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Abstract—The development of chemicals, like coatings, is 

increasingly automated in high-throughput plants. The 

assessment of the quality of the coating formulation is also 

automated to achieve precise and reproducible results. Usually, a 

cross-cut test is performed to characterize the adhesion of 

coatings. To obtain comparable conditions and comply with 

standards, the force during scratching has to be controlled. In this 

paper, the force control of an automated testing equipment is 

optimized. There are different substrates, coating formulations 

and process parameters influencing the quality of the adhesion of 

the coatings. Because of this, the force controller has to cover a 

variety of dynamics. The different coatings and nonlinear 

behavior of the scratching makes modeling the system extremely 

difficult. Therefore, a data-driven approach is used. Two data-

driven methods, the intelligent PID (iPID) and Virtual Reference 

Feedback Tuning (VRFT), are applied to the field of force control. 

The results for both control methods are compared. Additionally, 

both methods are combined with an Iterative Learning Control 

(ILC) to optimize the control performance over multiple 

iterations. The qualities of the data-driven controllers are 

evaluated. All results are compared to the currently implemented 

controller. 

Keywords—data-driven control, force control, intelligent PID 

(iPID), Virtual Reference Feedback Tuning (VRFT), Iterative 

Learning Control (ILC), coating, cross-cut test 

I. INTRODUCTION 

The development of new formulations of coatings is usually 
done experimentally. To accelerate the development process and 
objectify the results, the formulation, application and 
characterization of these experiments are automated. One 
important property of coatings is the adhesion to the surface. 
Various scratch tests [1–3] have been defined and are used to 
characterize this adhesion. 

For good results, the testing conditions must be reproducible. 
Because of this, a defined force must be guaranteed during a 
scratch test. To ensure this, an automated testing equipment is 
used to perform those cross-cut tests with an appropriate force 
control. The testing equipment is also used in [4] to automate the 
visual evaluation of the scratch results via image segmentation 
using Deep Convolutional Neuronal Networks. In this work, the 
force control is optimized to achieve a better reproducibility. To 

cover the nonlinear dynamics, different data-driven model-free 
control methods are evaluated for force control. The results are 
compared with the performance of the existing controller. 

This paper is structured as follows. First, a short introduction 
and further references to the used control methods intelligent 
PID, Virtual Reference Feedback Tuning and Iterative Learning 
Control are given in section II. In section III, the testing 
equipment for the cross-cut test is presented. The different 
methods are implemented in section IV and the results are 
presented in section V. Finally, a short summary and an outlook 
of future work is given. 

II. BACKGROUND AND RELATED WORK 

Controller design using only measured data is denoted as 
data-driven control [5]. There are many different methods for 
data-driven control, e.g. [5, 6]. In contrast to that, model-based 
control is using a given model for controller design. In this work, 
no model but directly measured system data are used. In this 
section, three different data-driven model-free control 
algorithms are presented, which are applied to force control. 

A. Intelligent PID 

As first application example, an intelligent PID controller 
described by Fliess and Join [7–9] is used. According to [7] the 
system is considered to have an unknown finite-dimensional 
linear or nonlinear description of the input-output behavior 

𝐸(𝑡, 𝑦, �̇�, ⋯ , 𝑦(𝑎), 𝑢, �̇�, ⋯ , 𝑢(𝑏)) = 0, (1) 

where 𝐸 is sufficiently smooth. During the control the system 
description (1) is not available and the simple local model 

𝑦(𝑛) = 𝐹 + 𝛼 𝑢 (2) 

is used instead. This model is locally valid for short time 
intervals and therefore must be updated each time step. The 
constant parameter 𝛼 ∈ ℝ  and the derivation order 𝑛  are 

tuneable parameters, where 𝛼  is chosen so that 𝑦(𝑛)  and 𝛼 𝑢 
have the same order of magnitude. 

