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Robust Control of Relative Degree Two Systems
Subject to Output Constraints with Time-Varying Bounds

Mark Spiller and Dirk Soffker

Abstract— In this paper robust constrained control of non- states on a manifold called sliding surface. The dynamics
linear systems that have relative degree two with respect tthe  gn the surface can be designed in order to achieve some
control variable is considered. The first time derivative ofthe  yasired behavior like convergence of tracking error. Distu

control variable is assumed to be the constrained variableThe b thin th f defined tainty b d
developed control approach is based on sliding mode control ances within the range of defined uncertainty bounds are

design. It places sliding manifolds below the bounds of the rejected by pushing the states back on the sliding surface
constraints so that the constrained variable will be forced immediately. This behavior of the SMC provides inherent

to stay in the admissible region if it approaches a bound. robustness against parametric uncertainties and exteisyal
For the proposed control method it is analytically shown tha turbances. Compared to MPC the computational burden of

the constrained control problem can be solved. This include . . . .
consideration of time-varying behavior of the bounds. Veloity- SMC is less. The drawback of conventional SMC is a high

constrained control of a two-link robot is considered as a frequency switching of the input signal denoted as chaigeri
numerical example. In order to mitigate this effect several approaches have

been develeoped e.g. the boundary layer approach [9], the
l. INTRODUCTION exponential reaching law [10], [11], higher order SMCs [12]
Constrained control problems arise in many applicationg 3], and adaptive gain approaches [14], [15].
like autonomous vehicles, process industry, traffic cdriro  Several constrained SMC approaches can be found in
robotics. the literature. The authors in [16] make use of a state
Model predicitve control (MPC) is widely applied andtransformation to express the constraints in terms of the
known for its property to handle constraints of MIMO sys-sliding variables. A higher order SMC is applied to drive the
tems. In addition to that MPC forecasts the future system betiding variables to zero without violating the constrain
havior in order to minimize a defined performance index ovahaximum domain of attraction is achieved and the approach
the considered time horizon [1]. However, MPC is modelcan be applied to nonlinear systems with generic relative
based which means that parametric- or external unceeaintidegree. In [17] similar results are achieved regarding con-
may have a negative influence on the control performanceirained control of nonlinear relative degree two systems.
In order to overcome this problem several approaches telata maximum domain of attraction is also provided. An
to robust MPC have been developed. The strategy behiagproach denoted as sliding mode reference conditioning is
the so-called min-max approaches is to minimize the perfoproposed in [18]. It is an outer loop control approach that
mance index of MPC for the worst possible sequence of thaanipulates the reference signal of an already controlled
disturbance [2]. The method is known to be computationallgystem. Based on this manipulation the closed loop system
demanding and due to its conservative selection strategyidt kept in a sliding mode that guarantees the constraints to
may lead to suboptimal performance results [3]. Scenarige satisfied. The constraints can be formulated with respect
optimization [4], [5] is another robust MPC approach. Ao the closed loop states. Only bounds of the time derivative
finite number of disturbance realizations is drawn from af the closed loop states are required to be known for
known probability measure of the disturbance. The obtaina#le controller design. The approach can also be applied
finite number of realizations forms one scenario for whiah thto nonlinear systems. In [19] parameters of a linear time-
performance index is minimized. Dependent on the numbearying sliding surface are optimized to achieve eitheutnp
of disturbance realizations it can be determined how likelgaturation or to satisfy velocity or acceleration constsai
it is that the solution of the optimization problem indeedrhe considered system has relative degree three. A similar
satisfies the constraints and reaches the terminal regidi® T approach based on a nonlinear sliding surface is proposed in
based MPC is another robust control strategy. It guaranteg] to achieve velocity-constrained control of relatiegdee
the sytem states to remain in a tube around the nominglo systems. In [21] the class of linear time-invariant eyss
trajectory although some disturbances may be present [g}ith bounded disturbances is considered. A sliding mode
The method was first proposed for linear systems [6] angbntroller is applied and robust positive invariant (RRi)ss
later extended to nonlinear systems e. g. [7]. of the closed loop dynamics are determined. The intergectio
Sliding mode control (SMC) is well established in theof a state constraint set and the RPI set of the closed loop
field of nonlinear robust control [8]. It forces the systemdynamics is studied. Conditions are derived for which the
. . , . intersection itself is a RPI set. In [22] output constrained
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a min-max selection strategy. The min-max selection scheméth constant reference value € R is considered. The goal
is a multi-controller approach known e.g. from aerospacis to achieve set-point tracking in compliance with contra
industry where it is used for constrained turbo engine @bntr )

