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Abstract

Wind energy takes an important role in the transformation of the global energy system towards

clean and sustainable sources. The main development of wind energy technology in recent decades

is the growth of wind turbine size motivated by economic factors. The larger turbine size helps to

increase power output and energy efficiency, however, it leads to challenges in wind turbine oper-

ation and maintenance. To further reduce the cost of wind energy, advanced control approaches

are developed focusing on power maximization, structural load mitigation, lifetime extension, and

reliability improvement. This multi-objective problem is difficult to solve due to design conflicts.

The optimal trade-off between goals is varying and depends on actual operating situations such as

on-site wind characteristics, system aging, and grid requirements.

Modern utility-scale wind turbines are equipped with numerous sensors providing useful in-

formation about turbine components operation status. With the huge development of computation

capability and big data analytics techniques, the turbine performance and state-of-health informa-

tion could be obtained and evaluated through historical logged data using Prognostics and Health

Management (PHM) systems. The information aids the optimal operation and maintenance of

wind energy systems.

In recent years, the integration of state-of-health information into the closed-loop control sys-

tem begins to attract the attention of the wind energy researcher community. Controllers are

adapted based on current and future aging behaviors optimizing the trade-off between service life

expansion and power production maximization. This paper provides a review of integrated prog-

nostics and health management control systems for optimal operation and maintenance of wind
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turbines and wind farms reducing the cost of wind energy. The review focuses on the combination

of on-line PHM and advanced control for wind turbines. State-of-the-art, future trends, and open

challenges of the approach are provided and discussed.

Keywords: wind energy, integrated PHM control, prognostics and health management, fault

evasion, structural load, O&M cost

1. Introduction

Global warming is a major consequence of high carbon dioxide emissions due to the burning

of fossil fuels. In 2018, coal-fired power plants account for 37 % of the European Union Emissions

Trading System (EU ETS) emissions [1]. In addition, the use of fossil fuels also emits mercury,

sulfur dioxide, nitrogen oxides, and particulate matter into the air and water leading to many

health problems [2]. These factors in combination with the depletion of fossil fuel motivate the

requirement for low-carbon and renewable energy sources.

Wind energy plays a significant role in scaling up renewable electricity sources for the decar-

bonization of the energy industry. It is forecasted that more than 30 % of electrical demand by

2050 is provided by wind power [3]. To fulfill the growing requirements, wind turbines are scaled

up in size to access more power from the wind driven by technology innovation and the use of

advanced materials. The largest wind turbine was installed in 2018 with a power rating of 8.8 MW

and a rotor diameter of 164 m [4]. Larger rotors aid in increasing capacity factor and efficient

ultimately reducing the cost of wind energy. The wind levelized cost of energy (LCOE) has been

reducing in the last decade [5, 6]. In the US, the average rotor diameter in 2018 increased by 35 %

over 2010, while the average LCOE reduced by over 50 % in the same period [7]. The production

cost of wind energy is still higher than that of conventional technologies using fossil fuel, however,

it is expected to be lower by 2020 [8].

The larger turbine size improves power output and energy efficiency, however, it leads to chal-

lenges in wind turbine operation and maintenance. Larger and more flexible turbines experience
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higher mechanical stress on the turbine components. These structural loads may lead to early fail-

ure limiting the turbine size and performances [9]. To further increase the turbine size, structural

loads need to be reduced or considered/monitored.

Advanced control approaches are applied for utility-scale WTs to maximize power produc-

tion and reduce structural loads [10]. The variation of turbine components such as blades, tower,

drive-train, or gear-box are controlled along with the power production by modifying the blade

pitch angles. When the structural loads are considered, it is helpful to understand the wind turbine

as a multi-input multi-output (MIMO) system. Because of the coupling between control inputs

and outputs, traditional single-input single-output (SISO) controllers are difficult to design and not

suitable for such systems [11]. Multi-input multi-output control approaches consider system inter-

nal connections so they can realize multiple objectives simultaneously. Multi-objective advanced

MIMO control algorithms reduce the loads while maximizing the power generation. Related con-

trol approaches need to be robust and able to reduce the effects of unknown variable wind speed

disturbances and modeling errors [12]. Load mitigation helps to expand the turbine lifetime, re-

duce the maintenance cost, and allows to build larger WTs. However, load reduction often comes

with the consequence of decreasing power production and increasing blade pitch activities [9].