The derivative order 𝑛  does not have to be equal to the 
highest order 𝑎 of the system. Generally, the order is chosen to 
1 or 2 [7, 9]. The control law for a time discrete iPID controller 
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is obtained by combining a classical PID controller with the 
local model (2) to 

𝑢(𝑘) =
1

𝛼
(−𝐹(𝑘) + 𝑦d

(𝑛)(𝑘) + 𝐾p  𝑒(𝑘) + 𝐾i∑𝑒(𝑘) 𝛥𝑇

+ 𝐾d  𝛥𝑒(𝑘)), 
(3) 

where 𝐾p, 𝐾i, 𝐾d ∈ ℝ  are the tuning parameters, 𝑦d
(𝑛)

 denotes 

the 𝑛th derivative of the reference output, 𝑒(𝑘) = 𝑦d(𝑘) − 𝑦(𝑘) 
the output tracking error, 𝛥𝑒(𝑘) = 𝑒(𝑘) − 𝑒(𝑘 − 1)  the 
difference of the tracking error, and 𝑘 represents the current time 
step. The value 𝐹(𝑘)  describes the whole unknown system 
dynamics. It is estimated in every time step based on (2) using 
the estimation of the 𝑛 th derivative of the measured output 

�̂�(𝑛)(𝑘) by 

�̂�(𝑘) = �̂�(𝑛)(𝑘) − 𝛼 𝑢(𝑘 − 1), (4) 

where �̂�(𝑘) denotes the estimated value. The system input 𝑢 is 
shifted by one time step to avoid algebraic loops [8]. 

In the following, the local model (2) is described by the first 

derivative �̇�. To calculate the estimated derivative �̇̂� a robust 
differentiator based on sliding mode technique from [10] is used. 
To differentiate the system output 𝑦(𝑘) the difference (sliding 
surface) 𝑠(𝑘) = 𝑥(𝑘) − 𝑦(𝑘)  is considered. The estimated 
derivate results from the super twisting algorithm 

�̇�(𝑘) = −𝜔 sgn(𝑠(𝑘)) 

�̇̂�(𝑘) = 𝑧(𝑘) − 𝜇 |𝑠(𝑘)|
1
2  sgn(𝑠(𝑘)), 

(5) 

with 𝑧(𝑘) = 𝑧(𝑘 − 1) + �̇�(𝑘)𝛥𝑇 > 0 , 𝜔 > Θ > 0  with the 

Lipschitz constant Θ, 𝜇2 ≥ 4 Θ 
𝜔+Θ

𝜔−Θ
, and 𝑥(𝑘) = 𝑥(𝑘 − 1) +

�̇̂�(𝑘)𝛥𝑇. 

B. Virtual Reference Feedback Tuning 

The Virtual Reference Feedback Tuning is a method to 
determine the parameters of a fixed-structure controller with 
measured input and output data. The method is described in [11–
14]. Applications can be found in [15] and [16]. 

The VRFT controller design [11] is based on a desired 
system behavior described by a reference model. The reference 
model is given as the time-discrete z-transformed transfer 
function 𝑀(𝑧). The goal is to determine the controller 

𝐶(𝑧, 𝜃) =  𝛽T(𝑧) 𝜃 (6) 

so that the closed loop with the unknown plant dynamics 𝑃(𝑧) 
equals the reference model 𝑀(𝑧). The control loop is shown in 
Fig. 1. 

The aim is to determine the optimal controller parameters 

𝜃 = [𝜃1 𝜃2 ⋯ 𝜃𝑚]
T  for the fixed structure 𝛽T(𝑧) =

[𝛽1(𝑧) 𝛽2(𝑧) ⋯ 𝛽𝑚(𝑧)]  of the controller with 𝑚  linear 
discrete-time transfer functions. Because the transfer function 
𝑃(𝑧) of the plant is unknown the system is described by the 
measured data of the system input 𝑢 and the system output 𝑦 of 
the plant. With this, the VRFT can be summarized in three steps 
[11]: 

 

Fig. 1  Block diagram of the desired system [13] 

1. Determine the virtual reference �̅�(𝑘)  for the desired 
system 𝑦(𝑘) = 𝑀(𝑧) �̅�(𝑘)  based on the measured 
outputs 𝑦(𝑘). This results in the tracking error 𝑒(𝑘) =
�̅�(𝑘) − 𝑦(𝑘). 

2. Use 𝐿(𝑧) to filter 𝑒(𝑘) and 𝑢(𝑘)  

𝑒L(𝑘) = 𝐿(𝑧) 𝑒(𝑘)  and  𝑢L(𝑘) = 𝐿(𝑧) 𝑢(𝑘), (7) 

where the index L describes the filtered elements. 

3. Calculate the specific controller parameter vector �̂�𝑁 
minimizing the criterion 

𝐽VRFT
𝑁 (𝜃) =

1

𝑁
∑(𝑢L(𝑘) − 𝐶(𝑧, 𝜃) 𝑒L(𝑘))

2

𝑁

𝑘=1

 (8) 

   for 𝑁 data points, which results in 

�̂�𝑁 = [∑𝜑L(𝑘) 𝜑L(𝑘)
T

𝑁

𝑘=1

]

−1

∑𝜑L(𝑘) 𝑢L(𝑘)

𝑁

𝑘=1

, (9) 

   with 𝜑L(𝑘) = 𝛽(𝑧) 𝑒L(𝑘). 