[23]. Instead of linear controllers the approach of [22] legp 1t Yeu(t) = se,Ur(t) < lea(8), Sep =+ (4)
SMCs within the framework. The approach proposed in [24)eing defined by the upper bouid () and constraint
considers robust constrained control of nonlinear systems )

that satisfy the so-called conic sector constraint [25hteSt C2t Yoo (B) = 8c,0r(t) <Ly (8), Se; = =1, (9)

feedback and SMC are combined in order to guarantee thaiing defined by the lower boune,, (¢). The bounds of the
the quadratic norm of the output variables does not exce@@nstrained variablg, (t) may be time-varying i. el (¢) €

a defined threshold neither in the reaching phase nor i pyt are assumed to be bounded from above. The input-
sliding mode. In [26] a time-varying nonlinear sliding modegtput description

is designed in order to achieve velocity-constrained cdofr

relative degree two systems. For constrained control elin §r = L}h(x) + LyLh(x)u, (6)

time-invariant systems with bounded disturbances a SMC h

been proposed in [27]. It considers input saturation ante sta

constraints. The contribution [28] studies conditions emd v = L?h(x), I'=L,L¢h(x), @)

erll'(;]h polygonal state constraints are S‘f"t'Sf'ed- is obtained from[(1)£(2), wheré&; and L, denote the Lie
is paper considers robust constrained control of non: "~ . ;

linear systems that have relative degree two with respect 906 rivatives. The uncertainty bounds

the control variable. The first time-derivative of the cohtr [T < Wy, 0<T,, <T'<Ty, (8)

variable is assumed to be constrained. The bounds of the . )

constraints may explicitly depend on time. The developeﬁre assu.m.ed to be.flnlte. The output constraints are corthecte

control strategy is a multi-controller approach that cameisi 1€ the sliding manifold

sliding mode controllers. Sl_iding manifolds are pl_acecblnel e, (t) = =1, (£) + e, (t) = 0, ie{1,2}, (9)

the bounds of the constraints and become active when the )

constrained variable approaches a bound. As a result théh functionz, (¢) and constant,, ., € R, chosen as

constrained variable is pushed away from the bound and kept VE: 0 < e, < e, (t) < le(t). (10)

in the admissible region. For the suggested approach it is

mathematically shown that the constrained control problefuantity ., (t) is assumed to be sufficient smooth

can be solved. The novelty of the suggested method is its . . .

ability to handle bounds thgt explicitly ggpend on time.sThi mpx (s (8)];liea (D)) < (11)

is an extension of our previous work [29] which is restrictedind to be bounded from below

to time-invariant bounds and does only prove boundedness )

but not convergence of the tracking error. The aformention 0 < N < MINMneq s Mmes )s (12)

approach of_ [16] is general_ in the sense tha_t _it can han%erenm,ﬁM € R., are constant. The sliding variable
any constraints expressed in terms of the sliding variableg rejated to the tracking task and defines a linear sliding

However, it cannot handle time-varying bounds. manifold
The paper is organized as follows. In Sectioh Il the
constrained control problem is described and the assump- Op = —€r — ageyr = Yr — AW + agyr = 0. (13)

tions are introduced. The control approach is developed a
analyzed in Sectiopll. Velocity-constrained robot cohis
considered as a numerical example in Sedfidn IV. Concluding er =W — Yp. (14)
remarks are made in Sectibn V.

