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Abstract

In this contribution, the dynamical behavior of a polymer electrolyte mem-

brane (PEM) fuel cell system is modeled; related control approaches are

developed. The system model used for experimental and modeling purposes

describes a 1.2 kW PEM fuel cell stack and an air blower. Due to the dy-

namical fuel cell - blower interaction the fuel cell stack and the blower model

are validated to real systems respectively. Additionally, a feedback based on

PI-control is used for hydrogen pressure control with an anode inlet valve.

This controller is able to eliminate a stationary error between the anode and

cathode pressures. For principal investigations three control approaches, a

classical static feed-forward control approach, a state-space feedback control,

and a novel gain-scheduling approach are developed, applied, and compared.

As result, it can be shown that the feed-forward approach lacks in perfor-

mance recovering the excess oxygen ratio to the desired level. The state-space

feedback control shows stationary error. The introduced gain-scheduling con-
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trol approach leads to a fast excess oxygen ratio recovery without stationary

deviations.

Key words: Polymer electrolyte membrane fuel cell, Dynamic modeling,

Air supply system, Airflow management, Control, State feedback,

Gain-scheduling
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Constants

Symbol Parameter Unit Value

bcm Blower motor constant [Nms/rad] 2.3e-4

dc Blower diameter [m] 0.0508

kstAst Product between thermal

conductivity and conducting

surface area of stack [J/K] 6.0

kcm Blower motor constant [Nm/A] 0.089

kv Blower motor constant [Vs/rad] 0.0752

mstCp,st Product between mass and

specific heat capacity of stack [J/K] 2e4

mveh Vehicle total mass [kg] 201.3

nfc Number of fuel cells [-] 45

pamb Ambient pressure [Pa] 101325

pcp Blower pressure [Pa] 101325

tm Membrane thickness [cm] 3e-3

Afc Fuel cell active area [cm2] 50

Aveh Vehicle front area [m2] 0.83

Cd Vehicle drag coefficient [-] 0.37

γ Ratio of specific heats of air [-] 1.4
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1. Introduction

Control of fuel cells is a demanding task due to the nonlinearity of the

components as well as the overall system behavior. A proper control increases

the fuel cell system efficiency and decreases the risk of oxygen starvation [1].

In [2] a comparison of control concepts is given. The approaches of static

and dynamic feed-forward and full state feedback are based on linearized

models of the fuel cell system. It can be concluded from these works that

full state-feedback control shows better results than static and dynamic feed-

forward with respect to oxygen starvation. However, nonlinear approaches

are not tested yet. In [3], a related dynamic feed-forward control approach

is introduced showing better results than static feed-forward approach used

for comparison. Also here, the controller is developed based on a linearized

model at a single nominal working point. Some papers introduce nonlinear

approaches such as exact feedback linearization [4] and flatness-based con-

trol [5]. In principle, the feedback linearization method is developed on a

simplified fuel cell model and shows lack of robustness towards modeling er-

rors due to the simplification resulting from the control-oriented modeling.

Applying feedback linearization on a detailed fuel cell model increases the

complexity significantly. Flatness-based control [6] shows better results than

feed-forward oriented ones. Due to their complexity these approaches are not

applied on analytical fuel cell models. Gain-scheduled state feedback should

decrease the complexity of dealing with nonlinearities due to the lineariza-

tion of the model in several working points. This may allow to combine the

simplicity of developing a controller based on a linear system together with

advantages of increased performance known from nonlinear controllers. A
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review of gain-scheduling approaches is given in [7], but has not yet been

implemented on fuel cells.

This paper is organized as follows: in Section 2 the modeling of the

fuel cell system including voltage and blower model will be explained. In

Section 3, the control approaches will be implemented to the system model

and compared to each other. The related simulation results are presented in

Section 4. Finally, summary and outlook will be given in Section 5.

2. Fuel cell system: Modeling and experimental validation

In this section, the component models of the stack and air supply system

will be introduced and validated to real system components. The fuel cell

system with its corresponding fuel cell stack is depicted in Fig. 1. The fuel cell

stack is manufactured and assembled at the Center for Fuel Cell Technology

(ZBT GmbH) in Duisburg [8]. It consists of 45 cells and shows a rated voltage

of 22 V at an output maximum power of 1.2 kW. Its working temperature

is approximately 70 C and due to its water-cooling concept it has a higher

power density than air-cooled fuel cell stacks. The control concepts developed

here are implemented on this system. The development is based on the

corresponding models.

2.1. PEM fuel cell stack model

The fuel cell stack is the core component of the considered fuel cell system.

The electrochemical reaction

2H2 + O2 ⇋ 2H2O (1)
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Figure 1: Left: Fuel cell system including peripheral components.

