection. In [3] a
fully probabilistic model is presented by using feature func-
tion to evaluate the situational context to predict the next state
of a traffic participant. The authors of [4] used a fuzzy logic
(FL) model, which is established from drivers empirically
observed behavior at high-speed signalized intersections.

In this contribution, the driving behaviors are predicted
using Hidden Markov Model (HMM) approach, which is
applied for estimation of unobservable states. The unobserv-
able states can be inferred through the observation states
based on the expectation maximization (EM) and maximum
likelihood estimation (MLE), which are standard methods
to estimate the HMM parameters and the most possible
hidden states respectively [5][6]. For modeling performance
improvement, suitable segments of the observation states
have to be defined. Experimental results are shown, using
those suitable observation segment ranges which improve the
quality of the driving behaviors prediction model.

II. DRIVING BEHAVIORS PREDICTION BASED ON HMM

Hidden Markov Models (HMM) are successfully applied
in fields such as speech recognition and synthesis [7], DNA
profiles recognition in biology [8], and human behaviors
recognition from video [9]. Nowadays applications of HMM
have been extended to more and more research areas, such
as driving behaviors recognition and prediction. In [10], the
authors propose to use HMM in determining driver intention
for a variety of vehicle maneuvers. In addition, HMM
is often used with other algorithms. In [11], the authors
proposed a Hybrid-State System (HSS)-HMM framework for
the estimation of driver behaviors at intersections. The driver
behaviors and vehicle dynamics are modeled as a HSS. The
HSSs provide the system architecture, and HMMs define
the relationship between system components. A detailed
definition of HMM and related basic algorithms are described
in [5].

Manuscript version
DOI original paper: 10.1109/IVS.2018.8500717
Copyright © 2018, IEEE



An HMM describes the relationship between two stochas-
tic processes: one consists of a set of unobserved (hidden)
states S = {S1,S2, ...SN}, with N as the number of hidden
state which cannot be measured directly. The other stochastic
process is denoted by a set of M observable symbols V =
{V1,V2, ...VM}. The hidden state and observation symbol at
time t are defined as Qt and Ot respectively. Thus a hidden
state sequence is Q = {Q1,Q2, ...QT} and an observation
sequence is O = {O1,O2, ...OT}, where T is the length
of the sequence. Using HMM parameters the sequence of
the unobserved state can be determined by analyzing the
sequence of the observation.

In this contribution, the driving behaviors mainly consider
lane changing. The driving maneuvers performed are the
hidden states. They include left/right lane change and normal
lane keeping, so N = 3. The driving behaviors prediction
model can be regarded as a standard HMM, as shown in
Fig. 1. The driving behaviors are denoted as Si, and the

Fig. 1. HMM model with 3 states

observations Vk are designated by subscript k. This model
can be defined as a system in which a driving behavior
is switched to another with a state transition probability
ai j = P(Qt = S j | Qt−1 = Si), i, j ∈ [1,N], which means the
probability of moving from state Si to state S j. All transition
probabilities ai j can constitute a state transition probability
matrix

A = {ai j}, i, j ∈ [1,N]. (1)

An observation probability b j(k) defines the probability of
an observation Vk being generated from a state S j at time t,
that means b j(k) = P(Ot = Vk | Qt = S j). The corresponding
observation probability distribution matrix is denoted as

B = {b j(k)}, j ∈ [1,N] and k ∈ [1,M]. (2)

To describe an HMM it is necessary to use an initial
probability distribution, which indicates the probability of
starting in state Si, where

πi = P(Q1 = Si), i ∈ [1,N]. (3)

Using above definitions, a complete HMM can be defined as
λ = (A,B,π).

To achieve HMM-based driving behaviors prediction the
process has to be divided into two parts: first training of the
model and second estimating the most probable hidden state
sequence. To train HMM the Baum-Welch algorithm (also
called expectation maximization) will be used to estimate
the maximum likelihood model parameters λ = (A,B,π).
In a given observation sequence O and its corresponding
hidden state sequence Q, the parameters of the HMM λ are
computed and adjusted to best fit both sequences. Based on
the saved HMM λ , the most probable sequence of driving
behaviors, which has the highest probability, is calculated by
using Viterbi algorithm.

As previously described, the sequence of hidden states will
be determined by the sequence of observations. Therefore,
the selection of parameters describing the current situation
composed to an observing state, is very important. These
parameters must take the feasibility of data collection into
consideration, and also equip the ability to achieve the
purpose of the identification of the model. When a driver
is driving on the highway, the relationships between the ego
vehicle and other surrounding vehicles are the main factors
to affect the driver making a decision. In this contribution,
the relative velocity with the vehicle in front, the distance
between the ego vehicle, and the surrounding vehicle are
selected as observation variables, i.e. an observation vector
at time t is defined as

Ot =Vk = [∆vt ,d f t ,d f lt ,d f rt ,dblt ,dbrt ],

where k∈ [1,M], and M is the number of observation choices.
Details of the parameters are given in Table I. In this
contribution, a driving simulator is used to collect data of
each parameter. In the real world, these parameters will be
taken from different sensors, such as camera, radar, lidar, and
ultrasonics [12].