'@ﬂjantityer denotes the tracking error

anday is a positive constant selected according to

II. PROBLEM FORMULATION ap > M ¥ 1, s >0, (15)
In this contribution the class of control-affine nonlinear m
relative degree two Systems with Ma € R>0 be'ng User-deflned It is assumed t@at:
. h(x) andy, = Lyh(x) are continuous functions so that
x = f(x)+ g(x)u, (1)  ando., are continuous.
yr = h(x), ) Ill. CONTROLLER DESIGN
with statesx € X C R7, control variabley, < R, The control design is separated into two parts. First, a

and control inputu € R is addressed. Only, and its conventional SMC is designed to solve the tracking problem.

time derivativey, are assumed to be available. A set-poinSecond, an additional SMC is designed to drive the con-

tracking problem strained variable to a sliding surface placed below the bsun
lim y,.(f) = w 3) of the constraints_._ If the constrained varia_ble appr_oaches
t—00 ’ a bound the additional SMC becomes active pushing the



variable away from the bound. The transitions between th@lgorithm 1 Robust Constrained Control Algorithm
controllers can be made smooth by choosing a suitabiﬁputS oo (D) on (D) e (0 e () (D)

controller structure. Parameters Ty T T .
In the following, a control law.,. is derived that solves the Hei ‘\j’i gi1 €cir €1 €0y A0s My Lma LMy M
k, « pr+Yrmv2 4 M

unconstrained set-point tracking task. Related to thehiagc ’ TmV2 T,
of the sliding manifolds, = 0, we introduce the Lyapunov  If sgn(gror) > 0 then o
function candidaté/, = 0.502. The dynamics Us,r < —ToTier (kr + m)

else
e -~ (b + )
of the sliding variables, are obtained by derivating_(1L3) end if lorlter (fgrorlte)Tnr
with respect to time and substitutinigl (6). To ensure tHat if Ve : o < 0 then
is indeed a Lyapunov function the control input has to be v =

6r =V + Tu, + agys- (16)

selected suitably to guarantee that inequality U Usyr
) else if3¢; : 0., > 0 then
Voo b o i o R e,
< Uylor| + aoyror + Topuy, if —n.,sgn(o.,) > 0 then
ILLT ﬁcigci ‘ncl‘
< _ﬁ|0’r| <0, (7) K, 4 Ps,ei — [Ne;0c;1+€q; Tm
else
is satisfied foro,. # 0. Quantity 1, € R is a user-defined Koo, = Poos — = Ne;Oc; 1Ml
parameter that influences the rate of convergence. Dividing end if7 ’ ¢ IneoeilHeq T
(I7) by |o,.| > 0 andT > 0 leads to o
u <— us,'r‘ — Scik&ci m
T v 2 .T‘S T i ’ ’
_sgr(oyJu, > Lt YMV2 | a0dSOrn) g end if
Tny/2 r Output u(t)
which is solved by
_ aob‘yrl 1
Uy = sgnor) (kr + 1;@ ’ itb=0, 19) W_hereuci € R+ is user-defined. Dividind(23) by.,| # 0
—sgn(o,.) (k. + ‘“’F—BT' , if b<0, gives
. . He,;
r+ U 2 , . , . . e ) < ——=.
h, = Hr T MV S I:L \%\/_ + %, b = sgny,oy). (20) SgN0e) (e, ¥ + 86, Tt = i) < V2 (24)

Consequently, by applying control input according to[(1I9) Rearranging and multiplying (24) by1/T" < 0 leads to

function V. is indeed a Lyapunov function that makgs,|

decrease to zero in finite-time as stated by (17). The term

+?—Z of k, is added as it becomes cruical in the proof o

Lemmal[Ill.2 which shows thafj,. will not approach the

bound of constraint; (c2) if o > 0 (0, < 0) holds. te; + Va2 B Te, sgnc..). (26)
In the following, an additonal control law,, is designed V2 r o

to avoid violation of the constraints. Frofd (9) it is knowiath Substituting the controller structure{21) [126) yields

the sliding manifoldb., = 0 is placed below the bound of the

constraint. Consequently, surfagg = 0 should be reached fre, + Uarv/2 e

if y., is too close to the bound,. Reaching of the manifold ~“ =~ 1,2 r

is considered based on the Lyapunov functlo_n candidagyi-h is required to be satisfied by the controller gain.