Right: Fuel cell stack. 1. Fuel cell stack, 2. Cooling water pump,

3. Single cell voltage measurement, 4. Humidifier, 5. Hydrogen re-

cycling pump, 6. Cooler

occurs inside the stack, where the reactants (hydrogen and oxygen) are fed

to the anode and cathode side of the fuel cell stack respectively. The input

to the stack model is the stack current ist and the output is the stack voltage

vst. A fuel cell stack model usually consists of four submodels: the stack

voltage model, the anode mass flow model, the cathode mass flow model,

and the membrane hydration model. More details are given in [2]. Here, the

equations of the stack voltage are briefly repeated. The stack voltage is given

by

vst = nfcvfc, (2)

where nfc denotes the number of cells and vfc represents the single cell volt-

age, which is calculated as

vfc = Eo,fc − vloss, (3)
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where Eo,fc denotes the open circuit voltage and vloss the total voltage losses,

i.e. activation, ohmic, and concentration losses. The voltage Eo,fc can be

calculated according to the Nernst equation by

Eo,fc = 1.229 − 8.5 × 10−4(Tfc − 298.15) +

+ 4.308 × 10−5Tfc

(

ln
( pH2

101325

)

+
1

2
ln
( pO2

101325

)

)

,
(4)

where Tfc denotes the cell temperature, pH2
the hydrogen partial pressure

in the anode, and pO2
the oxygen partial pressure in the cathode [9]. The

voltage losses vloss are described by

vloss = vact + vohm + vconc, (5)

where vact is the voltage drop caused by activation losses, vohm denotes the

ohmic losses, and vconc the concentration losses. The activation losses vact

are calculated as

vact = v0 + va

(

1 − e−cii
)

, (6)

where the constants v0, va, and ci are taken from [2]. Here i denotes the

current density defined by

i =
ist
Afc

, (7)

where Afc represents the cell active area. The ohmic losses vohm are calcu-

lated as

vohm = iRohm, (8)

where Rohm denotes the internal electrical resistance and is related to the

membrane conductivity σm by

Rohm =
tm
σm

, (9)
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where tm denotes the membrane thickness. The membrane conductivity σm

can be calculated as

σm = b1 exp

(

b2

(

1

303
− 1

Tfc

))

, (10)

where b1 is related to the membrane water content λm and can be expressed

with

b1 = b11λm − b12. (11)

The constants b11, b12, and b2 for Nafion 117 membrane can be taken from [10].

The voltage drop due to the concentration losses is calculated as

vconc = i

(

c2

i

imax

)c3

, (12)

where c3 is a constant and imax denotes the maximum current density. In [2],

c2 switches between two functions depending on the oxygen partial pressure

and the water saturation pressure. However, while a low-pressure fuel cell

system is considered, the variable c2 is described as

c2 = (7.16 × 10−4Tfc − 0.622)
( pO2

0.1173
+ psat

)

−

− 1.45 × 10−3Tfc + 1.68.

(13)

2.1.1. Experimental validation of the stack model

For validation of the electrical part, the fuel cell stack behavior is consid-

ered for a time range of 10 000 s. The mass flow rate of the air and hydrogen

entering the stack, the corresponding pressures pca,in and pan,in, as well as the

stack temperature Tfc are measured. The stack voltage of the real fuel cell

stack vst is the measured variable for the model validation to be compared

to. The measured and simulated voltage for an arbitrary current load are

depicted ink Fig. 2. During the warm-up of the fuel cell (0-1300 s) the stack

voltage of the real fuel cell stack is not considered.

8



0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

35

40

45

Time [s]

S
ta

ck
 v

ol
ta

ge
 [V

]

 

 
Measured
Simulated

Figure 2: Validation of the electrical behavior by comparison of simulated

and measured time behavior of a current input profile

2.2. Manifold model

The manifold model represents the connections (e. g. pipes etc.) between

the fuel cell stack model and the air supply system model. Based on the

relations described in [2] the physical properties of the air mass flow are

calculated using the conservation principle

dm

dt
= Win − Wout, (14)

with Win and Wout denoting the flow rate at the input and the output of
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the manifold and the ideal gas law stated by

dp

dt
=

γRa

V
(WinTin − WoutTout). (15)

Hereby Ra denotes the gas constant of air, V the manifold volume, γ the

ratio of specific heats of air and the temperature measurements at manifold

input and output denoted as Tin and Tout. It should be noted that the model

equations

2.3. Air supply system model

The modeling of the air supply system with the blower motor voltage vcm

as input and the outlet air flow Wcp,out as output is introduced. The model

of the blower is based on experimental results received from a real blower

from a Nexar power module fuel cell stack system from Ballard [11]. The

blower model consists of two submodels as depicted in Fig. 3, the model of

the blower motor and the blower map, which are developed in the sequel.

For notation, the outlet pressure pcp,out corresponds to the fuel cell supply

manifold pressure. The air supply system consists of a blower with a supply

manifold that provides a mass flow of pressurized air to the fuel cell stack

and of an electro-motor that drives the blower. Typical blower motors used

in fuel cell applications are three-phase brushless DC-motors due to their

high dynamics and high efficiency. The dynamical behavior of such motors

is very similar to brushed DC-motors.

2.3.1. Blower motor

In [2] the motor driving the blower is simplified to its static behavior

which is typical of large fuel cell systems (over 50 kW) with related large time
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Figure 3: Block diagram of the blower model with corresponding inputs and

outputs

constants. For smaller fuel cell systems (like the 1.2 kW system used here) the

time constants are smaller, the bandwidth is higher, so the controller should

provide the related behavior to realize the required dynamical behavior. By

defining the dynamical behavior of the motor, the accuracy of the model

increases and a suitable controller can be developed. The dynamical behavior

of the blower speed is modeled by

Jcp

dωcp

dt
= τcm − τf − τcp, (16)

where Jcp denotes the combined rotary inertia of the blower and the motor,

τcm denotes the blower motor torque, τcp the external load on the motor, and

τf denotes the torque loss in the motor due to damping and friction. The

blower motor torque τcm can be calculated using the armature current icm
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and a constant factor kcm by

