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ABSTRACT

In this paper a data-driven approach for model-free control
of nonlinear systems with slow dynamics is proposed. The system
behavior is described using a local model respectively a neural
network. The network is updated online based on a Kalman filter.
By predicting the system behavior two control approaches are
discussed. One is obtained by calculating a control input from
the one step ahead prediction equation using least squares, the
other is obtained by solving a standard linear model predictive
control problem. The approaches are tested on a constrained
nonlinear MIMO system with slow dynamics.

Keywords: Model Predictive Control, Neural Networks, Nonlin-
ear Systems, Constrained Control

1. INTRODUCTION

In traditional model-based control a system model is derived
based on the physical understanding of the underlying process.
The obtained model may be imprecise due to parameter uncer-
tainties or variations, unmodeled dynamics, and changes of the
operating conditions [1], [2]. Additionally the modeling process
may be complex, time consuming, and expensive [3], [4].

Due to increased computational capabilities data-driven con-
trollers (DDC) are getting more and more popular. According to
[5] DDC approaches can be splitted up into two main categories.
Approaches in which a priori knowledge about the controller
structure is assumed to be known are assigned to the first class.
Typically in this class controller parameters are determined be-
forehand like for the PID controller [6]. Virtual reference control
introduced in [7] is another tuning method that can be applied
to linear SISO systems. Iterative tuning of linear controllers for
reference tracking of nonlinear systems is considered in [8]. In
case of repetitive control tasks application of iterative learning
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controllers may be taken into consideration [9]. The second class
of DDC approaches follows the strategy to first obtain an ap-
proximate description of the system behavior and then calculate
a suitable control input based on that. Classical subspace identi-
fication approaches which determine a linear prediction equation
based on orthogonal projections belong to this group [10]. An-
other common practice is the usage of neural networks [11] or
support vector machines [12], [13] for the identification process.
Dynamic linearization methods which continuously update a lin-
ear prediction model have been proposed in [14]. The resulting
control approach is applicable to nonlinear MIMO systems. An
intelligent PID (iPID) controller for nonlinear systems using a
local system description is introduced in [15]. In comparison to
the original PID the proposed iPID shows better tracking perfor-
mance and increased robustness [16].

Model predictive control (MPC) is a well-established control
approach in industry. It can be applied to complex constrained
systems with various in- and outputs and offers an optimal con-
trol solution [17]. However, solving the MPC problem can be
computationally demanding and has limited the application to
systems with slow dynamics [18]. Regarding robustness distur-
bance effects can be considered during the online optimization
process of MPC. The control input is determined by considering
worst case disturbance effects on the optimization criteria (min-
imum effect of maximum disturbance). The resulting methods
can be divided into open loop and closed loop min-max optimiza-
tion approaches [19]. Both of the approaches suffer from high
computational burden [19].

In this paper a data-driven predictive control approach is
proposed. Instead of designing a robust controller for a possible
uncertain system the proposed approach focuses on online adap-
tation of a local linear model which describes the system behavior
in the near future. The local linear model can be interpreted as
a linear neural network whose weights are updated at each time
step. Using the linear model the control input can be determined
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by solving a standard linear MPC problem. Alternatively the
control input can be determined from a one step ahead prediction
using least squares (LS). The adaptation of the linear prediction
model can be achieved in short time by applying a Kalman filter.

The paper is organized as follows. In Section 2 the neural
network is introduced and the training process is explained. Us-
ing the network a one step ahead predcition and a state space
prediction equation are obtained. Based on the prediction mod-
els two control approaches are formulated in Section 3. One is
based on a LS estimation strategy the other one is achieved by
solving the standard MPC problem. The controllers are applied
to a nonlinear system with slow dynamics in Section 4.

