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ABSTRACT
In this paper a data-driven approach for model-free control

of nonlinear systems with slow dynamics is proposed. The system
behavior is described using a local model respectively a neural
network. The network is updated online based on a Kalman filter.
By predicting the system behavior two control approaches are
discussed. One is obtained by calculating a control input from
the one step ahead prediction equation using least squares, the
other is obtained by solving a standard linear model predictive
control problem. The approaches are tested on a constrained
nonlinear MIMO system with slow dynamics.

Keywords: Model Predictive Control, Neural Networks, Nonlin-
ear Systems, Constrained Control

1. INTRODUCTION
In traditional model-based control a system model is derived

based on the physical understanding of the underlying process.
The obtained model may be imprecise due to parameter uncer-
tainties or variations, unmodeled dynamics, and changes of the
operating conditions [1], [2]. Additionally the modeling process
may be complex, time consuming, and expensive [3], [4].

Due to increased computational capabilities data-driven con-
trollers (DDC) are getting more and more popular. According to
[5] DDC approaches can be splitted up into two main categories.
Approaches in which a priori knowledge about the controller
structure is assumed to be known are assigned to the first class.
Typically in this class controller parameters are determined be-
forehand like for the PID controller [6]. Virtual reference control
introduced in [7] is another tuning method that can be applied
to linear SISO systems. Iterative tuning of linear controllers for
reference tracking of nonlinear systems is considered in [8]. In
case of repetitive control tasks application of iterative learning
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controllers may be taken into consideration [9]. The second class
of DDC approaches follows the strategy to first obtain an ap-
proximate description of the system behavior and then calculate
a suitable control input based on that. Classical subspace identi-
fication approaches which determine a linear prediction equation
based on orthogonal projections belong to this group [10]. An-
other common practice is the usage of neural networks [11] or
support vector machines [12], [13] for the identification process.
Dynamic linearization methods which continuously update a lin-
ear prediction model have been proposed in [14]. The resulting
control approach is applicable to nonlinear MIMO systems. An
intelligent PID (iPID) controller for nonlinear systems using a
local system description is introduced in [15]. In comparison to
the original PID the proposed iPID shows better tracking perfor-
mance and increased robustness [16].

Model predictive control (MPC) is a well-established control
approach in industry. It can be applied to complex constrained
systems with various in- and outputs and offers an optimal con-
trol solution [17]. However, solving the MPC problem can be
computationally demanding and has limited the application to
systems with slow dynamics [18]. Regarding robustness distur-
bance effects can be considered during the online optimization
process of MPC. The control input is determined by considering
worst case disturbance effects on the optimization criteria (min-
imum effect of maximum disturbance). The resulting methods
can be divided into open loop and closed loopmin-max optimiza-
tion approaches [19]. Both of the approaches suffer from high
computational burden [19].

In this paper a data-driven predictive control approach is
proposed. Instead of designing a robust controller for a possible
uncertain system the proposed approach focuses on online adap-
tation of a local linear model which describes the system behavior
in the near future. The local linear model can be interpreted as
a linear neural network whose weights are updated at each time
step. Using the linear model the control input can be determined
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by solving a standard linear MPC problem. Alternatively the
control input can be determined from a one step ahead prediction
using least squares (LS). The adaptation of the linear prediction
model can be achieved in short time by applying a Kalman filter.

The paper is organized as follows. In Section 2 the neural
network is introduced and the training process is explained. Us-
ing the network a one step ahead predcition and a state space
prediction equation are obtained. Based on the prediction mod-
els two control approaches are formulated in Section 3. One is
based on a LS estimation strategy the other one is achieved by
solving the standard MPC problem. The controllers are applied
to a nonlinear system with slow dynamics in Section 4.