τcm = kcmicm. (17)

The torque loss τf is assumed proportional to the blower speed by a constant

factor bcm with

τf = bcmωcp. (18)

The external load τcp is calculated in the blower map block. The dynami-

cal behavior of the motor armature current is represented using Kirchhoff’s

voltage law by

Lcm

dicm
dt

= vcm − vR,cm − vemf , (19)

where Lcm denotes the motor inductance, vcm the input voltage to the blower

motor, vR,cm the voltage drop over the internal electric resistance Rcm, and

vemf the induced voltage from the back electromotive force. The voltage drop

over the resistance vR,cm is related to the armature current by

vR,cm = Rcmicm. (20)

2.3.2. Blower map

In the blower map as depicted in Fig. 3, the air mass flow from the blower

Wcp,out, the temperature of the air leaving the blower Tcp,out, and the blower

torque τcp are determined using static equations. The inputs to the blower

map are the inlet pcp,in and outlet pcp,out air pressures, the blower speed ωcp,

as well as the air temperature entering the blower Tcp,in. The outlet manifold

pressure pcp,out can either be calculated from the fuel cell model or inserted

from measurements as it has been realized within this contribution. A typical

approach determining the blower map is realized by including measurements

12



in look-up tables. However, the standard linear interpolation routines used in

look-up tables are neither necessarily continuous nor differentiable so some-

times discontinuities may appear able to slow down simulations [12]. For this

reason look-up tables are not well suited for usual control-oriented dynamic

models. Instead, the measurement data of the blower performance can be

represented by continuous functions, determined using nonlinear curve fitting

methods. Such approaches used for modeling and their benefits are further

mentioned in detail in [13]. As described in [12], the mass flow rate from the

blower Wcp,out is related to the corrected mass flow Wcr by

Wcp,out = Wcr

pcr√
Tcr

, (21)

where the corrected temperature is defined as Tcr = Tcp,in/288 and the cor-

rected pressure as pcr = pcp,in. Corrected variables are applied in this model,

because varying ambient conditions can be considered in the blower model1.

The corrected mass flow Wcr is calculated as

Wcr = Φρa

π

4
d2

cUc, (22)

where Φ denotes the normalized blower flow rate, ρa the air density, dc the

blower diameter, and Uc denotes the blower blade tip speed defined by

Uc =
π

60
dcNcr. (23)

The corrected blower speed Ncr is related to the blower speed by

Ncr =
60ωcp

2π
√

Tcr

. (24)

1The corrected variables correspond to the values which would be measured at ambient

conditions on a standard day at sea level, i.e. a temperature of 15◦C and a pressure of 101

325 Pa

13



The normalized blower flow rate Φ can be expressed as a function of the head

parameter Ψ by

Φ =
k3Ψ − k1

k2 + Ψ
, (25)

where ki are factors which depend on the Mach number Ma of the inlet air

and can be calculated as

ki = ai + biMa, i = 1, 2, 3, (26)

where the Mach number Ma is defined by

Ma =
Uc

√

γaRaTcp,in

. (27)

The dimensionless head parameter Ψ is calculated using the method of

Jensen & Kristensen as described in [13] with the relation

Ψ =

Cp,aTcp,in

(

(

pcp,out

pcp,in

)
γa−1

γa − 1

)

1

2
U2

c

, (28)

where Cp,a denotes the specific heat capacity and γa for the heat capacity

ratio of air [14]. Another important blower performance parameter is the

blower efficiency ηcp, which depends on the normalized mass flow rate Φ and

the Mach number Ma and is expressed as

ηcp = c1Φ
2 + c2Φ + c3, with (29)

ci =
di + eiMa

fi − Ma
, i = 1, 2, 3. (30)

The constants ai, bi, di, ei, and fi for i = 1, 2, 3 are parameters determined

through curve fitting on the measurement data. The temperature of the air

leaving the blower is given by

Tcp,out = Tcp,in + ∆Tcp, (31)
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where ∆Tcp is the temperature change across the blower, which is calculated

as

∆Tcp =
∆hs,cp

Cp,aηcp

, (32)

where ∆hs,cp denotes the isentropic enthalpy change across the blower and is

calculated as

∆hs,cp =
γa

γa − 1
RaTcp,in

(

(

pcp,out

pcp,in

)
γa−1

γa

− 1

)

. (33)

According to Eqs. (31-33), it follows that the temperature Tcp,out results to

Tcp,out = Tcp,in +
γa

γa − 1

Ra

Cp,a

Tcp,in

ηcp

(

(

pcp,out

pcp,in

)
γa−1

γa

− 1

)

. (34)

The relation between the heat capacity ratio γa and the gas constant of air

is given by
Ra

Cp,a

=
γa − 1

γa

. (35)

Using this relation in (34) gives finally

Tcp,out = Tcp,in +
Tcp,in

ηcp

(

(

pcp,out

pcp,in

)
γa−1

γa

− 1

)

. (36)

The third output of the blower map, which is an input to the blower motor,

is the blower torque τcp, which is calculated as

τcp =
Pcp

ωcp

, (37)

where the compressor power Pcp is defined by

Pcp = Cp,aWcp,out (Tcp,out − Tcp,in) . (38)