2. SYSTEM IDENTIFICATION BASED ON ADAPTIVE
NEURAL NETWORKS
Consider the class of nonlinear discrete-time MIMO systems
whose input-output behavior can be described by the NARX
model

Vi1 = fi (Vi - o s Yeony+1, Wks - o> Wkmp,+1) = fi(sk), (1)

with yx € R", u; € R™, and s; € R+ being defined as

T

T T T T
Yiengst W o Wen| - @

Sk = | ¥x

Using Taylor series expansion the i-th component of y.; can be
written as

y,ﬁ’ll = YI(f) + (s — Sk—l)TDfl(:) (sk-1)
1 .
+ E(Sk —si-) DY (kD) (s = se-) +.... (3)
where Df,ii) and sz,(f) denote the gradient and Hessian of the

i-th component of fi. Considering only the linear parts in (3) a
linearization of (1) is obtained as

Y+l & Afcl))’k +oot A/((ny)yk—ny+l + Nyug
+B w4 4B Ny @)

The matrices A, By, N in (4) define the transfer function matrix
of a linear MIMO system [20]. The linear system (4) can be
rewritten as a neural network

Yi+1 = Ar¥i + Nug + Bt + by,

Yk
u
=[Ax Ne Br b] | F | )
Uy
X, 1
N——
Pk
with inputs
Yk Uy
Vi = : , U = : , (6)
Yik-ny+1 Wi—p,+1

uy, weighting matrices Ay, Bg, Ny, and bias vector bg. Input
vector px € R" is of dimension n = rny + mn, + 1.
The parameters

xi = vec(Xg), (7)

of the network (5) can be estimated and adapted by means of a
Kalman filter so that an updated approximation of the nonlinear
system (1) for time step k is available. According to [21] a well-
known Kalman filter based estimation of the network parameters

R = Vec(f(k), )

is given as
Xir1 1k = Xijk, )
Priijx = Pre +Q, (10
Riat k1 = Xia ke + Kip1 (Va1 — Hiea1 Res1 1) (11
Kist = Py HE, (Hisi P b Hy, + R, (12)
P = Ken RKG, (13)

+ (L — Kirt Hia) Pt o (L = Kpp Hia) T (14)
The output matrix
Hi =p; ®L, (15)

is obtained by applying the vector operator on (5). The input-
output data

{¥i+1, Vi, Ug, U1}, (16)

is assumed to be noise-free, as measurement noise would affect
the output matrix in (15). As Kalman filtering is related to
weighted least squares (WLS) estimation [22] algorithm (9-14)
finally minimizes

a = arg min”xo - x(’)‘”lz,_l
Ny ’
k ) k-1 )
) vk = Hix [l + D I~ xillg s a7
i=0 i=0

where a = (X; |i)f=0 are the Kalman filter estimations. The weight-
ing matrices Q = al,,, R = I, > 0,8 > 0 are design vari-
ables. Regarding WLS problem (17) it can be seen that matrix R
determines how exact the estimated network parameters are fitted
to the input-output data, and Q influences the learning rate of the
network. Using the estimated network parameters the linear one
step ahead prediction equation

Fre1 = Aryr + Npug + Brig_g + by, (18)

of (1) is obtained. A linear state space realization is obtained as

Vi+1 A11 1512 INVERL 1511
u, |=1]0 22 0 U1 |+ N2 | ug,
bl |0 o 1 ||B]| |0
—_— — — — — ~——
Xpe+1 A Xx N
Yk~ [I 0 0] Frs1 (19)
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with

- |Ag - By |
An T Ap = K Als—[o],
< _|N - 0 I
N; = Ok, A22=[S], N2=[(')"},

where T is a r(ny, — 1) X rn, matrix of the form

I, O 0 O
L. ... 0 O

T=|. | . | (20)
o o0 ... I, O

I, O 0 0
o L, ... 0 O

s=. . . | @1
o o ... L, O

3. MODEL FREE PREDICTIVE CONTROL

In this Section two model-free control strategies are consid-
ered. First, a minimal norm LS solution based on the one step
ahead prediction of the system is determined. Then a model-free
predictive control approach based on the identified linear state
space description is considered.