The goal of the controller is to generate the correct system 
input 𝑢(𝑘) to achieve the desired output 𝑦(𝑘). Therefore, the 
virtual reference �̅�(𝑘) (which was never used to generate the 
data) is used to determine the necessary tracking error 𝑒(𝑘). The 
controller is optimized to generate the correct 𝑢(𝑘) for a given 
error. 

C. Iterative Learning Control 

The Iterative Learning Control (ILC) is based on the idea of 
learning from tracking errors of previous iterations. The method 
is described in [17] and in the extensive survey [18]. Some 
newer developments can be found in [19, 20]. Applications are 
repetitive tasks like robot movements. It learns repeating 
disturbances and suppresses them in the future. 

The ILC is mostly used in a discrete setting because it uses 
stored values from previous iterations which are always 
sampled. The plants dynamics are often represented in a lifted-
system representation [17, 18], where the system inputs 𝑢(𝑘) 
and outputs 𝑦(𝑘)  are interpreted as 𝑁 -dimensional vectors 𝑢 
and 𝑦 of a SISO system over a finite time interval 0 ≤ 𝑘 < 𝑁 
with 𝑁 sampled data points per iteration. The matrix 𝐺 denotes 
the single impulse responses of the system 

file:///C:/Users/fdiep/sciebo/Promotion/Veroeffentlichungen/2022_06__ICCMA_ML_Force_Control/20__paper/Model-free%23_CTVL00198f6d4dc565541439d6f92b5b4d9ed46
file:///C:/Users/fdiep/sciebo/Promotion/Veroeffentlichungen/2022_06__ICCMA_ML_Force_Control/20__paper/Towards%23_CTVL00108c1105d31734b61b98580be4638ef1f
file:///C:/Users/fdiep/sciebo/Promotion/Veroeffentlichungen/2022_06__ICCMA_ML_Force_Control/20__paper/Virtual%23_CTVL0018aa4121ad6a24bd9b3f560385cb80d88
file:///C:/Users/fdiep/sciebo/Promotion/Veroeffentlichungen/2022_06__ICCMA_ML_Force_Control/20__paper/Virtual%23_CTVL0018aa4121ad6a24bd9b3f560385cb80d88
file:///C:/Users/fdiep/sciebo/Promotion/Veroeffentlichungen/2022_06__ICCMA_ML_Force_Control/20__paper/Virtual%23_CTVL0018573a7f2c9a143b1a9f62ee54d4c4d24
file:///C:/Users/fdiep/sciebo/Promotion/Veroeffentlichungen/2022_06__ICCMA_ML_Force_Control/20__paper/Data-driven%23_CTVL0019f986872b0c34915b982d71d69df8287
file:///C:/Users/fdiep/sciebo/Promotion/Veroeffentlichungen/2022_06__ICCMA_ML_Force_Control/20__paper/Virtual%23_CTVL001d668323f0c5c41e9b82980afbf57d533
file:///C:/Users/fdiep/sciebo/Promotion/Veroeffentlichungen/2022_06__ICCMA_ML_Force_Control/20__paper/Virtual%23_CTVL0018aa4121ad6a24bd9b3f560385cb80d88
file:///C:/Users/fdiep/sciebo/Promotion/Veroeffentlichungen/2022_06__ICCMA_ML_Force_Control/20__paper/Virtual%23_CTVL0018aa4121ad6a24bd9b3f560385cb80d88
file:///C:/Users/fdiep/sciebo/Promotion/Veroeffentlichungen/2022_06__ICCMA_ML_Force_Control/20__paper/Mixed%23_CTVL001542f7a8ec5974d93b60a42481e5814d2
file:///C:/Users/fdiep/sciebo/Promotion/Veroeffentlichungen/2022_06__ICCMA_ML_Force_Control/20__paper/Generalization%23_CTVL001ff4f4bc5e8bd4e018902509bd23e247e
file:///C:/Users/fdiep/sciebo/Promotion/Veroeffentlichungen/2022_06__ICCMA_ML_Force_Control/20__paper/A%23_CTVL001b8ac012fd3c64138877a59883f86af88
file:///C:/Users/fdiep/sciebo/Promotion/Veroeffentlichungen/2022_06__ICCMA_ML_Force_Control/20__paper/Robust%23_CTVL001a0772d62683042c0aa7c24359c5753d0
file:///C:/Users/fdiep/sciebo/Promotion/Veroeffentlichungen/2022_06__ICCMA_ML_Force_Control/20__paper/Robust%23_CTVL001a0772d62683042c0aa7c24359c5753d0
file:///C:/Users/fdiep/sciebo/Promotion/Veroeffentlichungen/2022_06__ICCMA_ML_Force_Control/20__paper/Generalization%23_CTVL001ff4f4bc5e8bd4e018902509bd23e247e
file:///C:/Users/fdiep/sciebo/Promotion/Veroeffentlichungen/2022_06__ICCMA_ML_Force_Control/20__paper/Generalization%23_CTVL001ff4f4bc5e8bd4e018902509bd23e247e