Inserting Eq. (38) in (36) and rearranging gives

Pcp =
Cp,aWcp,outTcp,in

ηcp

(

(

pcp,out

pcp,in

)
γa−1

γa

− 1

)

. (39)
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Finally, it follows from Eq. (37) and (39) that

τcp =
Cp,aWcp,outTcp,in

ωcpηcp

(

(

pcp,out

pcp,in

)
γa−1

γa

− 1

)

. (40)

2.3.3. Experimental validation of the air supply model

For validating the air blower model, a test rig was set up as depicted in

Fig. 4. The blower is driven by a brushless DC-motor. The blower speed

ωcp, the blower torque τcp, the motor current icm, the blower air mass flow

Wcp,out, the outlet temperature Tcp,out, and the exit air pressure pcp,out are

measured with the corresponding sensors shown in Fig. 4. Experiments are

realized using a DSP system, where the input voltage to the blower motor

vcm is given and measured variables are observed and controlled. In order

to vary the outlet pressure pcp,out, a manually adjustable pressure regulating

valve is used.

The applied blower from Ballard [11] belongs to the category of roots

blowers and consists of two oval shaped lobe rotors inside the housing. One

rotor is the driving rotor driven by the motor, while the other rotor is driven

by a pair of gears with the same gear ratio. For this reason, both rotors

rotate with the same speed [15]. First, the air enters the inlet side of the

housing and between both rotors. As the rotors rotate towards the outlet

side, the air is pushed against the housing of the blower. On the outlet side,

the air is compressed up to the system pressure and forced out. During each

rotation, four volumes are displaced. During the total working process, the

air is only moved from the inlet side to the outlet side of the blower and

no volume change of the air within the housing appears. One advantage of

these kind of air blowers is that large amounts of air can be displaced in the
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Figure 4: Test rig used for validation of the blower model at the Chair of

Dynamics and Control, University of Duisburg-Essen.

1. Interface, 2. Brushless DC-motor, 3. Rotary speed sensor,

4. Torque sensor, 5. Current sensor, 6. Blower, 7. DSP system,

8. Air mass flow and temperature sensor, 9. Pressure sensor,

10. Pressure regulating valve

lower speed regions. However, a disadvantage of these kind of root blowers is

that the thermal efficiency ηcp is low compared to e.g. centrifugal and screw

blowers [15].

For validation, experiments are carried out in two steps: Firstly, the
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blower is physically disconnected and the motor parameters are identified

and separately validated. Secondly, the blower is connected and the blower

parameters are identified based on measured data. During the experiment,

the input voltage vcm was incrementally increased from 2.4 V to 16.8 V with

2.4 V steps. The blower speed ωcp increases respectively from 300 to 2100 rpm

with an increment of 300 rpm. The outlet pressure pcp,out is manually adjusted

with an increment of 10 mbar at each speed region.

The task of this step is to determine the constants of the static blower

map ai, bi, di, ei, and fi for i = 1, 2, 3. According to the Eq. (25-30), the

constants ai and bi describe the relation between the dimensionless parameter

Ψ , the normalized mass flow rate Φ, and the Mach number Ma of the air

entering the blower, while the constants di, ei, and fi denote the relation

between the blower efficiency ηcp, the normalized mass flow rate Φ, and the

Mach number. First, the parameters ai, bi, di, ei, and fi, the dimensionless

variable Ψ , the normalized mass flow rate Φ, the Mach number, and the

blower efficiency ηcp are determined. The dimensionless head parameter Ψ

can be calculated with Eq. (28) and the Mach number Ma of the air entering

the blower by Eq. (27). The reference values of the normalized mass flow rate

Φ and the blower efficiency ηcp can be calculated with Eq. (22) and (40) to

Φref =
4Wcr

ρaπd2
cUc

(41)

and

ηcp,ref =
Cp,aWcp,outTin,cp

ωcpτcp

(

(

pcp,out

pin,cp

)
γa−1

γa

− 1

)

, (42)

where the mass flow rate across the blower Wcp,out, the bower speed ωcp, the

torque to drive the blower τcp, and the pressure of the air leaving the blower
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pcp,out are measured and the blower diameter dc is known. In Eq. (41), the

blower blade-tip speed Uc can be calculated with Eq. (23) and (24). The other

parameters in Eq. (41) and (42) are assumed as constant. After determining

the reference values of the normalized mass flow rate Φref and the blower

efficiency ηcp, the identification of the other parameters can be conducted.

In order to identify the parameters ki=1,2,3 in Eq. (25), a least square curve

fitting approach is applied. The model error ei is defined by

ei = yref (xi) − y(xi), i = 1, 2, . . . , n, (43)

where yref (xi) is the reference value from measurements at xi and y(xi) the

simulation result. The simulation results in this case are calculated with the

simulated normalized blower flow rate from Eq. (25) with the input vector

Ψ and the vector ki of the model. The goal of the iteration algorithm is

to minimize Je, as the sum of the squared errors between reference and

measurement, defined by

Je =
n
∑

i=1

e2

i , (44)

where n is the number of measurements. The goal of the identification process

is to determine the optimal combination vector of the tuning parameters

ki,opt, so that Je is minimized. During this process, the elements of the

unknown parameter vector ki have to be changed, until Je reaches a minimum

(or limit) as a break condition. Using the routine fminsearch in Matlabr an

optimization process can be conducted. The approximation results of the

factors are shown in Fig. 5 (a)-(c). The values of Φ as a function of Ψ and

ωcp calculated with the blower map model are graphically depicted in Fig. 6

(a). The blower efficiency ηcp is depicted in Fig. 6 (b).
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Figure 5: Estimation of the parameters k1, k2, k3, Φ, and Ψ