2. SYSTEM IDENTIFICATION BASED ON ADAPTIVE
NEURAL NETWORKS
Consider the class of nonlinear discrete-timeMIMO systems

whose input-output behavior can be described by the NARX
model

y:+1 = 5: (y: , . . . , y:−=H+1, u: , . . . , u:−=D+1) = 5: (s: ), (1)

with y: ∈ RA , u: ∈ R<, and s: ∈ RA=H+<=D being defined as

s: =
[
y)
:

. . . y)
:−=H+1 u)

:
. . . u)

:−=D+1

])
. (2)

Using Taylor series expansion the 8-th component of y:+1 can be
written as

y(8)
:+1 = y(8)

:
+ (s: − s:−1))Df (8)

:
(s:−1)

+ 1
2
(s: − s:−1))D2f (8)

:
(s:−1) (s: − s:−1) + . . . , (3)

where Df (8)
:

and D2f (8)
:

denote the gradient and Hessian of the
8-th component of 5: . Considering only the linear parts in (3) a
linearization of (1) is obtained as

y:+1 ≈ A(1)
:

y: + · · · + A(=H )
:

y:−=H+1 + N:u:
+ B(1)

:
u:−1 + · · · + B(=D−1)

:
u:−=D+1. (4)

The matrices A: ,B: ,N: in (4) define the transfer function matrix
of a linear MIMO system [20]. The linear system (4) can be
rewritten as a neural network

y:+1 ≈ A: ȳ: + N:u: + B: ū:−1 + b: ,

=
[
A: N: B: b:

]︸                     ︷︷                     ︸
X:


ȳ:
u:

ū:−1
1

︸ ︷︷ ︸
p:

, (5)

with inputs

ȳ: =


y:
...

y:−=H+1

 , ū:−1 =


u:−1
...

u:−=D+1

 , (6)

u: , weighting matrices A: ,B: ,N: , and bias vector b: . Input
vector p: ∈ R= is of dimension = = A=H + <=D + 1.

The parameters

x: = vec(X: ), (7)

of the network (5) can be estimated and adapted by means of a
Kalman filter so that an updated approximation of the nonlinear
system (1) for time step : is available. According to [21] a well-
known Kalman filter based estimation of the network parameters

x̂: = vec(X̂: ), (8)

is given as

x̂:+1 |: = x̂: |: , (9)
P:+1 |: = P: |: +Q, (10)
x̂:+1 |:+1 = x̂:+1 |: +K:+1 (y:+1 −H:+1x̂:+1 |: ), (11)

K:+1 = P:+1 |:H)
:+1 (H:+1P:+1 |:H)

:+1 + R)−1, (12)
P:+1 |:+1 = K:+1RK)

:+1 (13)
+ (I=A −K:+1H:+1)P:+1 |: (I=A −K:+1H:+1)) . (14)

The output matrix

H:+1 = p): ⊗ IA , (15)

is obtained by applying the vector operator on (5). The input-
output data

{y:+1, ȳ: , u: , ū:−1}, (16)

is assumed to be noise-free, as measurement noise would affect
the output matrix in (15). As Kalman filtering is related to
weighted least squares (WLS) estimation [22] algorithm (9-14)
finally minimizes

0 = argmin
(x★

8
):
8=0



x0 − x★0


2

P−10

+
:∑
8=0



y: −H:x★:


2

R−1 +
:−1∑
8=0



x★:+1 − x★:


2

Q−1 , (17)

where 0 = (x̂8 |8):8=0 are theKalman filter estimations. Theweight-
ing matrices Q = UI=A , R = VIA , U ≥ 0, V > 0 are design vari-
ables. Regarding WLS problem (17) it can be seen that matrix R
determines how exact the estimated network parameters are fitted
to the input-output data, and Q influences the learning rate of the
network. Using the estimated network parameters the linear one
step ahead prediction equation

ŷ:+1 ≈ Â: ȳ: + N̂:u: + B̂: ū:−1 + b̂: , (18)

of (1) is obtained. A linear state space realization is obtained as
ȳ:+1
ū:

b̂:+1

︸ ︷︷ ︸
x̄:+1

=


Ā11 Ā12 Ā13
0 Ā22 0
0 0 IA

︸                 ︷︷                 ︸
Ā


ȳ:

ū:−1
b̂:

︸ ︷︷ ︸
x̄:

+

N̄1
N̄2
0

︸︷︷︸
N̄

u: ,

ŷ:+1 ≈
[
IA 0 . . . 0

]
ȳ:+1, (19)
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with

Ā11 =

[
Â:

T

]
, Ā12 =

[
B̂:
0

]
, Ā13 =

[
IA
0

]
,

N̄1 =
[
N̂:

0

]
, Ā22 =

[
0
S

]
, N̄2 =

[
I<
0

]
,

where T is a A (=H − 1) × A=H matrix of the form

T =


IA 0 . . . 0 0
0 IA . . . 0 0
...