Consider y to be measured and

2y = Ly, (22)

with z; € R/, to be controlled. For setpoint tracking the reference
value is denoted by zzef . Based on (18) the one step ahead
prediction

2% = LAiyx + Ly + LBgiigy + LBy, (23)
can be considered, where u; needs to be determined to achieve
zzef . It cannot be guaranteed that

¢ = LN;uy, 24)
with
e = 2] — LA§i — LBiiix; — Lby, (25)

has a solution. The rank of LNy is unknown as it depends
on the network weights which are estimated online during the
identification process. However, it can be guaranteed that at least
one LS solution uj of (24) exists as the normal equation

(LN ¢ = (LNy)  LNu, (26)

always has at least one solution (see Lemma 2.A.2 in [23]). If
LN; does not have full column rank an infinity amount of LS
solutions exists [23]. As in control minimization of the signal

energy of the control input is desirable it is suggest to choose the

2
LS solution with minimal norm |juy || . Let
N X 0
LK, = [U; U] [01 0] Vi Vo], 27)

be the singular value decomposition of LNy, then according to
[24] Proposition 3.3 the min norm LS solution is given as

u =U X' Ve (28)

In the following predictive control i. e. minimization of

1 k+np_1 k+ne—1
arg min 5 Z el-TQfCei + Z uiTRfDCui )
u i=k i=k

st Acu<b., u=[u W]’ (29)
with tracking error e, symmetric weighting matrices Q¢ > 0,
RPC > 0, np > ne, and constraints (A, b.), is considered. As
the linear state space description (19) is available the problem
reduces to a well-known linear model predictive control (MPC)
problem. According to [25] a brief solution of this MPC problem
is given as follows.

The state space model (19) is augemented by the reference
variable leading to

X1 A O Xx + N u
ref | = ref ks
Zk+1 0 Il Zk 0
—_——— ———— —— v
Kie+1 A Kic N
ec=[L 0 0 -I]%. (30)
C

Based on (30) the prediction equation of the tracking error

€ C'~
€r+1 CA
. = ) X
ek+l11,71 CA"”_I
S—— S——
: P
0 0 ... u
CN 0 . k
+ , (31
CA"2N  CA™ N Hleen, =2
—_———
H o

can be obtained. Using (31) problem (29) can be written as a
quadratic programm

1-T - — —
argminzu Gu+f'u, st A.u<b, (32)

u
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TABLE 1: PARAMETERS OF THE THREE TANK SYSTEM ([14])

TABLE 2: PERFORMANCE EVALUATION THREE TANK SYSTEM

W/O CONSTRAINTS
L ui/N L€ IN
min-LS 2.810578¢~° | 3.472702¢73
PC (n, =5,nc=n,—1) | 2.731188¢™ | 3.465359¢73
PC (n, =10,n. =n, — 1) | 2.731148¢7° | 3.465435¢73
PC (n, =15,n, =n, — 1) | 2.732690¢™° | 3.462436¢3
PC (n, =20,n, =n, — 1) | 2.737842¢7° | 3.454841¢73
PC (n, =25,n. =n, —1) | 2.738486¢™° | 3.458818¢73

Parameter Symbol Value
Section of cylinders Sa 0.0154 m?
Section of connections Sn 5% 1075 m?
Maximum liquid levels Hoax 0.6 m
Maximum supply flow rates  Qpmax 0.0001 m?/s
Outflow coefficient Y1 0.22
Outflow coefficient 0%) 0.28
Outflow coefficient V3 0.27
with
G=M"H'Q’“HM +R"“, " =x] P QHM,

—.,np

Qr€ = L, ® QF¢, RFC = I, ® RPC, a’ = Ml_l),

where M is the move blocking matrix keeping g ik = Ugin,
fixed for all predictions k* > n,.

Based on QP€ > 0, RPC > 0, leading to Q€ > 0, RPC >
0, it follows G > 0, so problem (32) is convex [26].

4. EXAMPLE

In this section the min norm LS (min-LS) approach of (28)
and the predictive control (PC) approach of (32) are both applied
to a nonlinear MIMO sytem.