Ve, = 0.502 . The controller structure of the addional SMCFinaIIy, from [27) the control law

is assumed as

He; 5¢; ¥ _ Te;
e (57— Tsarn). @29)

izrom the uncertainty bounds (8), it follows

- Sgl’(oci )Sciuci >

—Sg r(UCi )SC«; Ue; 2

Sgr(o-cl) + Sgr(o'ci)sciura (27)

Ue, = Uy — ke, SQN0G, ), (28a)
Ue, = Uy — S, ke, SQMoe, ). 21 ! ! !
’ e, sgn(oe, ) (21) ey =ty + Fo,SGH00,), (28b)
Derivating [9) with respect to time and considering (#)—(6) . h
leads to wit
sgr( CI)‘ .Cil 1
Ge, = —Tje, + 56, U + 5¢, T, . (22) b Pat ﬁ if g, >0, (29)
Ci T sgnge, 7‘7ci H
Multiplying @2) by o, yields Pet =10 e <0,
. e, = —1¢,S ), 30
‘/Ci = O'Ciol-ci = O'CT;(SC,L\]J + Scil—‘uci - ,';Ici)a ¢ ’ g ‘ g\];(a;/)i ( )
te; _ Mo + VWM
_ e e; = ————— + SO0, ) Sc, Ur, 31
< 510l < 0, (23) Pe; T3 gn(oe,) (31)



is obtained.

the control input defined by AlgorithEd 1 with = €., =

Both control laws [(I9) and(28) lead to chattering. Tae, = €, = 0. Assumeve;: o, (tf1) < 0 to hold at some

overcome the problem smooth approximations (8gn~
a/(la| + €,) with €, € R>q are introduced leading to

finite timet 1. Theno,(t) reaches zero at a finite timg, >
tp1. Fort € [ty1,ty2] the value|o,(ts1)| is an upper bound

oy k aoYror|Yr| ifb>0 of |U7‘(t)|
N B s o B L |
’ 5 (ke o+ m%) if b<o0, Proof. The case®,(ty1) > 0 ando,.(tf1) < 0 are discussed
separately.
with €., &, € R>¢ for (I9) and Supposer,.(tf1) > 0 to hold It will first be shown that
B Oc; if o,(tf1) > 0 andVe; : o, (t51) < 0 hold then only input
Us,er = Us,r — Seikis.c; o, Fee,’ (33) (I9) or input [28b) are applied unt, reaches zero.
with ' As Ve, : o, (tr1) < 0 holds control input[(19) is applied
- at timet ;. Control input [(19) is
o Ps,c; + Qs,c; I—]*Z 5 if de; Z O, a0|yr|
S T A wy = - (k + ] ) <0, (39)
Qoo = — e (35) in case ofs, > 0 and if . > 0 is assumed. Replacing.,
7 [e;0e,| + €4, in (22) by u,- < 0 from (38) and considering,. > 0 as well
pos, = Mo + U2 OciSe 36) assuming,. > 0 yields
F;\/i |0-Ci e dc1 = _770¢ + ¥+ T'u,,
ande,,, ¢;, € R>q for (28). . . .
The overall control strategy is described as follows. From < s+ Vs + D = _% — aolgr[ < 0. (39)

@. @). (9). [10) it can be seen that, < 0 holds true if If 0., = 0theny,. = n., > 0 holds andy, is indeed positive.