Balancing and optimizing this trade-off is challenging and still is an open problem.

To make wind energy more competitive, the related cost of energy (COE) needs to be re-

duced either by evolution in wind turbine (WT) design, applied materials or optimal operation and

maintenance (O&M). The O&M cost can account for 30 % of wind power COE [13, 14], so it

is important to reduce the cost by expanding the turbine service lifetime or reducing unplanned

maintenance cost which takes over 50 % of total O&M cost [15].

To diminish the unplanned costs due to failures, Prognostics and Health Management ap-

proaches are recently developed for wind turbines to provide the information of turbine state-

of-health (SoH) and prediction of the remaining useful life (RUL) [16]. Using the measured data,

maintenance schedules of each component of the turbine and each turbine of the wind farm can

be optimized to minimize the overall maintenance cost while guaranteeing the failure probabil-

ity thresholds [17]. The maintenance strategy using health condition monitoring is classified as

condition-based maintenance (CBM). Diagnostic and prognostic information about the system’s
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health allows making suitable decisions on emergency actions and repairs. Condition-based or

predictive maintenance (CBM) techniques are adopted to reduce the wind turbine probability of

failure thus to reduce the O&M cost [17]. The main challenge of wind turbine CBM is the uncer-

tain wind makes it is difficult to predict future health degradation behavior [18]. The complexity in

the signal analysis technique for WT PHM also hinders the real-time application of the approach

[19].

Unscheduled maintenance due to failures can be reduced using fault-tolerant control (FTC)

systems to improve the system reliability and survivability [20]. The FTC systems are designed

to continue the turbine operation at reasonable performance in case of restrictive faults [21]. The

effects of faults are accommodated by modifying or switching the related controllers with sacrifices

in power production [22]. Real-time monitoring of systems is needed for detection and isolation

of faults. Applying FTC allows avoiding the entire turbine failure resulting in total losses of power

generation. However, due to the fact that the turbine operates with faulty components, the power

output is restricted. Repairs are required to make the system operate with full capacity.

The FTC approach works only when a fault is detected, or the system is already in a faulty

condition. To avoid the fault, control strategies need to be adapted with system health indicators

before the fault appears. The idea of integrating knowledge about system SoH and predicted RUL

into the control loop to adapt the controller targeting system safety and reliability was first intro-

duced in [23]. The concept named Safety and Reliability Control Engineering (SRCE) considers

the reliability function and lifetime extension of the system by continuously optimizing control

strategy based on the information provided by PHM systems (fig. 1). With this concept, system

reconfiguration decisions are made not only at the faulty conditions but also when changes in the

system reliability are detected. The approach allows optimizing the system dynamic behavior and

reliability characteristics in the fault-free state.

In [24], online information from an PHM system is used to adapt the control law to current

and future fault and contingency situations with the so-called Prognostics-enhanced Automated

Contingency Management (ACM+P) approach. The system life can be managed by considering

future assumptions in control law if performance requirements can be relaxed. The ACM+P sys-

tem can accommodate faults or mitigate failures using short-term prognosis (with a RUL estimate
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Figure 1: Safety and Reliability Control Engineering (SRCE) concept

in terms of minutes or hours in the future) by reconfiguring controllers or/and control objectives

accordingly. Similar idea to consider and control the current and future system SoH is proposed in

[25, 26] with the related paradigm name Health-Aware Control (HAC). The HAC concept allows

adapting controllers before faulty events happen improving the system reliability and providing

wider space to optimize the maintenance schedules. The decision-making concerns control objec-

tives, maintenance, and repairs strategies can be integrated into a closed-loop automation concept

considering system SoH, safety, reliability, and performance. The system components aging is

also monitored allowing situation-based optimal operation of the system depending on the actual

degradation level.

Recently, there are several reviews on PHM approaches and advanced control for wind turbines

[10, 27, 28, 22]. The review [10] focuses on load mitigation multi-objective control schemes for

large-scale wind turbines. The trade-off between power maximization and structural load reduction

is pointed out in the paper as an open problem. The authors of [22] provided references about

model-based fault detection and fault-tolerant control approaches for WTs to improve reliability.