...
. . .

...
...

0 0 . . . IA 0


, (20)

and S is a <(=D − 2) × <(=D − 1) matrix of the form

S =


I< 0 . . . 0 0
0 I< . . . 0 0
...

...
. . .

...
...

0 0 . . . I< 0


. (21)

3. MODEL FREE PREDICTIVE CONTROL
In this Section two model-free control strategies are consid-

ered. First, a minimal norm LS solution based on the one step
ahead prediction of the system is determined. Then a model-free
predictive control approach based on the identified linear state
space description is considered.

Consider y: to be measured and

z: = Ly: , (22)

with z: ∈ R; , to be controlled. For setpoint tracking the reference
value is denoted by zA4 5

:
. Based on (18) the one step ahead

prediction

zA4 5
:+1 = LÂ: ȳ: + LN̂:u: + LB̂: ū:−1 + Lb̂: , (23)

can be considered, where u: needs to be determined to achieve
zA4 5
:

. It cannot be guaranteed that

c: = LN̂:u: , (24)

with

c: = zA4 5
:+1 − LÂ: ȳ: − LB̂: ū:−1 − Lb̂: , (25)

has a solution. The rank of LN̂: is unknown as it depends
on the network weights which are estimated online during the
identification process. However, it can be guaranteed that at least
one LS solution u∗

:
of (24) exists as the normal equation

(LN̂: )) c: = (LN̂: ))LN̂:u∗: , (26)

always has at least one solution (see Lemma 2.A.2 in [23]). If
LN̂: does not have full column rank an infinity amount of LS
solutions exists [23]. As in control minimization of the signal

energy of the control input is desirable it is suggest to choose the

LS solution with minimal norm



u∗
:




2. Let
LN̂: =

[
U1 U2

] [
�1 0
0 0

] [
V1 V2

])
, (27)

be the singular value decomposition of LN̂: , then according to
[24] Proposition 3.3 the min norm LS solution is given as

u∗: = U1�−11 V)1 c: . (28)

In the following predictive control i. e. minimization of

argmin
→u

1
2

©­«
:+=?−1∑
8=:

e)8 Q%�
8 e8 +

:+=2−1∑
8=:

u)8 R%�
8 u8

ª®¬ ,
s. t. A2

→u ≤ b2 ,
→u =

[
u: . . . u:+=2−2

])
, (29)

with tracking error e: , symmetric weighting matrices Q%� ≥ 0,
R%� > 0, =? > =2 , and constraints (A2 , b2), is considered. As
the linear state space description (19) is available the problem
reduces to a well-known linear model predictive control (MPC)
problem. According to [25] a brief solution of this MPC problem
is given as follows.

The state space model (19) is augemented by the reference
variable leading to[

x̄:+1
zA4 5
:+1

]
︸ ︷︷ ︸

x̃:+1

=

[
Ā 0
0 I;

]
︸   ︷︷   ︸

Ã

[
x̄:

zA4 5
:

]
︸ ︷︷ ︸

x̃:

+
[
N̄
0

]
︸︷︷︸

Ñ

u: ,

e: =
[
L 0 . . . 0 −I;

]︸                       ︷︷                       ︸
C

x̃: . (30)

Based on (30) the prediction equation of the tracking error
e:

e:+1
...

e:+=?−1

︸      ︷︷      ︸
→e

=


C

CÃ
...

CÃ=?−1

︸      ︷︷      ︸
P

x̃:

+


0 0 . . .

CÑ 0 . . .
...

...
. . .

CÃ=?−2Ñ CÃ=?−3Ñ . . .