and only if the constrained variables are in the admissibl . 7 .
region. In this case control lai {B2) is applied to achieve&onsequentlyﬂ% holds in case of, = 0 guaranteeing that

reference tracking. 1., > 0 holds the constrained variable de, Cannot become pqsmve. Flnglly, as _Iongoa,s> 0 holds
is aproaching a bound so that control law](33) becometgue and_only control inpuf{19) is gpplled:l <0 hoIds._
Quantity 0., may become positive so that the input

active. It enforces,, < 0 so that violation of the constraints . .
is avoided. The swichting between the controllers appea(r:g1anges to [(28b). However, control inpif (P8b) is only

wheno,, switches from zero to a non-zero positive value anapp“ed if oc, = —ne, — Y > 0 holds which leads to

. . < —MNey — Ney < 0. SO0, < 0 holds true. Statement
vice versa. Based on (B3) it can be seen that, — us.. Ter ! 2 = ! . .

. . o g < '28 l. .

holds in case ob., — 0. The transition of the controllers 0c, < 0 also holds if input[(28b) switches to inpUL{19)

n this cases., = —n., — ¥» = 0 holds which leads to
becomes smooth due to the chosen structuré (21) and the Zne, < 0. Consequently, inpu{2Ba) is not

. . . . : Tey = —MNey
applied smooth approximations of the signum function. The lied | hold
control strategy is summarized by Algoritirh 1. appliec as fong as, > 0 holds, L

Based on the following analysis it is shown that the It will be shown that by applying inpu (19) of (2Bb)

. sliding variables, decreases to zero at finite tine, and
proposed controller solves the constrained control proble . ) :
or(tr1) is an upper bound of,.(t) with ¢ € [ts1,ts2]. For

Theorem I1l.1. Consider control of systeni](1)3(2) basednput (19) the statement directly follows from the satisfied
on the control input defined by Algoritimh 1 with=¢,, = reachability condition[(17) which implies that, strictly
e = ¢, = 0. There exists some finite timg so that the decreases. Consider application of control infui [28b). As
constraints are satisfied far> ¢, i. e. Ve, o (tr1) < 0 holds initially there may exist some
instants of timety > ¢1 > tf1 with o, (t1) = 0., (t2) =
() <50 0) < L (), @) e v

0. Considert! € (t1,t3) to be a time interval in which

holds for¢ > t;. In addition o, (t) < A is achieved for e, (t") > 0 holds. According to[(T3) it is

t >ty with A > 0 being arbitrary small. Ifve; : o, (to) <0 t*

holds for the initial time instant, thent; = t. or(t*) = 9, (t*) — aow + agy-(t1) +/ aoyr(7)dr, (40)
t1

Proof. From Algorithm[1 it is known that the controller

satisfies the reachability condition {23) in caseopf > 0.

Consequentlyg., (t) < A holds fort > ¢ with ¢ty being

finite andA > 0 being arbitrary small. Replacingy by some

some specifid\ (t) = I.,(t) —n.,(t) > 0 and considering the

definition o, (t) = —n¢, (t) + ye, (t) leads toy., (t) < I, (t)

fort > ty. [ |

at any timet* € [t1,t2]. Fromo., (t*) > 0 it is known that
Ur(t*) < =1, (t*) holds leading to

Or (t*) < ao(yr(tl) - U}) +/ (onr(T)dT — TNey (t*)' (41)

t1
Consideraq to be a positive constant defined as
Thes (1)
gr(t)

aO:n_M+HaZ
hm

+ Ha; Ha > 0. (42)

Lemma IIl.2. Consider control of systeril(1)3(2) based on



Substituting the right hand side df{42) in{41) and solvingAs o, is known to be bounded b\ according to[(45) it
the integral and considering thét is negative and bounded follows thato,, (tc +7¢) < 0 can be achieved after the finite
asy, < —nm < 0 gives time periodr; = A—Z/é at the latest. Since.,(t. +77) <0
o (1) < ao(yr(t1) — ) — pratim(t* — t1) — ey (t1). (43) holds Lemmdﬂf can _b_e applied and it_is known that
reaches zero at some finite timg,. Following the Lemma
Fromo,,(t1) = 0 it is known that—7., (t1) = 9-(t1) holds. |0, | is bounded bylo,(t. + 7¢)| in interval [t + 7¢,ts2].
Replacing—n., (t1) in (43) and considering the definition of Boundedness in intervadly, t. + 7] is studied as follows.
o, from (@3) yields Sliding variable/o,.| can only increase by applying inplf{28)
. . (input (I9) can only decrease,.|). By applying the triangle
or(t") < or(tr) = panm (t” — 1), Hallm > 0. (44) inequality on [(16) and cons?de|ring the uncertainty bounds i
Supposer, (t7) < 0 to hold The proof is similar to the follows