Finally, using the blower model and related identified parameters, an

experiment is conducted to validate the model. The input blower voltage vcm

is changed with a series of voltage steps applied as input. The comparison

between measured and simulated data is shown in Fig. 7. It is obvious that

the dynamics of the blower speed (top figure), air flow (middle figure), and

motor current (bottom figure) are well represented with the developed air

supply system model.
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Figure 6: Left: Estimation of the parameters Φ and Ψ as a function of rota-

tion speed. Right: Efficiency map of the blower

2.3.4. Linearization of the fuel cell model

For analytical examination, analysis of a fuel cell system, and for design of

a suitable controller, it is helpful to linearize the nonlinear dynamical behav-

ior of the fuel cell dynamics. In general, linearization of a nonlinear system

makes it possible to apply conventional and powerful analyzing techniques

such as stability, observability, and controllability examinations. A general

explicit nonlinear system model can be presented as

ẋ(t) = f(x(t), u(t)), x(0) = x0 (45)

y(t) = g(x(t), u(t)). (46)

If the system model described with Eq. (45) and (46) is linearized at the

operating point (xop, uop, yop), the linearized system model (as state space

model) can be written as

δẋ(t) =
∂f(x(t), u(t))

∂x
|opδx(t) +

∂f(x(t), u(t))

∂u
|opδu(t), (47)
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Figure 7: Validation of the dynamical behavior of the blower by comparison

of the rotation speed, air flow, and motor current, using experi-

mental results.

δy(t) =
∂g(x(t), u(t))

∂x
|opδx(t) +

∂g(x(t), u(t))

∂u
|opδu(t), (48)

where the new linear state vector δx, the linear input vector δu, and the

linear output vector δy are defined as

δx(t) = x(t) − xop, (49)

δu(t) = u(t) − uop, and (50)

δy(t) = y(t) − yop. (51)

22



The linearized system model is written in state-space form as

δẋ(t) = Aδx(t) + Bδu(t), δx0 = δx(0) (52)

δy(t) = Cδx(t) + Dδu(t), (53)

where A denotes the system matrix, B the input matrix, C the output matrix,

and D the direct feed-through matrix. The current input ist of the fuel cell

system ranges between 0 and 60 A, so the linearization point is chosen at

30 A. The voltage input to the blower motor is set accordingly, the stationary

values of the states that follow are defined as initial conditions. The system

variables result to

x =
[mO2

mH2
mN2

mw,ca mw,an

ωcp psm msm prm icm]T ,

u = vcm

w = ist

y =
[

vst Wcp,out psm

]T

, (54)

z =
[

ηnet λO2

]T

, (55)

with x describing the state vector, u the input vector, w the disturbance

vector, y the output vector, and z, as introduced, as a complementary output

vector. The system is described by 10 state variables, 1 input variable,

1 disturbance variable, and 5 output variables including the performance

variables ηnet and λO2
.

3. Control of the fuel cell system

This section deals with the control of the fuel cell system. Hereby for

principal investigations with respect to the comparison of the approaches
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three different control approaches, i.e. static feed-forward, state-feedback,

and newly developed gain-scheduling control are detailed. The advantage of

the approaches chosen is the comparibly good applicability and simple im-

plementation to real systems. All approaches are applied to a nonlinear fuel

cell system model here for the first time. The results will allow the evalua-

tion of the approaches. All control approaches mentioned use an underlying

controller which is related to the hydrogen input mass flow ṁH2
to minimize

the pressure difference between anode and cathode.

For the implementation of the controllers to be compared it is assumed that

the linearized system behavior is fully observable as well as fully controllable.

Using Hautus or Gilbert criteria this can be done based on the developed lin-

earized models. Due to the numerical structure of the models Kalman criteria

checking the rank condition cannot be recommended.

The dynamical behavior of the fuel cell system is described by using a

multiple-input-multiple-output (MIMO) state space representation as men-

tioned before. The inputs to the fuel cell system are

• the stack current ist,

• the blower input voltage vcm, and

• the hydrogen input mass flow ṁH2
.

The outputs are

• the stack voltage vst and

• the oxygen excess ratio λO2
.
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As introduced in Section 2, the stack current appears here as disturbance.

The blower motor input voltage vcm is the input variable able to affect the

fuel cells’ dynamical behavior. The blower speed determines the oxygen input

flow, so the oxygen excess ratio λO2
can directly be affected. Consequently,

oxygen starvation can be avoided. Oxygen starvation occurs when the partial

pressure of oxygen falls below a critical level at any possible location within

the meander of the air stream in the cathode. This can occur during a sudden

current step output. A severe oxygen starvation can cause a short cut and

a hot spot on the surface of the membrane and cause irreversible damages

to the membrane [16], so one of the control objectives is to avoid oxygen

starvation and to keep the output oxygen excess ratio at an optimal level or

to realize only dynamically smooth behaviors.