Consider a nonlinear three tank water system ([14], [27])

Sahy =01 - 013 - Qios (33)
Sahs =013 — 03, 34
Sahy = Qs+ Q3 — O, (35)

with

013 = y1Snsgn(hy — h3)\2g|hy — hs|, (36)
032 = y3Spsgn(hs — ho)\2g|h3 — hy|, (37)

Q20 = y2Snsgn(h2)2g|ha|, (38)
Q10 = y2Snsgn(hi)V2g|hil, (39)

where hy, hy, h3 are the water levels of the three tanks, O, O, are
the incoming water flows from pump 1 and 2, Q9, Q29 are the
flows in the outflow valves of tank 1 and 2, and Q3, Q3 are flows
in the connecting pipes of tank 1, 2 and 3. The parameters of the
system are shown in Table 1. The water levels A1, h, should be
controlled based on the inputs Q1, Q»>. The levels hy, hy, h3 are
measured. The system is discretized based on Euler method with
sample time 5 s, and a simulation duration of 1500 s is considered.
The input signals are restricted to

0< Ql < Qmax’ 0< Q2 < Qmax- (40)

The initial values of the system are h; = hp = hy = Om.
For the delayed inputs of the network n, = n,, = 5 is considered.
The network weights are initialized with X0 = Lyx1, Pojo =

L.rsnr X 1019, The learning rate is considered to be & = 0.01, and
B is chosen as 8 = 0.001. The network is initially trained from
t* = 0...100 s based on the system outputs generated by the input

u; if t* mod 10 is even,

. . 41)
0 if ¥ mod 10 is odd,

Q1=Q2={

2r
u; = 0.00002 x cos (mt ) +0.00008.

The weighting matrices considered for the model free predictive
approach are QP¢ =I5, RPC

= L.

Reference | 4
min-LS
PC

0 200 400 600 800 1000 1200 1400
Time [s]

(a) Reference Tracking Water Level hq

Reference | |
min-LS
0.35f PC

o

0 200 400 600 800 1000 1200 1400
Time [s]

(b) Reference Tracking Water Level hy
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FIGURE 2: PERFORMANCE EVALUATION OF MIN NORM LS (MIN-
LS) AND PREDICTIVE CONTROL (PC) APPROACHES
(np =20,nc =19)

4.1 Unconstrained Problem
For the unconstrained problem the reference values of the
control variables hy, h; are

0.15m ifr < 400s,
W (1)=403m  if400s <1 < 700s, (42)
0.15m if 700s < 7 < 15005,

02m ifr <400s,

04m if400s <t <700s,

Wy (1) = . (43)
0.2m if700s <t < 1000s,

0.05m if 1000s < ¢ < 1500s.

Based on the results shown in Fig. 2 and Table 2 it can be con-
cluded that reference tracking can be achieved by both min-LS
and PC approach. According to Table 2 the predictive control
approach has lower tracking error and lower input energy in com-
parison to the min-LS approach.

4.2 Constrained Problem

For the constrained problem the same reference values as for
the unconstrained problem are considered (42, 43), in addition
the constraint

h3 <0.3m, (44)

o
IS
o

----- Constraint
—h, 4
h2

Ny

o
~
T

o

©

&
T

Water levels [m]
o o
P
R )
T T

=3

o
=)
&

0 L L L L L L L
0 200 400 600 800 1000 1200 1400

Time [s]

(a) Without Consideration of Constraint

025

Water levels [m]
o
[

0.15

0 200 400 600 800 1000 1200 1400
Time [s]

(b) With Consideration of Constraint

FIGURE 3: PERFORMANCE OF PREDICTIVE CONTROL (PC) AP-
PROACH IN CASE OF CONSTRAINTS (np = 20,n. = 19)

should be achieved. The constraint can be formulated as ACH <
b. and is implemented as a soft-constraint, for details see e. g.
[25].

From Fig. 3 it can be seen that constrained optimization can
be achieved by PC approach.

5. CONCLUSION

Model-free control of nonlinear systems with slow dynamics
has been considered. Constrained and reference control can be
achieved based on a local system approximation which is updated
online. The proposed method is easy to implement and has low
computational costs.
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