Signal-based methods for WT fault detection are reviewed in [28]. The paper gives a detailed

description of sensor types and measurement techniques for WT structural health monitoring. An

evaluation of the online applicability of the methods is also provided in the review. Commercial

aspects of PHM methods are considered in [27]. The authors review data-mining techniques for
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WT structural health monitoring used commercially. The cost, advantages, and disadvantages of

each approach are also discussed.

The aforementioned reviews only focus on PHM or control, the integration of PHM into the

control loop is only briefly discussed. Applying integrated PHM control (IPHMC) approaches

allows the improvement of system reliability and performance ultimately reducing the O&M cost.

The approaches require reliable and online SoH monitoring methods. The knowledge about the

health degradation characteristics and the relation between system dynamics behavior and health

degradation are important to establish optimal control strategies. Most of the research focuses on

condition-based maintenance and fault-tolerant control applications [29, 30]. Recently, the combi-

nation of PHM and control applied for non-faulty wind turbines to avoid unwanted failure begins

to attract attention. There are several names for this strategy such as contingency control [31] or

health aware control [32], however, the overall idea is the integration of PHM information into

control systems to improve performance and reliability of fault-free systems. With the develop-

ment of digitalization and data-driven techniques, the integration approaches have the potentials

to further improve the wind energy system performances. Till now, there was no throughout re-

view on this new research direction for wind energy systems. So it is necessary to generalize and

provide the most recent developments in the field for establishing research gaps and challenges.

This paper focuses on the combination of PHM and advanced control approaches with the

application for wind turbines and wind farms to improve the reliability and cost-effectiveness of

wind energy. Requirements of PHM and control approaches for the combination are reviewed and

discussed. Unlike previous reviews focusing on fault-tolerant control, this contribution considers

also fault-evasion control, which is the adaptation of the control system for non-faulty conditions

to avoid faults. The paper aims to provide the state-of-the-art in integrated PHM control for large-

scale wind energy systems. The generalization and classification of the approach are given for

the first time. Challenges and requirements for the further development of the concept are also

discussed.

The contribution is organized as follows: Section 2 introduces the general concept of IPHMC.

Wind turbine health diagnostic and prognostic techniques focusing on control integration ability

is provided in section 3. Section 4 reviews and classifies existing IPHMC approaches applied for
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wind turbines. Finally, conclusions, open challenges, and future trends are given in section 5.

2. Integrated PHM Control Concept

The general concept of Integrated PHM Control (IPHMC) applied for wind energy systems

(WESs) is described in fig.2. The WESs could be wind turbines or wind farms with related con-

trollers. The WEC control systems realize contradictory multiple objectives such as power pro-

duction maximization, power reference tracking, structural load reduction for lifetime extension,

or/and improving system reliability. The priority of each objective varies depending on specific

situations. For example, when the wind turbines/farms operate in a tough condition, such as strong

wind turbulence intensity, it is more important to reduce structural load than to maximize the in-

stantaneous power harvested. The objective is to operate the turbine at reduced power without

exceeding some damage thresholds resulting in unscheduled downtime [31]. The trade-off needs

to be optimized by control reconfiguration for each particular situation defined by the prognostic

and diagnostic modules. In any case, system health-related information such as aging condition,

accumulated damage, failure probability, and predicted RUL are important aspects and need to be

considered.
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Figure 2: IPHMC concept for wind energy systems

Unlike traditional FTC approaches, the IPHMC framework allows adapting the control action

even when the system is still in a non-faulty situation or before the fault appears [25]. The idea

is to not only control the physical states of the turbine (speed, power, bending moment, etc.) but
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also the health-related characteristics (fatigue damage, RUL, reliability, etc.) as indirect values

obtained from the PHM modules [23]. The PHM module acts as a virtual sensor providing real-

time feedback for the SoH control loop. Decisions are made using the heath status information

and other requirements depending on each specific operating situation. The output of the decision-

making module is the reconfiguring of controllers and/or reference values to accommodate the

change of SoH, changing of control objectives depending on situations, or even stop the whole

system. The maintenance schedule of system components also could be considered to adapt the

control law minimizing the overall cost.