TABLE I
DESCRIPTION OF OBSERVATION SEGMENT RANGES

Thresholds
Symbol Definition left right
∆v Deviation of the velocity between a∆v b∆v

ego vehicle and vehicle in front
d f Distance to vehicle in front ad bd
d f l Distance to vehicle in left-front ad f l bd f l
d f r Distance to vehicle in right-front ad f r bd f r
dbl Distance to vehicle left-behind adbl bdbl
dbr Distance to vehicle right-behind adbr bdbr

During driving, all observation parameters are assumed
as measurable. Signals are dynamic and change with time.
The change of each parameter will lead to changes of the
observation vector. Here a quantized signal realized by pre-
filter is assumed, which is typical within the automotive field
using related electronic equipment with limited accuracy. On
the output side of the prefilter a quantized signal featuring
the feature vector is derived. By using the feature vector,
different driving situations should be distinguished. Based



on the prefilter the signal data of each observation parameter
will be divided into segments. Each segment represents a
corresponding observation. Thus, the ranges of segments
are important and will be defined to describe observations.
Using these segment ranges the signals can be processed
and combined to form features for the HMM prediction
process. To simplify the modeling process, in this contri-
bution a prefilter is defined, which uses only two different
range values, and divides each observation parameter into
three segments. The two thresholds (left, right) for each
observation parameter are shown in Table I. Obviously, the
values of the observation segment ranges are very important,
because they define implicitly the observation sequence for
HMM training and finally affect the accuracy.

Fig. 2. Illustration of optimal prefilter definition

A simple approach is to choose a general prefilter by
the general driving rules, e.g. in Germany 50 m is the
corresponding distance between two guide posts on the
highway. Therefore, the segment range values of the distance
can be defined as 50 m and 100 m, and the interval on the
speedometer can be used to represent the range values of the
relative velocity, such as 10 km/h and 20 km/h.

The core of prediction process is realized by an HMM.
Using a given hidden state sequence and its corresponding
observation sequence, HMM could be trained. Therefore, the
feature vectors input to the HMM could be extracted by
using a general prefilter, which is helpful to determine an
optimal HMM and improve the prediction performance. For
this reason for each driver the HMM with individualized
optimal prefilter can be generated.

In Fig. 2 the process of generating an optimal prefilter
is illustrated. To define optimal prefilter parameters Non-
dominated Sorting Genetic Algorithm II (NSGA-II) is used.
The NSGA-II was derived from the NSGA and used to
solve Multi-objective Optimization problems (MOPs)[16].
By using NSGA-II the HMM are repeatedly trained using
different range values. Considering all possible range values,
each range changes from the minimum to the maximum
value of this parameter. The optimal thresholds for each
observation parameter (optimal prefilter) are determined to
minimize the objective functions.

Accuracy (ACC), detection rate (DR), and false alarm rate
(FAR) are widely used for evaluating classifiers [13][14].

They are calculated based on True Positive (TP), False
Positives (FP), True Negative (TN), as well as False Neg-
ative (FN) numbers. For explanation a confusion matrix is
illustrated (Fig. 3) as example to describe the parameters
for changing lane to the right. True Positive (TP) is the

Fig. 3. Explanation of confusion matrix [Lane changing to right]

number of the events when the actual maneuver is positive
(changing lane to the right) and the estimated one is also
positive, contrastively False Positive (FP) denotes the number
of the events when the actual maneuver is positive and the
estimated value not, similarly for True and False Negatives
(TN/FN). The ACC, DR, and FAR are defined by [14]

ACC =
T P+T N

T P+T N +FP+FN
, (4)

DR =
T P

T P+FN
, and (5)

FAR =
FP

T N +FP
. (6)

In this contribution the optimal left/right thresholds for
each observation parameter (optimal prefilter) with respect
to the improvement of the aforementioned DR, ACC, and
FAR parameters. Therefore, the objective function is defined
as

f = (1−ACC)+(1−DR)+FAR (7)

for the three driving behaviors.

III. EXPERIMENTAL RESULTS

In this section the HMM-based behaviors prediction of
lane changing maneuvers is realized. The proposed HMM
will be able to predict drivers lane changing behaviors based
on the measured distances and velocities. To improve the
prediction probabilities optimal feature parameters have to
be defined. In the following sub-sections, the experimental
setups will be described. Training, test, as well as a suitable
prefilter selecting are used to develop this model. Finally,
experimental results will be presented.