3.1. Efficiency constraints

The net efficiency of the fuel cell system can be calculated as

ηnet =
Pnet

WH2,reacted∆Hh,H2

100%, (56)

where Pnet denotes the net power of the fuel cell system, WH2,reacted the mass

flow rate of the reacted hydrogen, and ∆Hh,H2
the higher heating value for

hydrogen [9, 17]. The net power of the fuel cell system Pnet is defined as

Pnet = Pst − Pcm, (57)

where Pst denotes the gross power of the fuel cell stack and Pcm the blower

motor power provided from the fuel cell and accounts for some of the parasitic

25



losses. The variables are calculated as

Pst = vstist and (58)

Pcm = vcmicm, (59)

where the fuel cell stack voltage vst is calculated with Eq. (2), ist and vcm

denote the current stack and the blower input voltage, which represent the

system inputs of the fuel cell system model. The variable icm denotes the

blower motor current. The excess oxygen ratio λO2
used as indicator of the

net efficiency and the oxygen starvation is defined by

λO2
=

WO2,in

WO2,reacted

, (60)

with WO2,in denoting the mass flow rate of oxygen gas entering the cathode

and WO2,reacted representing the rate of reacted oxygen. For different fuel cell

current loads, the relationship between the excess oxygen ratio λO2
and the

fuel cell net efficiency ηnet is depicted in Fig. 8. The optimal value for all

currents is chosen as λO2,opt approximately 2, as marked in Fig. 8, which is

assumed as an averaged maximum.

The mass flow rate of reacted oxygen WO2,reacted is defined by

WO2,reacted =
MO2

nfcist
4F

, (61)

with the molar mass of the oxygen MO2
, the number of cells nfc, and the

Faraday number F . From Eq. (61), it becomes obvious that for a certain

fuel cell system the mass flow rate of reacted oxygen only depends on the

fuel cell current. Therefore the variable WO2,reacted can not be influenced by

controlling the fuel cell system. If the mass flow rate of oxygen gas entering
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Figure 8: An optimal efficiency is achieved through different lambda values

which can be controlled with the air-blower, which is depicted for

different current steps.

the cathode WO2,in during the increasing current draw is constant, the excess

oxygen ratio λO2
decreases accordingly. As a consequence, the net efficiency

of fuel cell ηNet decreases and oxygen starvation is imminent. In order to

keep the excess oxygen ratio λO2
at an optimal value, the mass air flow rate

has to be controlled. Inserting Eq. (57), (60), and (61) in (56) the efficiency

ηnet is given as

ηnet =
vst4FWO2,in − λO2

vcmicmMO2
nfc

WH2,reacted∆Hh,H2
MO2

nfcλO2

, (62)
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which is plotted in Fig. 8 as a function of λO2
for different stack load currents

ist.

3.2. Hydrogen valve control

The hydrogen of the considered system supplied from a high-pressure

tank comes with a flow rate controlled by a valve. This gives a relatively

rapid adjustment of the flow rate and anode pressure. This valve control

is applied independently from the controller systems described in section

3. The control variable is the anode pressure and as reference value the

cathode pressure is used. This means, the control goal is to minimize the

pressure difference between anode and cathode, therefore a PI-controller is

used. Since the output control value is the anode pressure pan and the input

variable is the anode inlet flow Wan,in, the equation (without interfering from

any disturbances) is given by

pH2
=

RH2
Tfc

Van

mH2
, (63)

here mH2 is calculated as the integral of the difference between injected and

consumed hydrogen flows by

mH2
=

∫ t

0

(WH2,in − WH2,reacted)dt. (64)

The variable WH2,reacted is directly considered as a disturbance through the

output current according to

WH2,reacted = MH2

nist
2F

. (65)

Calculating the transfer function (as shown in Fig. 9) from the consumed

hydrogen WH2,reacted gives

GpH2
,WH2,reacted

= − RH2
Tfc

s(Van + VanK)
, (66)
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Figure 9: Flow diagram of the hydrogen valve control loop

whereby the transfer function using a PI-controller with K as proportional

gain and TI as design parameter yields

PH2
(s) =

KRH2
Tfc(s + TI)

V s2 + KRTs + KRTTI

R(s)−

− sRT

V s2 + KRTs + KRTTI

WH2,reacted(s).

(67)

Examining the final values for t → ∞ using the final-value-theorem, the final

value of a given reference step gives

lim
s→0

−s
1

s

KRH2
Tfc(s + TI)

V s2 + KRTs + KRTTI

= 1. (68)

For a disturbance step function the final value results to

lim
s→0

−s
1

s

sRH2
Tfc

V s2 + KRTs + KRTTI

= 0, (69)

which includes that any disturbances are rejected, using only a P-controller

as suggested in [2]. The related transfer function results to

PH2
(s) =

KRH2
Tfc

V s + KRT
R(s) − RT

V s + KRT
WH2,reacted(s). (70)
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Applying the final-value-theorem to examine the stationary values for an

input step function for the reference signal gives

lim
s→0

s
1

s

KRH2
Tfc

Vans + KRH2
Tfc

= 1, (71)

and for the disturbance

lim
s→0

−s
1

s

RH2
Tfc

Vans + KRH2
Tfc

= − 1

K
. (72)

As expected, the disturbance can not be accommodated using P-control.