[

𝑦(0)

𝑦(1)
⋮

𝑦(𝑁 − 1)

]

⏟      
𝑦

= [

𝛿0 0 ⋯ 0
𝛿1 𝛿0 ⋱ ⋮
⋮

𝛿𝑁−1

⋮
…

⋱ 0
𝛿1 𝛿0

]

⏟            
𝐺

 [

𝑢(0)
𝑢(1)
⋮

𝑢(𝑁 − 1)

]

⏟      
𝑢

. 
(10) 

A typical update law for ILC [17] is 

𝑢𝑖+1(𝑘) = 𝑄 [𝑢𝑖(𝑘) + 𝐿(𝑒𝑖(𝑘))], (11) 

where 𝑖 denotes the iteration index, 𝑘 the time index within an 
iteration, 𝐿  a learning function, and 𝑄  an optional filter. The 
system input for the current time step 𝑘 of the next iteration i + 1 
is based on the corresponding system input of the current 
iteration and the resulting tracking error. 

Different types of learning functions are used in literature 
[18]. In this paper, the P-type learning function as 

𝑢𝑖+1(𝑘) = 𝑢𝑖(𝑘) + 𝛹p  𝑒𝑖(𝑘), (12) 

with the filter 𝑄 = 1 and the learning function 𝛹p ∈ ℝ as tuning 

parameter of the controller, is used. 

The resulting concept is visualized in Fig. 2. The system 
input depends on the stored values of the system input and 
tracking error of the previous iteration. With a growing number 
of iterations, the system input is refined and the tracking error 
for repeating disturbances vanishes. This is only valid, if the 
initial conditions are equal for every iteration and the system is 
asymptotically stable. Stability can be achieved if the condition 

|1 − 𝛹p  𝛾| < 1 (13) 

is met. 

III. EXPERIMENTAL SETUP 

The testing equipment executes automated cross-cut tests. 
As preparation, different coatings are applied to metal sheets 
with a high-throughput equipment. These metal sheets are 
inserted in the testing equipment and fixed by vacuum. Then, the 
metal sheet is moved below a needle and a pattern according to 
the standards [1–3] is scratched into the coating material. Before 
and after the scratch test a photo of the coated surface is taken. 
To evaluate the coating properties those photos are analyzed, 
e.g. in [4]. A photo of the setup is shown in Fig. 3. 

The cross-cut machine uses three synchronous motors to 
move in the three cartesian coordinates. The metal sheet is 
located on a carriage which moves in the 𝑥-𝑦-plane. Two force 
sensors are installed in this carriage. The needle moves up and 
down in the 𝑧-direction and applies the force on the coating, 
which is measured by the force sensors. A spring is already used 
to reduce the stiffness of the system and achieve better control 
results. 

The whole testing equipment is controlled via a 
programmable logic controller (PLC). The PLC code runs with 
a cyclic time of 1 ms. At the beginning, the force values are read 
from both sensors as measured system outputs and added to a 
single value for each cartesian axis. The resulting force value is 
used by a controller to determine the motor position increment 
as system input. The controller must have a short reaction time  

 

Fig. 2  Development of the control signal and tracking error  
over the iterations [18] 

 

Fig. 3  Cross-cut testing equipment 

because there is only a small distance where the resulting force 
is in a permitted range. The force controller is the outer part of 
a cascade controller. The inner control loop is a position control 
directly implemented on the PLC. The current force controller 
for the cross-cut tests is implemented as an adaptive proportional 
controller controlling the position increment. 