︸                                    ︷︷                                    ︸
H


u:
...

u:+=?−2

︸      ︷︷      ︸
→,np

u

, (31)

can be obtained. Using (31) problem (29) can be written as a
quadratic programm

argmin
→u

1
2
→u
)

G→u + f)→u , s. t. A2
→u ≤ b2 , (32)
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TABLE 1: PARAMETERS OF THE THREE TANK SYSTEM ([14])

Parameter Symbol Value
Section of cylinders (� 0.0154 m2

Section of connections (= 5 × 10−5 m2

Maximum liquid levels �max 0.6 m
Maximum supply flow rates &max 0.0001 m3/s
Outflow coefficient W1 0.22
Outflow coefficient W2 0.28
Outflow coefficient W3 0.27

with

G = M)H) Q̃%�HM + R̃%� , f) = x̃): P) Q̃HM,

Q̃%� = I=? ⊗ Q%� , R̃%� = I=2 ⊗ R%� ,
→,np

u = M→u ,

where M is the move blocking matrix keeping u:+:∗ = u:+=2
fixed for all predictions :∗ > =2 .

Based on Q%� ≥ 0, R%� > 0, leading to Q̃%� ≥ 0, R̃%� >

0, it follows G > 0, so problem (32) is convex [26].

4. EXAMPLE
In this section the min norm LS (min-LS) approach of (28)

and the predictive control (PC) approach of (32) are both applied
to a nonlinear MIMO sytem.

Consider a nonlinear three tank water system ([14], [27])

(� ¤ℎ1 = &1 −&13 −&10, (33)
(� ¤ℎ3 = &13 −&32, (34)
(� ¤ℎ2 = &2 +&32 −&20, (35)

with

&13 = W1(=sgn(ℎ1 − ℎ3)
√
26 |ℎ1 − ℎ3 |, (36)

&32 = W3(=sgn(ℎ3 − ℎ2)
√
26 |ℎ3 − ℎ2 |, (37)

&20 = W2(=sgn(ℎ2)
√
26 |ℎ2 |, (38)

&10 = W2(=sgn(ℎ1)
√
26 |ℎ1 |, (39)

where ℎ1, ℎ2, ℎ3 are the water levels of the three tanks,&1, &2 are
the incoming water flows from pump 1 and 2, &10, &20 are the
flows in the outflow valves of tank 1 and 2, and&13, &32 are flows
in the connecting pipes of tank 1, 2 and 3. The parameters of the
system are shown in Table 1. The water levels ℎ1, ℎ2 should be
controlled based on the inputs &1, &2. The levels ℎ1, ℎ2, ℎ3 are
measured. The system is discretized based on Euler method with
sample time 5 B, and a simulation duration of 1500 B is considered.
The input signals are restricted to

0 ≤ &1 ≤ &max, 0 ≤ &2 ≤ &max. (40)

The initial values of the system are ℎ1 = ℎ2 = ℎ3 = 0m.
For the delayed inputs of the network =H = =D = 5 is considered.
The network weights are initialized with x̂0 = I=A×1, P0 |0 =

TABLE 2: PERFORMANCE EVALUATION THREE TANK SYSTEM
W/O CONSTRAINTS ∑#

8=1 u2
8
/# ∑#

8=1 e2
8
/#

min-LS 2.8105784−9 3.4727024−3

PC (=? = 5, =2 = =? − 1) 2.7311884−9 3.4653594−3

PC (=? = 10, =2 = =? − 1) 2.7311484−9 3.4654354−3

PC (=? = 15, =2 = =? − 1) 2.7326904−9 3.4624364−3

PC (=? = 20, =2 = =? − 1) 2.7378424−9 3.4548414−3

PC (=? = 25, =2 = =? − 1) 2.7384864−9 3.4588184−3

I=A×=A ×1010. The learning rate is considered to be U = 0.01, and
V is chosen as V = 0.001. The network is initially trained from
C∗ = 0...100 B based on the system outputs generated by the input

&1 = &2 =

{
DC if C∗ mod 10 is even,
0 if C∗ mod 10 is odd,

(41)

DC = 0.00002 × cos
(
2c
100

C∗
)
+ 0.00008.