Due to the stationary behavior and the integral behavior of the system it

can not be recommended to use a P-control due to this stationary error as

mentioned in [2]. Instead, a PI-control can be used in order to eliminate

the stationary error completely as depicted in Fig. 10. The transfer function

from the reference value to the output results to

Gr,pH2
(s) = RH2

TfcK
s + TI

Vans2 + RH2
TfcKs + RH2

TfcKTI

. (73)

Depending on the parameters oscillations of the resulting PDT2-system may

occur. Using root-locus analysis, the integral coefficient TI determines the

bandwidth of the closed system so the proportional coefficient K canbe de-

fined to avoid any kind of oscillations.

3.3. Three approaches to control oxygen excess ratio

As mentioned, three control approaches of the fuel cell system are imple-

mented and compared to each other. Hereby the trajectory of the oxygen

excess ratio λO2
is applied to evaluate the performance of the parameters.
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Figure 10: Cathode and anode pressures for a P- (top) respectively PI-

controller (bottom) for the hydrogen valve

3.3.1. Control approach I: Static Feed-Forward control

A classical way to control a fuel cell system is using an open-loop feed-

forward control approach [2]. This method only requires the measurement

of the current load of the fuel cell system, the knowledge of the system

behavior (if the control input is previously calculated or optimized). The

control approach is easy to be implemented and therefore should not be

detailed here. The input signal to the system, i.e. the input voltage to the

blower motor vcm, can be represented with a look-up table, for example based
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on the data as given in Fig. 8. As result, the input voltage of the electro-

motor drives the blower at its optimal working point for each current load

ist of the fuel cell system. The implementation of the look-up table in the

feed-forward concept is briefly depicted in Fig. 11.

ist

Look-up table

Fuel cell system

Vfc

Figure 11: Control schedule of the static feed-forward controller

3.3.2. Control approach II: Optimal control

A Linear Quadratic Regulator (LQR) optimal control is applied to design

a state-feedback controller. As introduced in the previous sections, the target

of the control is to minimize the response of the excess oxygen ratio λO2
from

its reference. In the linearized model, this variable is denoted by δz2 using

the relation

z2 =
[

0 1
]

z = λO2
. (74)

The LQR-related cost function J̃ is defined by

J̃ =

∫

∞

0

(

δzT
2
Qzδz2 + δuT Rδu

)

dt, (75)

using the weighting matrices Qz and R of the performance variable δz2 and

the input δu respectively. In order to follow the desired value of the excess
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oxygen ratio λO2
, an additional state q has to be defined. A direct relation

between desired λO2,d and the desired mass flow rate across the blower Wcp,d

is defined by [2]

Wcp,d =

(

1 +
Mv

Ma

psat(Tin,cp)

pin,cp − psat(Tin,cp)

)

MO2
n

xO2
4F

istλO2,d, (76)

with Mv,Ma, and MO2
as the molar masses of vapor, dry air, and oxygen

respectively; psat(Tin,cp) denotes the vapor saturation pressure at temperature

Tin,cp, and xO2
denotes the oxygen mass fraction in dry air. Using this desired

value, an additional state q is defined by

q̇ = Wcp,d − Wcp,out = Wcp,d − Cy2
δx, (77)

where the mass flow rate across the blower Wcp,out in case of a real application

can be measured. Using the LQR approach design, in order to minimize the

additional state q, the cost function
≈

J has to be transformed to

≈

J =

∫

∞

0

(

δzT
2
Qzδz2 + qT Qqq + δuT Rδu

)

dt, (78)

with the weighting function Qq for the state q. Using the assumption

δz2 = Cz2
δx, (79)

the cost function becomes

≈

J =

∫

∞

0

(

δx̂T Q̂δx̂ + δuT Rδu
)

dt, (80)

where the weighting matrix Q̂ is defined as

Q̂ =





CT
z2

QzCz2
0

0 Qq



 (81)
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and the new state vector x̂ is defined as

x̂ =





δx

q



 . (82)

According to the principle of the LQR optimal controller, the control input

is

δu = −Koptδx̂, (83)

with Kopt as the controller gain matrix calculated from

Kopt = R−1B̂uP, (84)

where B̂u denotes the input matrix of the system describing the additional

state q and P denotes the solution matrix of the algebraic Riccati equation.

The state-space model of the system with the additional state q result to

δ ˙̂x = Âδx̂ + B̂u1
δu1 + B̂u2

δu2 (85)

with the compressor motor voltage u1 and the stack current u2 used as system

inputs. The relating matrices are given by

Â =





A 0

Aq 0



 , B̂u =





Bu

0



 , B̂w =





Bw

Bq



 . (86)

The matrix Aq can be calculated according to Eq. (77) by

Aq = −Cy2
, (87)

the matrix Bq according to Eq. (76) by

Bq =

(

1 +
Mv

Ma

psat(Tin,cp)

pin,cp − psat(Tin,cp)

)

MO2
n

xO2
4F

λO2,d. (88)

Due to the structure of Aq (and modelled singular eigenvalues) controllability

of the entire system resp. asymptotical zero dynamics has to be assumed for

successful realization.
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3.3.3. Control approach III: Gain-Scheduling control

Since fuel cells show strong nonlinear behavior over their operating range,

the possibility of implementing nonlinear control approaches can be desired.

For the state-feedback method, the system is linearized at a single working

point and the linear controller is applied. For strong nonlinear systems like

the dynamical behavior of fuel cells, this can be insufficient from a perfor-

mance point of view as it can be seen from the results presented in the sequel.