IV. APPLICATION OF THE DATA-DRIVEN METHODS 

The data-driven control methods from section II are 
implemented on the PLC of the experimental setup. The system 
output is the measured force in 𝑧-direction and the system input 
the position increment in 𝑧 -direction. Therefore, a positive 
system input results in a decreasing system output and vice 
versa. The position increment has to be quite small, because the 
range of positions with an acceptable force response is also 
small. 

A. Intelligent PID 

The iPID (3) is implemented with a derivative order 𝑛 = 1 
and a modification of the derivative part. The difference of the 
tracking error 𝐾d 𝛥𝑒(𝑘) is replaced by the estimated derivate 

−𝐾d �̇̂�(𝑘). This holds because 

�̇̂� = �̇̂�d − �̇̂� = 0 − �̇̂� (14) 
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and the reference can be considered as constant. The numerical 
derivation (based on (5)) is chosen because the measured signals 
have high noise which results in poor performance of the simple 
difference 𝛥𝑒(𝑘) . The chosen parameter values are given in 
Table I. 

TABLE I  VALUES OF THE PARAMETER IN THE IPID ALGORITHM 

Parameter 
iPID Derivation 

𝛼 𝐾p 𝐾i 𝐾d 𝜔 𝜇 

Value −2 ⋅ 106 0.003 0 −0.975 1.0 0.4 
 

The tuning factor 𝛼 has to be negative because a negative 
system input corresponds to an increasing force response. The 
absolute amount of 𝛼 has to be large to damp the system input. 
The system already has an integral behavior, therefore the 
integral part of the controller 𝐾i  is set to zero. Hence, the 
implemented controller is an iPD. The derivative gain 𝐾d  is 
chosen near to minus one because with a smaller difference 
−1 − 𝐾d the influence of the derivative on the system input is 
reduced. 

B. Virtual Reference Feedback Tuning 

For the VRFT controller the fixed PD-type controller 
structure 

with the sampling time 𝑇s = 1 ms is chosen based on the PID 
example from [21]. The goal is to determine the parameter 

vector �̂� = [�̂�1 �̂�2]
T  for the controller 𝐶(𝑧, 𝜃)  of the fixed 

structure 𝛽. Measured data for the system input 𝑢(𝑘) and the 
system output 𝑦(𝑘)  are required for this purpose. To obtain 
these measurements, a single scratch with a velocity of 1 mm/s 
is performed using the existing controller. The resulting data are 
shown in Fig. 4. 

Beside the measured variables and the controller structure 
the VRFT algorithm needs the reference model, which is chosen 
to 

𝑀(𝑧) =
0.01

𝑧 − 0.99
  . (16) 

Also, the filter 𝐿(𝑧) is chosen to 𝐿(𝑧) =
𝑊(𝑧) (1−𝑀(𝑧)) 𝑀(𝑧)

√Φu
 

with Φu  being the spectral density of 𝑢(𝑘)  and 𝑊(𝑧)  the 
weighting transfer function which is chosen to 𝑊(𝑧) = 1. The 

resulting parameter �̂� = [−23.8 ⋅ 10−6 20.7 ⋅ 10−9]T  is 
implemented. 

C. Iterative Learning Control 

The ILC is applied in addition to the other two methods to 
further optimize the control performance. The groups iPID+ILC 
and VRFT+ILC are formed. The two methods iPID and VRFT 
work against disturbances during a scratch. In contrast, the ILC 
optimizes the control performance over multiple scratches if 
there are repeating disturbances like differences in the coating  

 

Fig. 4  Training data for VRFT: Position increment 𝑢(𝑘) 
and measured force 𝑦(𝑘) 

thickness. The resulting system input by the combined 
controllers is realized as the sum of the individual inputs as 

𝑢𝑖(𝑘) = 𝑢𝑖, ILC(𝑘) + 𝑢iPID or VRFT(𝑘) (17) 

based on [22]. 

The ILC is implemented based on (12) using the tuning 
parameter 𝛹p = −2 ⋅ 10

−6.  The factor has to be negative 

because of the inverse behavior between system input and 
output. 

V. RESULTS AND DISCUSSION 

The controller performance of the methods described above 
are compared to the existing adaptive proportional controller. 
For this, some experiments are performed with the cross-cut 
testing equipment described in section III. For simplicity, the 
results presented here are for a single scratch along the 𝑥-axis 
with a velocity of 1 mm/s. The application of other movements 
like a scratch in 𝑦-direction can be done analogously. Only with 
ILC the correct sorting of the sampled values of the last iteration 
to the current movement is important and has to be adapted. 