The weighting matrices considered for the model free predictive
approach are Q%� = I;×; ,R%� = I<×<.
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FIGURE 2: PERFORMANCE EVALUATION OF MIN NORM LS (MIN-
LS) AND PREDICTIVE CONTROL (PC) APPROACHES
(np = 20, nc = 19)

4.1 Unconstrained Problem
For the unconstrained problem the reference values of the

control variables ℎ1, ℎ2 are

ℎ
A4 5

1 (C) =


0.15m if C ≤ 400 s,
0.3m if 400 s < C ≤ 700 s,
0.15m if 700 s < C ≤ 1500 s,

(42)

ℎ
A4 5

2 (C) =


0.2m if C ≤ 400 s,
0.4m if 400 s < C ≤ 700 s,
0.2m if 700 s < C ≤ 1000 s,
0.05m if 1000 s < C ≤ 1500 s.

(43)

Based on the results shown in Fig. 2 and Table 2 it can be con-
cluded that reference tracking can be achieved by both min-LS
and PC approach. According to Table 2 the predictive control
approach has lower tracking error and lower input energy in com-
parison to the min-LS approach.

4.2 Constrained Problem
For the constrained problem the same reference values as for

the unconstrained problem are considered (42, 43), in addition
the constraint

ℎ3 ≤ 0.3m, (44)
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FIGURE 3: PERFORMANCE OF PREDICTIVE CONTROL (PC) AP-
PROACH IN CASE OF CONSTRAINTS (np = 20, nc = 19)

should be achieved. The constraint can be formulated as A2
→u ≤

b2 and is implemented as a soft-constraint, for details see e. g.
[25].

From Fig. 3 it can be seen that constrained optimization can
be achieved by PC approach.

5. CONCLUSION
Model-free control of nonlinear systems with slow dynamics

has been considered. Constrained and reference control can be
achieved based on a local system approximation which is updated
online. The proposed method is easy to implement and has low
computational costs.

REFERENCES
[1] Villagra, J, Vinagre, B and Tejado, I. “Data-driven frac-

tional PID control: application to DC motors in flexible
joints.” IFAC Proceedings Volumes Vol. 45, No. 3 (2012):
pp. 709–714.

[2] Hou, Z and Wang, Z. “From model-based control to data-
driven control: Survey, classification and perspective.” In-
formation Sciences Vol. 235 (2013): pp. 3–35.

[3] Piga, D, Formentin, S and Bemporad, A. “Direct data-
driven control of constrained systems.” IEEE Transactions
on Control Systems Technology Vol. 26, No. 4 (2017): pp.
1422–1429.

5 Copyright © 2020 by ASME



[4] Tanaskovic, M, Fagiano, L, Novara, C and Morari, M.
“Data-driven control of nonlinear systems: An on-line di-
rect approach.” Automatica Vol. 75 (2017): pp. 1–10.

[5] Hou, Z and Zhu, Y. “Controller-dynamic-linearization-
based model free adaptive control for discrete-time nonlin-
ear systems.” IEEE Transactions on Industrial Informatics
Vol. 9, No. 4 (2013): pp. 2301–2309.

[6] Ziegler, J andNichols, N. “OptimumSettings for Automatic
Controllers.” Journal of Dynamic Systems, Measurement,
and Control Vol. 115, No. 2B (1993): pp. 220–222.

[7] Campi, M, Lecchini, A and Savaresi, S. “Virtual reference
feedback tuning: a direct method for the design of feedback
controllers.” Automatica Vol. 38, No. 8 (2002): pp. 1337–
1346.

[8] Hjalmarsson, H, Gunnarsson, S and Gevers, M. “A conver-
gent iterative restricted complexity control design scheme.”
Proceedings of 1994 33rd IEEE Conference on Decision
and Control: pp. 1735–1740. 1994. IEEE.

[9] Longman, R. “Iterative learning control and repetitive con-
trol for engineering practice.” International journal of con-
trol Vol. 73, No. 10 (2000): pp. 930–954.

[10] Favoreel, W, De Moor, B, Gevers, M and Van Overschee,
P. “Closed-loop model-free subspace-based LQG-design.”
Proc. of the 7th IEEEMediterraneanConference onControl
and Automation, June: pp. 28–30. 1999.