3. Prognostics and Health Management for Wind Turbine Control

The goal of the PHM module is to calculate the health status and estimate the remaining useful

life of wind turbine components. The obtained information is used for optimal operation, mainte-

nance, and control of wind energy systems. In the field of wind energy, fatigue damage is widely

used to assess health status wind turbines and is recommended by the IEC 61400-1 standard [33].

Fatigue is the weakening of a material due to cyclically applied loads which are beyond certain

thresholds [34]. Accumulated fatigue damage can express the aging of the system thus providing

helpful information for optimizing the health degradation behavior. Because the fatigue damage

generally can not be measured directly, methods to calculate the accumulated fatigue damage are

needed. Fatigue calculation methods suitable for wind turbine control are introduced in the next

section.

3.1. Fatigue damage calculation

An overview of methods using for calculating wind turbine fatigue damage is provided in

[35]. The fatigue calculation methods can be classified as counting methods, spectral methods,

stochastic methods, and hysteresis operators. For complex loading caused by varying wind speed,

the rain flow counting (RFC) algorithm [36] in combination with Miner’s rule [37] has the most

accuracy. However, the method has some drawbacks that make it difficult to combine this with

control applications. Hence this contribution focus on RFC and solutions for control applicability

of the method.
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3.1.1. Rain flow counting

For certain materials, the relation between the number of cycles to failure with the stress level

or cycle amplitude was established. This relation can be represented by the stress-cycle (S-N)

curve. The S-N curves are typically derived from experiments on samples of the material. For a

given stress history, assuming there are k different load amplitude levels, namely S i, (1 ≤ i ≤ k),

each level S i appear in ni cycles, and the number of cycles to failure at the stress level S i is Ni

defined by the S-N curve. The damage accumulation Dac can be calculated using Miner’s rule as

Dac =

k∑
i=1

Di =

k∑
i=1

ni(S i)
Ni(S i)

, (1)

with Di denotes contributed damage of stress level S i and Dac denotes accumulated damage over

the whole time history. In general, when the damage accumulation Dac reaches a defined limit ≥ 1,

the system is considered as failed.

To define stress levels and the number of cycles of each level, the rain flow counting (RFC)

algorithm is used. The algorithm transforms a spectrum of varying stress levels to a set of simple

stress range allowing the application of Miner’s rule (fig. 3).

Load time-series Rainflow counting Load ranges S-N curve Miner rule

Fatigue
damage

Figure 3: Fatigue damage calculation using RFC and Miner rule

The RFC algorithm is widely used to calculate the fatigue damage with the most accurate

regarding complex loading [35]. However, the standard form of RFC is computationally expensive

due to the requirement of the whole load history. The RFC method is an procedure rather than a

mathematical function [35, 38]. The relation between fatigue damage and the measured stress

obtained from the RFC algorithm is typically nonlinear and difficult to compute the gradient.

To reduce the computational and memory load, the RFC method can be realized on a floating

time window rather than the whole time history [39, 38]. An online RFC algorithm is proposed in

[40]. Instead of tracking the complete time history data, the algorithm store and processes extremal
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value (minimum and maximum) simultaneously as they occur to provide the equivalent full and

half cycles.

3.1.2. RFC approximation

As mentioned in [35], RFC algorithm is widely used and has an active standard [41]. How-

ever, the approach is nonlinear and not differentiable make it is difficult to apply the approach

directly for control. Typically for control integration, the RFC algorithm is approximated using

mathematical models.

In [32], the RFC algorithm is approximated using a linear model establishing the relation

between the generator torque Tg, system states ωr, disturbance vw with the damage z of the blade

z(k) =
m
L

(a0 + a1
∂Pg

∂ωr
ωr(k) + a1

∂Pg

∂Tg
Tg(k) + a2vw(k))

Zacc(k + 1) = Zacc(k) + z(k),
(2)

here Zacc denotes the accumulated damage, Pg the generator power output, L the number of sam-

ples per cycle, and m the slope of the accumulated damage curve. The model parameters a0, a1,

and a2 is obtained using least square algorithm using the results from RFC. Figure (4) shows the

comparison between the fatigue damage calculated from RFC and the approximated model.