A. Design of the experiment

A professional driving simulator SCANeRTMstudio as
shown in Fig. 4 is applied to collect the driving data, which
are used for the training and test of the proposed approach.
The simulator is equipped with five monitors with 180 degree



field of view, base-fixed driver seat, steering wheel, and
pedals. The three rear mirrors, which are essential to decide
to change lane, are displayed on the corresponding positions
of the monitors. The data acquiring frequency of the driving
simulator is 20 Hz.

Fig. 4. Driving simulator, Chair Dynamics and Control, U DuE

The driving scenario is based on a highway driving sce-
nario with four lanes of two directions and simulated traffic
environment. During driving, the participant could perform
overtaking maneuver when the preceding vehicle drives
slowly. After overtaking the participant could also drive back
to the initial lane. The time points of changing lane to left and
right were decided by the participant. Following the traffic
rules in Germany, it is only allowed to overtake from left
lane. Totally 9 participants with age ranged from 25 to 38
years were recruited. They all held valid driving license. Each
participant performed a drive about 25 minutes.

1) Data processing phase: To label the data as the hidden
state sequence as well as the observation sequence, the signal
data need to be classified and processed. The hidden states in
this contribution consider only lane changing. In the driving
simulation, the current lane i can be determined through
the position of the vehicle’s center point. Therefore, by
comparing the value of lane i at different times, the lane
changing of the vehicle can be determined. Lane keeping is
defined when the value of the current lane it is as the same
at last moment it−1. Lane changing to the left is defined
when this value is increased, and lane changing to the right
is defined when it’s decreased. In the experiment, the time at
which the drivers decided to change the lane (turned light)
was already between 2 and 3 seconds before the lane change.
The average value is 2.5 s. Thus, the lane changing as the
driving behavior will be considered occurring 2.5 s before
the action. However, it could be a problem that, if the ego
vehicle overlaps the white line by driving, it could generate
some data of lane changing, and these data do not reflect the
true behaviors of the driver. For this reason, it is necessary to
remove those interference data to get accurate experimental
data. The symbol as well as its specific description of each
hidden state are given in Table II.

TABLE II
DEFINITION OF HIDDEN STATES

Symbol Description
S1 Lane changing to the right
S2 Lane keeping
S3 Lane changing to the left

The observation vectors can be classified and processed
into sequences by a prefilter. As described in section II, an
optimal prefilter will be determined with the maximum ACC,
the maximum DR as well as the minimum FAR. Therefore,
it should be used to improve the performance of driving
behaviors prediction. To prove this, two different prefilters
were used to classify the observation vectors. One prefilter
is using these optimal segments. The other is using a set
of general segment ranges for comparison, which are given
by comparing the experimental data, such as average value,
minimum safe distance, etc.

2) Training phase: In this experiment, each experimental
data set is divided into 10 subsets, 7 of these 10 subsets are
considered as training data set, and the others are considered
as test data set. The location of each training data set is
different, and not repeated, e.g. the first training data set is
selected from the first to the seventh subsets, the second is
from second to eighth subsets, and so on. Each training and
test data set must contain different lane changing maneuvers.

A training data set can be used to estimate the HMM pa-
rameters. With this HMM parameters the hidden state could
be calculated. In the next step, the hidden state sequence
from the training data, and the hidden state sequence which
is calculated by HMM model will be compared to check
the correspondence and to calculate ACC, DR, and FAR.
Afterwards, the objective functions (7) are calculated. Then
the prefilter values are defined by optimization regarding
the aforementioned objective functions. This prefilter and its
corresponding HMM model will be used in test phase.

3) Test phase: Each driver specific test data set must
be related to the data, which are used in training phase.
Therefore, the optimal prefilter, and the corresponding HMM
model for each test data set are already calculated in the
training phase. The most possible driving behaviors will be
determined by using the corresponding HMM. Through the
comparison between the calculated and the actual driving
behaviors, the accuracy could be evaluated.

B. EVALUATION

To evaluate the presented approach, an HMM will be
learned by using the same training data set, and different
prefilters. After the optimal prefilter is selected, the approach
is compared using a general prefilter against the optimal
prefilter.

The calculated and the actual driving behaviors will be
compared to evaluate the similarity. The results of test phase
for data set #5 are shown in Fig. 5. Here the hidden states
(driving behaviors) are given as a function of simulated
time. The symbols of hidden states are shown in Table II.
The green, blue, and red lines denote the original states,



Fig. 5. Result of HMM validation [Test data set #5]

the calculated hidden states using general prefilter, and the
calculated hidden states using optimal prefilter respectively.
The results show that the states predicted by the optimized
prefilter-based HMM fit best to the original states. The
number of wrong calculated hidden states of blue line is
more than the red one.