[11] Doherty, S, Gomm, J and Williams, D. “Experiment de-
sign considerations for non-linear system identification us-
ing neural networks.” Computers & chemical engineering
Vol. 21, No. 3 (1997): pp. 327–346.

[12] Iplikci, S. “Support vector machines-based generalized pre-
dictive control.” International Journal of Robust and Non-
linear Control: IFAC-Affiliated Journal Vol. 16, No. 17
(2006): pp. 843–862.

[13] Shin, J, Kim, H, Park, S and Kim, Y. “Model predic-
tive flight control using adaptive support vector regression.”
Neurocomputing Vol. 73, No. 4-6 (2010): pp. 1031–1037.

[14] Hou, Z and Jin, S. “Data-drivenmodel-free adaptive control
for a class ofMIMOnonlinear discrete-time systems.” IEEE
Transactions on Neural Networks Vol. 22, No. 12 (2011):
pp. 2173–2188.

[15] Fliess, M and Join, C. “Intelligent PID controllers.” 2008
16th Mediterranean Conference on Control and Automa-
tion: pp. 326–331. 2008. IEEE.

[16] Agee, J, Kizir, S and Bingul, Z. “Intelligent proportional-
integral (iPI) control of a single link flexible joint manip-
ulator.” Journal of Vibration and Control Vol. 21, No. 11
(2015): pp. 2273–2288.

[17] Mayne, D. “Model predictive control: Recent developments
and future promise.” Automatica Vol. 50, No. 12 (2014):
pp. 2967–2986.

[18] Wang, Y. and Boyd, S. “Fast model predictive control using
online optimization.” IEEE Transactions on control systems
technology Vol. 18, No. 2 (2009): pp. 267–278.

[19] Ramírez, D and Camacho, E. “Piecewise affinity of
min–max MPC with bounded additive uncertainties and a
quadratic criterion.” Automatica Vol. 42, No. 2 (2006): pp.
295–302.

[20] Isermann, R and Münchhof, M. Identification of dynamic
systems: an introduction with applications. Springer Sci-
ence & Business Media (2010).

[21] Haykin, S. Kalman filtering and neural networks. Wiley
Online Library (2001).

[22] Sorenson, H. “Least-squares estimation: from Gauss to
Kalman.” IEEE spectrum Vol. 7, No. 7 (1970): pp. 63–68.

[23] Kailath, T, Sayed, A and Hassibi, B. Linear estimation.
Prentice Hall (2000).

[24] Demmel, J. Applied numerical linear algebra. Vol. 56.
Siam (1997).

[25] Wang, L.Model predictive control system design and imple-
mentation using MATLAB®. Springer Science & Business
Media (2009).

[26] Nocedal, J andWright, S. Numerical optimization. Springer
Science & Business Media (2006).

[27] DTS200 Laboratory Setup Three-Tank-System. Amira
GmbH, Duisburg (2000).

[28] Stenman, A. “Model-free predictive control.” Proceedings
of the 38th IEEE Conference on Decision and Control: pp.
3712–3717. 1999.

[29] Prasad, G, Swidenbank, E and Hogg, BW. “A neural
net model-based multivariable long-range predictive con-
trol strategy applied in thermal power plant control.” IEEE
Transactions on Energy Conversion Vol. 13, No. 2 (1998):
pp. 176–182.

[30] Magni, L, De Nicolao, G, Magnani, L and Scattolini, R.
“A stabilizing model-based predictive control algorithm for
nonlinear systems.” Automatica Vol. 37, No. 9 (2001): pp.
1351–1362.

[31] Seborg, D E, Mellichamp, D, Edgar, T and Doyle III, F.
Process dynamics and control. John Wiley & Sons (2010).

6 Copyright © 2020 by ASME


	Abstract
	1 Introduction
	2 System identification based on adaptive neural networks
	3 Model free predictive control
	4 Example
	4.1 Unconstrained Problem
	4.2 Constrained Problem

	5 Conclusion
	References
	APPENDICES