The same discussion appears with respect to the stability of the system. Us-

ing gain-scheduling control, it may be possible to apply related controllers

at each working point based on linearized system models of several nominal

working points. Thereafter, different controllers can be interpolated between

each other and implemented on the fuel cell system within the whole operat-

ing range. Due to the unknown overall nonlinear characteristics of the system

this problem also appears with other approaches so final tests have to be ap-

plied for experimental checking the behavior. The linearization points for the

gain-scheduling controller for this fuel cell system are chosen to ist = 10, 20,

30, 40, 50, and 60 A. Of course, from this multi-model approach obviously a

guaranteed statement about the overall stability can not be concluded, never-

theless this strategy allows in combination with related practical experiments

conclusions with respect to BIBO-stability of the used operating parameters.

Alternatively, the stability check can be done experimentally, which will be

the easiest way to be realized. A strategy to check stability numerically is

shown in [18]. The developed approach covers the whole working range of

the considered system. The distance between the linearization points can be

chosen suitably to realize satisfying results. The gain-scheduled linearized
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system model is represented in state-space form with

δẋ(t) = Aiδx(t) + Biδu(t), δx0 = δx(0) (89)

δy(t) = Ciδx(t) + Diδu(t). (90)

Optimal controller gains are calculated for each working point Kopt,i accord-

ing to Eq. (84). An interpolation based on a polynomial approach is applied

to determine the controller matrix. In Fig. 12, the interpolation between the

matrix-elements of the gain-scheduled optimal controller matrix Kopt,i is de-

picted. It can be seen that the elements are smoothly changing their values

between the working points to be linearized. Using the strategy shown in [18]

it is possible to realize the gain-scheduling controller and to implement the

controller at the same time allowing a fast and smooth switching between

the linearization points.

4. Results

The three control approaches are compared by simulations. All three

approaches us the underlying hydrogen valve controller as introduced in Sec-

tion 3.2. As input signal a series of current step functions within the operating

range of the fuel cell is applied, as depicted in Fig. 13. The input signal is

chosen in the way that it includes currents at the linearization points as well

as intermediate currents to show the control performance for both cases.

The results of the three control approaches are shown in Fig. 14. As

desired value of the excess oxygen ratio the value λO2
= 2 is chosen.

The state-feedback controller gives a stationary error in working points

different from the assumed linearization point (here realized at approx. 20 s

with of 30 A).
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Figure 12: The gain-scheduling controller is interpolated between the lin-

earization working points. Top: Large value gains. Bottom:

Small value gains

Zooming at a current step outside the linearization point, e.g. at 10 s, the

results are depicted in Fig. 15. It is shown that the state-feedback and the

gain-scheduling control methods are advantageous in relation to the static

feed-forward method in keeping the excess oxygen ratio at an optimal point

and preventing oxygen starvation.

Depicted results are shown in Fig. 16 zooming Fig. 14 at the lineariza-

tion point. The state-feedback and gain-scheduling controllers show almost
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Figure 13: Input current variable used as input for comparing the control

approaches

similar results while the static feed-forward controller shows slower response

to recover the optimal value of the oxygen excess ratio.

5. Summary and outlook

In this paper, models of the static and dynamic behavior of the compo-

nents and the overall system behavior of a fuel cell system including an air

blower are presented and validated to real system behavior. As underlying

controller for the anode pressure three typical and practically easy to ap-
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Figure 14: Comparison of the static feed-forward (sFF), state feedback (SF),

and gain-scheduling control (GS) applied for a nonlinear fuel cell

model

ply control design approaches are implemented an compared to each other.

The first one proposed is a PI-controller for the hydrogen valve. The im-

plementation of an integral part eliminates the stationary error that usually

occurs with a P-controller which is proposed in the literature. Based on

the developed models, two conventional controllers , a static feed-forward

controller and a state-feedback controller, are applied and a new controller

(Gain scheduling) is developed; all approaches are compared. Besides some
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Figure 15: Zoomed area for a step current output for static feed-forward

(sFF), state feedback (SF), and gain-scheduling control (GS)

principal aspects (e.g. stationary error (SF)), the dynamical behavior of

the approaches are comparable, in detail the results are different. It can

shown that the gain-scheduling controller shows better results than static

feed-forward and state-feedback over the entire working range of the fuel cell

system. The state-feedback controller shows good performance in preventing

oxygen starvation, but has a stationary error in working points outside the

linearization point. This can lead to a decrease in the efficiency of the fuel

cell system, when used in an arbitrary application with a dynamic load pro-
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and gain-scheduling control (GS)

file [19]. The gain-scheduling controller seems to be well suited for this kind

of applications. The corresponding models of the fuel cell system including

the air blower are modeled and validated.

In future the developed gain-scheduling control approach will be imple-

mented on the presented real fuel cell system. Dependent on the type and

structure of the fuel cell system the implementation of observer structures

might be necessary. For the related realization an investigation of the ob-
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servability of the overall system can additionally be conducted in order to

realize state-feedback control based on the existing sensors of the system or

by the use of suitable observers as described e. g. in [20]. Additionally the

stability assumed for the transition between the working points has to be

proven as described in [18].

The choice of the weighting matrices Q and R for the state feedback controller

described here will also have an influence on the controller performance. Fur-

ther improment might be possible with the adaption of them e.g. dependent

on the current load profile. Furthermore, with the assumption of a previously

known load profile or the application of a prediction approach of the load

profile the application of a Model Predictive Controller will be an alternative

option to realize the control goal.
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