D
am

ag
e

Time

RFC

Approximate

Figure 4: Linear approximation of RFC algorithm

A recursive ARX model is used in [39] to approximate the relationship between the tower

damage equivalent load (DEL) and the tower top velocity. Damage equivalent load, which is a

constant-amplitude fatigue-load defining the equivalent damage as the variable spectrum of loads
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[42], can be calculated using the results of the RFC algorithm. The approximated model is used as

a damage sensor for a sliding mode controller to reduce the fatigue damage of the turbine tower.

In [38], a nonlinear autoregressive networks with exogenous inputs (NARX) artificial neural

network (ANN) is for the function approximation. The tower fatigue damage is calculated from

the stress time series using RFC for different wind speeds. The obtained stress and damage data

is used for training and testing of the ANN. Several ANNs with a different number of neurons are

considered. The results show that ANNs can approximate the RFC algorithm with high accuracy.

The number of neurons required is low thus integration of the model does not increase much the

computational time.

3.2. Remaining useful life estimation

Remaining useful life (RUL) is a mandatory information for optimal operation and mainte-

nance of wind energy systems. Based on the RUL information, suitable maintenance and control

strategies can be chosen to reduce the O&M cost and improve system reliability. Remaining use-

ful life estimation methods are broad and can be classified considering different aspects. Roughly,

wind turbine RUL estimation methods are grouped as model-based, data-based and hybrid ap-

proaches [43, 44].

Model-based methods aim to establish physical or mathematical degradation models to repre-

sent the correlation between input signals and RUL. The models are built based on the knowledge

about the mechanisms leading to failure such as wear, fatigue damage, crack growth [45]. Wind

turbines contain multiple failure modes driven by different mechanisms thus it is difficult to es-

tablish a model covering all of the modes. Typically, only dominated phenomena are considered.

For wind turbine applications, the most common model-based method is the fatigue life prediction

based on the S-N curve and Palmgren-Miner rule [43]. The accumulated fatigue damage Dk of

a component at the time Tk can be calculated from historical measured data using (1). When the

accumulated damage reaches a predefined limit D f , the component is considered as failed. As-

suming that the wind turbine operates in the same conditions in the future, the time to failure L f is
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estimated as

L f =
Tk

Dk
D f . (3)

The estimated RUL is calculated as

RUL = L f − Tk = Tk(
D f

Dk
− 1). (4)

Data-based or data-driven approaches depend on measured data, detailed knowledge about

system physics is not required. The methods establish the correlation between RUL and physical

signals by learning from stored data. Multiple failure modes can be presented without knowledge

about the failure mechanisms behind, however, great efforts need to be put into obtained and

process failure data. The quantity and quality of data greatly affect the prediction accuracy [45].

Typically, raw data from measurement systems need to be processed using noise reduction and

feature extraction techniques before using for training the data-driven models.

Artificial neural networks (ANN) are used to model the normal behavior of wind turbine gear-

boxes in [46]. Possible anomalies or faults can be detected according to the difference between

the real measured output and estimated output from the models. The time remaining still the fail-

ure or remaining useful life is predicted using another ANN model. The prediction ANN model

represents the dynamics of the difference between real and estimated data (residual) of a historical

failure case. The residual dynamics of the system can be predicted using the ANN residual model

and current gearbox life status. The remaining useful life can be predicted if the failure can be

detected by the ANN normal behavior model.

In [47], a regression model and ANN are combined to model the relationship between wind

turbine bearing variations and health status. The regression model provides the bearing degrada-

tion information through the root mean square of vibration signals. The results from the regression

model are used to improve the ANN RUL prediction. The combined model shows better accuracy

than the single ANN model.

Stochastic data-driven models based on probability and statistical theory such as Bayesian net-

works, Markov process, or Levy processes are also used for fault detection and RUL estimation

of wind turbines [43]. The methods consider deterioration behavior as random processes and pro-

vide RUL prediction results as probabilities [48]. Stochastic methods can deal with uncertainties
12



in measurements and parameters, however, they require the observation of health or degradation

indicators. Based on the data, the most fit stochastic model need to be chosen for good predictions

[43]. The authors of [49] use an interval whitenization Gaussian process (IWGP) to estimate RUL

of wind turbine bearings. The effects of the non-stationary operation of wind turbines on health

indicators are reduced using the interval whitenization methods. The RUL prediction model is

established using the processed health indicators and Gaussian process.