A. Comparison of iPID and VRFT with exsiting controller 

First, the iPID and VRFT are individually compared to the 
existing adaptive proportional controller. The results for an 
exemplary scratch test are given in Fig. 5. The adaptive 
proportional controller oscillates strongly around the setpoint of 
5 newton with an root mean square error (RMSE) of 0.9644. The 
iPID and VRFT controller oscillate with a significantly less 
amplitude and a smaller frequency. Both new control algorithms 
are disturbed by the start of movement but compensate the 
disturbance with time. This disturbance is handled slightly better 
by the VRFT in comparison to the iPID. After approximately 
20 s the oscillations have reached a constant error range. Then, 
the iPID oscillates around the setpoint but with the VRFT a 
permanent control error remains. The RMSE of all three control 
algorithms are given in Table II. The error values are given once 
for the whole scratch and once after the settling time of 20 s. 

TABLE II  ROOT MEAN SQARE ERRORS FOR A SINGLE SCRATCH 

Time Original iPID VRFT 

𝑡0 ≤ 𝑡 ≤ 𝑡end 0.9644 0.1834 0.2428 

𝑡20 s ≤ 𝑡 ≤ 𝑡end 0.9634 0.1243 0.2394 

 

𝛽 = (1
2

𝑇s

1 − 𝑧−1

3 − 𝑧−1
)

T

 (15) 
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Fig. 5  Results of the force control for the existing controller, iPID and VRFT 

B. Combination of the new control methods with ILC 

The results of the combined control methods iPID+ILC and 
VRFT+ILC are shown in Fig. 6. The adaptive proportional 
controller will not be combined with ILC because of its poor 
performance in single use. Ten iterations are done in a row for 
both combinations. Each iteration is a single scratch along the 
𝑥-axis. Between the iterations the force drops to zero, because 
the needle is lifted and moved back to the start position in 𝑥- and 
the next line in 𝑦-direction. 

The ILC is supposed to improve the control performance 
over time by suppressing repeated disturbances. In this example, 
the implemented ILC does not achieve the desired purpose. No 
significant improvement over multiple iterations can be 
observed in Fig. 6. For example, the characteristic force 
reduction at the beginning of a scratch are not minimized. Only 
for VRFT+ILC an effect can be observed. The output of the 
system controlled with this combination is systematical below 
the reference at start. With increasing number of iterations, the 
average of a single iteration approaches the setpoint. 

Another characteristic is the RMSE for each iteration as 
shown in Table III. The error for both combinations first 
decreases slightly and remain constant afterwards. For the 
iPID+ILC the ILC seems to have no effect. For the VRFT+ILC 
combination the constant errors (except for the outlier in 
iteration eight) can be explained with two effects. First, an 
increasing error caused by the rising amplitude of the measured 
force. Second, the decreasing error caused by the convergence  

 

Fig. 6  Results of the force control for the combinations iPID+ILC and 

VRFT+ILC 

TABLE III  ROOT MEAN SQARE ERRORS FOR EACH ITERATION 

Iterations 1 2 3 4 5 

iPID+ILC 0.2120 0.2022 0.1963 0.1970 0.1965 

VRFT+ILC 0.4079 0.3469 0.3656 0.3665 0.3899 
      

Iterations 6 7 8 9 10 

iPID+ILC 0.1926 0.1974 0.1946 0.2006 0.1967 

VRFT+ILC 0.3921 0.3957 0.4434 0.3794 0.3850 
 

of the average measured force and the setpoint. Both effects 
cancel each other out. 

VI. SUMMARY AND CONCLUSION 

The goal of this contribution is the controller optimization 
for the cross-cut testing equipment using data-driven methods. 
For this, a comparison of the iPID and VRFT and the 
combinations iPID+ILC and VRFT+ILC with the existing 
controller is done. The existing controller is implemented as an 
adaptive proportional controller with a poor control 
performance. For the comparison a simplified individual scratch 
in 𝑥 -direction is used. The results show that both iPID and 
VRFT outperform the existing controller. The iPID results in 
smaller tracking errors over the scratch and is therefore 
recommended. The combination of the new control methods 
with the ILC yields no further improvement. The control 
performance remains comparable. 

In this paper, only model-free control methods are discussed. 
In the future, data-driven model-based control methods will be 
investigated additionally. Furthermore, more information can be 
used to improve the controller, for example the current position 
or the forces in 𝑥- and 𝑦-direction. In addition, the different 
control methods should be applied to the cross cut test. 
Scratching over existing scratches may introduce a repetitive 
disturbance, where iterative learning control may have an 
advantage. 
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