The percentage of ACC, DR, and FAR by selection of
general as well as optimal prefilter for data set #5 are shown
in Table III. From the obtained results it becomes clear that,
using the optimal prefilter the overall ACC is increased from
73.4% (Training) and 68.8 % (Test) to 91.9% and 87.5 %
respectively. Similarly, using the optimal prefilter the DR is
higher than using the general prefilter.

TABLE III
PREDICTION RESULTS USING GENERAL/OPTIMAL PREFILTERS FOR DATA

SET #5

Data set #5
General prefilter Optimal prefilter
Training Test Training Test

Overall ACC % 73.4 68.8 91.9 87.5

S1

ACC % 84.7 83.5 98.2 96.0
DR % 96.4 88.7 99.4 90.3
FAR % 15.9 16.9 1.9 3.5

S2

ACC % 73.4 68.8 92.0 87.5
DR % 70.5 65.3 91.0 89.2
FAR % 1.7 11.8 0.2 22

S3

ACC % 88.7 85.5 93.7 91.5
DR % 100 87.6 100 64.6
FAR % 11.9 14.9 6.6 6.4

Among the FARs of three different maneuvers, the FARs
of training and test phases for lane changing to the right are
15.9% and 16.9% respectively. After optimization the FARs
are reduced to 1.9% and 3.5%. The value of FAR can be
defined by equations (6). It can be seen that, the higher FAR
value results from a higher value of numerator FP (False
Positive) defined in Fig. 3. For the maneuver lane changing
to the right, the FP is the number of the events when the true

actual state is not, but the estimated state is lane changing to
the right. These results can also be detected from Fig. 5. Here
S1 defines the lane change to the right. It can be observed
that, in several cases the estimated states are incorrectly
calculated as S1. The above descriptive issue occurs more
often in the blue line (using general prefilter) than the red
line (using optimal prefilter). It can be concluded that the
prediction result can be improved using suitable prefilter.
Even through, some exceptions can still be found during the
experiment, for example, the optimized FAR value of lane
keeping (test) is worse than the presetting value (about 10%
higher). However, the overall result considering all situations
are improved due to the optimization of the prefilter.

To verify the effectiveness of the model in terms of
driving behaviors prediction, other algorithms are used for
comparison. Typical algorithms like Artificial Neural Net-
works (ANN) and Support Vector Machines (SVM) are used
to establish driving behavioral models. In [17] the authors
established three models including ANN, SVM, combined
ANN and SVM (ANN-SVM) to estimate the lane changing
behaviors at highway lane drops. An advantage of the both
algorithms are that they do not require data processing.
To evaluate these methods, the actual driving behaviors are
compared to the estimated driving behaviors for all data sets.
Then, the ACC, DR, and FAR of each driving behavior are
calculated. The respective rates for each group are shown
in Fig. 6. From the results (Fig. 6) it can be stated that,
after the optimal selection of the prefilter all ACC, DR, as
well as (1-FAR) values are larger than 80%. Although some
exceptions can still be found, for example some ACC of
ANN-SVM (conservative) are higher than optimal HMM,
but the values of DR are decreased. To further evaluate the
performance of drving behaviors prediction, the Receiver
Operating Characteristic (ROC) graph is given in Fig. 7.
From the results it can be stated that, using the optimal
HMM the DR is highest and the FAR is lowest among
all the approaches. Thus, the optimal HMM has the best
performance in all models.

IV. SUMMARY AND CONCLUSION

In this contribution, a driving behaviors prediction model
was developed based on Hidden Markov Model (HMM).
Three different driving maneuvers including left/right lane
change and lane keeping are modelled as hidden states for the
HMM, and simulated on a highway scene using driving simu-
lator. Based on HMM the unobservable states can be inferred
through the observation states. The considered approach is
based on the assumption that relevant physical variables are
discretized into segments to consider typical sensors prop-
erties. The prediction performance of HMM by finding the
optimal prefilter, rather than by optimizing HMM model was
considered and improved. In this approach, based on data
achieved from 9 different test drivers, the method is verified.
For each time, subsets of different positions are selected
for training and test purpose. With the same experimental
data set the HMM models using general (presetted) and
final (optimized) values of observation segment ranges are



Fig. 6. Average ACC, DR, and FAR achieved by different models for 9 test data sets

Fig. 7. ROC graph for different models

compared. The finally obtained results show a significantly
improved ability of the HMM to identify driver behaviors.
The results show that beside the classifier (here: HMM) the
combined presetting and adaption strategy has a significant
impact on the statistic properties of the approach. The HMM
model using optimal parameters increases detection rate and
accuracy as well as decreases false alarm rate. The prediction
performance could be improved through selecting optimal
prefilter parameters, which has been successfully proved in
this contribution.
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