A model-based and data-based hybrid approach for WT RUL prediction is proposed in [44].

The method applies a physical-based approach to model the normal and faulty operation behavior

of the system. The obtained models are used for generating related normal and faulty data. A

data-based clustering algorithm is used to separated the simulated data into clusters representing

normal operation and different failure scenarios states. An on-line monitoring system continuously

measures data from the real system to identify and calculate the Euclidean distance between the

current operation cluster and identified clusters from the previous off-line step (fig. 5). When the

degradation process begins, the current cluster of the real system will move toward a faulty cluster.

The distance and the degradation speed to the faulty cluster are used to calculate the related RUL.
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Figure 5: Hybrid RUL prognostic (redrawn from [44])
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Wind turbines are complex systems operating in non-stationary conditions due to varying wind

speeds. Wind turbine components also are affected by various fault mechanisms. These make it

is difficult to estimate accurately the RUL of WT components. Generally, several approaches are

combined to deal with WT prognostics and diagnostics challenges such as non-stationary operating

conditions, the lack of labeled data, or multi states degradation. These combinations often require

complex computation thus limit on-line applications [19, 18]. For integrated PHM control, the

problem becomes more severe due to the requirement of quick reactions against the change in

health status and health degradation behaviors. So the development of accurate and simple enough

diagnostic and prognostic methods is crucial for the applicability of the IPHM strategy.

4. Integrated PHM Control for Wind Turbines

System health diagnostic and prognostic techniques are widely applied to wind turbine op-

eration and control to improve system reliability reducing O&M cost. The existing IMPHC ap-

proaches for wind turbines can be briefly classified into two categories: direct damage control

[50, 32, 39, 38] and reliability adaptive/supervisory control [31, 51, 52, 53].

4.1. Direct damage control

Structural load reduction is one of the main objectives of large wind turbine control. Most

of the current load mitigation control methods reduce the load indirectly through the reduction

of certain norms of measured signals such as stress variations [50, 38]. The control performance

is evaluated later through measured outputs using some off-line metrics like root mean square

(RMS), power spectral density (PSD), or damage equivalent load (DEL) [54]. Direct damage

control strategies use on-line PHM modules as virtual sensors providing damage information thus

allow to control the damage directly [39] results in more effective and flexible load mitigation

control schemes.

Model predictive control (MPC) is used in combination with an on-line estimation of the tur-

bine shaft fatigue damage in [50]. Fatigue damage is considered as the weakening of materials

subjecting to cyclic stress so it can represent the system’s health status. In the wind energy con-

trol field, fatigue is often reduced indirectly by variation suppression of wind turbine components.
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Within the IPHMC context, fatigue damage is integrated directly into the control loop as a feed-

back measurement. The on-line fatigue estimation is based on using a Preisach hysteresis operator.

The operator provides similar results as the rain-flow counting (RFC) method, however, the pro-

posed method does not require a large history measurement data so it is more suitable for on-line

applications. The estimated damage information is used to modify the weighting matrix Q adding

extra weights to the cost function of the original MPC algorithm. The accumulated damage is

reduced without deterioration in output power using the extra health information.

In [32], a health-aware MPC algorithm for wind turbines is proposed. A linear approximation

version of the RFC model for on-line application is used to provide the blade fatigue. The damage

linear equation is included in the MPC algorithm state-space model as a new output, an additional

objective corresponding to damage is added to the MPC cost function. Depending on the feedback

health value and the corresponding weight of the damage reduction objective, the health-aware

MPC de-rates the wind turbine producing less power and accumulated damage. A trade-off be-

tween maximizing the extracted power and minimizing the accumulated damage is observed and

needs to be optimized.

Nonlinear model predictive control (NMPC) is used in [38] considering tower fatigue load re-

duction and energy maximization. The fatigue damage is estimated via an artificial neural network

(ANN). The cycle-based fatigue damage obtained from the RFC algorithm is transformed into a

time series by calculating the damage for each segment of time. Parameters of the ANN is trained

using the obtained damage time series. Eventually, the estimated fatigue damage using ANN is

included directly in the cost function of the NMPC controller. The proposed strategy considers the

fatigue in closed-loop control thus can directly minimize the fatigue damage.

A virtual fatigue sensor for on-line damage estimation is presented in [39]. Fatigue sensing is

based on the application of the RFC algorithm to a floating window defined in the time domain

instead of the whole stress time series. The use of time windows reduces the computational burden

of the classic RFC and provide the damage as a function of time. For control integration, the

damage function is approximated in the least-squares sense using a recursive ARX model. A

sliding mode collective pitch controller with fatigue damage feedback is used in combination with

a standard generator torque controller to mitigate the turbine tower damage. The approach is able
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to reduce the tower damage equivalent load (DEL) with the exchange of power output reduction.

4.2. Reliability supervisory control

Reliability adaptive/supervisory control schemes focus on improvement/control of WT relia-

bility using current and future health status provided by PHM modules. Generally, the approaches

have a cascade structure with a primary control loop realizing structural load and power regulation

objectives (fig. 2). An adaptive/supervisory control loop reconfigures or modifies the set-point of

the primary control loop according to the feed-back health status information for reliability con-

trol. Fault-tolerant control is one case of reliability supervisory control for faulty systems. The

primary controller is reconfigured depends on faults detected by health diagnostic algorithms (fig.

6). The goal of FTC is to ensure the system’s reliability avoiding serious failures that may stop the

system.
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Figure 6: Fault-tolerant control

Reliability supervisory control approaches also can apply for non-faulty systems. In this case,

the control system reconfiguration is realized before the faults appear. The approaches depend on

the observation of health indicators representing system health status and RUL prognostic infor-

mation.

In [31], a structural health management system is integrated with contingency control to deal

with the trade-off between power production and the potential blade damage. The goal is to op-

erate the turbine at a reasonable reduced capacity avoiding extreme damage caused by the blade
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SoH deterioration and highly turbulent operating conditions. The heath indicator used is the blade

stiffness obtained from recorded blade tip deflections through proper models. Base on the pro-

vided health information, the contingency controller may de-rate the turbine with a proper value

to prevent exceeding some damage threshold resulting in unscheduled downtime. The informa-

tion about operating conditions defined by measured wind characteristics is also considered in the

paper. In the case of highly turbulent wind, the turbine power set-point is smoothly reduced by the

contingency controller to ensure system safety and reliability.

A method to control the remaining lifetime of the WT component is proposed in [51]. Here the

term ’remaining lifetime’ denotes the average time until the component fails in the current operat-

ing conditions. The remaining lifetime is adjusted so that the WT components can survive to the

next maintenance schedule avoiding unwanted repairs. A PHM module is required to determine

the health status and estimate the remaining lifetime. The health status indicates the likelihood of

failure of the component and is classified by levels using several thresholds. Depending on the

health status level and remaining lifetime, the suitable control scheme regarding different power

degradation level is selected to maximize the profit. In the contribution, the health status is ob-

tained from simple measured temperature, vibrations, and stress data, no signal analysis method

is given. The remaining lifetime is determined through a function of time that WT spends on each

power level, the parameters of RUL function are obtained from the experiment data via regression

methods. The authors suggested that the control scheme can be selected automatically or manu-

ally based on additional operational requirements. However, there is no guideline for establishing

control schemes.

In [52, 53], the optimal trade-off between generation power and lifetime extension is consid-

ered. The structural load reduction or lifetime extension level is determined by the observed fatigue

damage accumulation. An on-line RFC algorithm is adopted to provide the fatigue damage as the

system health indicator. The on-line RFC algorithm considers the extreme values of the measured

time series as they occur instead of processes the whole spectrum reducing the computational

time and providing instantaneous damage value. Depending on the health status of the turbine

components defined by the accumulated fatigue damage, the optimal distribution between power

production and structural load mitigation is made. Different MIMO controllers are precomputed
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with respect to different load mitigation levels defined by different weights. Higher structural load

mitigation capacity leads accordingly to lower power production. The controllers are designed by

the LQG technique, different levels of load mitigation are realized by tuning the corresponding

elements of the LQG weighting matrices. The decision of sacrificing harvested power to improve

lifetime is made with support from the structural health monitoring systems. The ultimate goals

are to improve system reliability and minimize the overall cost.

The switching between different controllers is triggered by damage accumulation thresholds in

[52]. The aging of the turbine is considered by the damage diagnostic and prognostic model. At

first, the power production is maximized without considering load reduction. When the accumu-

lated damage reaches a certain predefined threshold due to system aging and/or failures, the load

mitigation controller is activated. The load mitigation level is continuously adjusted depending on

the damage level to guarantee the pre-defined turbine service lifetime.

In [53], an additional case of controller selection based on the damage increments or the rate of

change in accumulated damage at particular moment information is provided. In this case, when

the damage accumulation rate is high due to either strong variation wind or system failures, the

load mitigation needs to be high to accommodate the related effects. Otherwise, the controller

can ignore load mitigation to maximize power production in the normal working condition. The

Remaining Useful Life (RUL) is controlled by switching between different load mitigation levels

indirectly regulating the damage accumulation rate. Lifetime control is realized as a secondary

control loop affecting the primary load reduction level.

In figure 7 the IPHMC concept is summarized. The direct damage/health control approaches

consider the accumulated damage or health status of the system as controllable states. The ap-

proaches require the real-time and precise calculation of health indicator features which typically

can not be measured directly. The dynamics of health degradation or damage accumulation pro-

cess also need to be suitably modeled for designing controllers. Most of the existing literature in

the wind energy field uses fatigue damage as a health indicator. Fatigue damage and fatigue dam-

age dynamics are typically estimated by approximated models of RFC schemes. However, wind

energy systems are complex and contain multiple failure modes driven by different mechanisms

thus the obtained models might not cover all of the heath degradation characteristics. Data-driven
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PHM approaches can represent multiple failure modes and degradation stages. However, the ac-

tual lack of wind turbine run-to-failure data makes it is difficult to train and validate the models.

The complexity and computation time of data-driven approaches are also important aspects that

need to be considered for real-time control applications.

IPHMC

Direct damage/health
control

Reliability supervisory
control

Fault-tolerant
control

Fault-evasion
control

Lifetime
control

Figure 7: IPHMC classification

The real-time requirements of PHM approaches are relaxed in the reliability supervisory con-

trol scheme. Due to the much slower dynamics of reliability characteristics compared to that of

wind turbines, the time interval of the supervisory control loop is typically chosen higher than that

of the primary control loop. Considerations on the relation between control system configurations

and reliability characteristics are required in this situation. Faults can be avoided by reconfiguring

the primary controller based on the current and future health status information provided by PHM

modules.

Lifetime control is possible using the reliability supervisory control scheme as mentioned in

[51]. The remaining useful life of each component can be regulated to reach the next maintain

schedules avoiding unscheduled repairs. However, no method is provided yet in [51]. In [52, 53]

the RUL is controlled indirectly using damage accumulation thresholds. The required lifetime

might not be guaranteed due to the lack of RUL feedback.
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5. Conclusions

In this contribution, recently developed integrated PHM control strategies for wind turbines

are reviewed. The general concept of IPHMC applied for wind energy systems is provided. An

overview of wind turbine PHM approaches is given with a special focus on fatigue damage cal-

culation and RUL estimation. The requirements for control integration of the approaches also are

discussed with the solutions using approximation techniques. Integrated PHM control approaches

for wind turbines are revised and categorized. The approaches have the potential to improve and

control system reliability avoiding faults thus reduce the wind turbine O&M cost. Lifetime control

is possible using the approaches by RUL feed-back.

The main challenge of IPHMC approaches is the requirement of reliable and simple enough

on-line PHM methods. The methods need to handle various loading operating conditions and

multiple failure modes driven by different mechanisms.

The relations between control system configurations and health degradation dynamics are

needed for establishing the supervisory control loop. Due to various loading conditions and mul-

tiple degradation states, situation-based multiple models may be needed to fully represent the

relations.
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