or(ts1) > 0 case. (] (60 = [0 + T+ agge] < Uar + Tatlul + aolar,  (47)

Lemma I1.3. Consider control of systeril(1)+(2) based on . ,
the control input defined by Algorithfd 1 with = e., = with constant,y defined as

e, = €q = 0. There exists some finite timg so that max (I, (t),le, (t)) < lar. (48)
o.(t;) = 0 holds ando,,(t) < A is achieved fort > t; o Lo .

with A > 0 being arbitrary small. Substituting [(2B)£(31) in((28) yields

Proof. As the controller satisfies the reachability condition upgo, 2 o + U2 + [7es > |ug, | (49)
(23) in case ofic;: 0., > 0 it is always possible to find o L'nv/2 L =77

some finite timet, at whichVce;: o, (t;1) < 0 holds and  for inputu,, . Substitutingu of @3) by u,y.., from (@3) gives
Ve, @ 0., (t) < Ais achieved fot > ¢, with A > 0 arbitrary .

small. By applying Lemm&TIT12 it follows that the finite time 162] < (e + VnvV2)Tas e

ty > ts exists at whicho,.(¢7) = 0 holds. | e T2 Ty,

é .
Theorem 1Il.4. Consider control of systeni](1)3(2) based + W +aolar = [Gv]py- (50)
on the control input defined by Algorithh 1 with= e, = Multiplying (B0) by 7; leads to
ey = €4, = 0. There exists some finite timtg so that for

t > t, the tracking error|e,(t)| converges to the domain o (E)] < 160 ]py7r + €,

|07‘|]\/f . . . . 2

et asymptotically, wheréo, [, > 0 is arbitrary small. _ |UT|M\/_A Fe oy, (51)
Proof. Based on LemmBl1Il]3 it is known that a finite time fe:

ty exists so that,(t;) = 0 holds and for t8 € [ty,tc + 74]. From [4B) it is known thatA > 0

is arbitrary small. AsA, e > 0 in (&1) are abitrary small it
oa(t) < A, (45) follows that|o,| is bounded byo,. |y, > 0 arbitrary small on

with A > 0 arbitrary small is achieved fdr> ¢ ;. Under the time interval[t;,t. +7¢]. Since|o,| is bounded byo, (t. +
mentioned conditions it will be shown that.(t) remains 7¢)| on[tc + 77, ts2] as mentioned before it follows that, |
bounded for¢t > t; until o,(t) reaches zero again. i, is bounded bylo, |y > 0 arbitrary small onlt s, to].
reaches zero it will again be bounded afterwards as theln the sequel it is shown that far > ¢ the tracking
preliminary formulated conditions are again satisfied &e. error |e,.(¢)| converges to the domaiﬁ% asymptotically.
equals zero and{45) is satisfied. Consider an arbitray smabnsiderV (t) = |e,(t)] > lorlv 4 hold. DerivatingV/ ()
€ > 0 to be the maximum value db..(¢*)| on some time \jth respect to time yields 0
interval t* € [ts,tc]. .

Supposer,, (t.) < 0 to hold true forc; and c: V(t) = sgn(ex(t)) & (t). (52)
Ift follqws from LemmalIl[.2 thato, reaches zero at some o [13) it is known that
finite timet ;o > t;. As stated by the Lemma..| is bounded
by |o,.(t.)| on intervallt,, ¢ s2]. As |o,| is bounded by on = Ur(t) = é-(t) = —aoer(t) — o, (1), (53)
interval [ts,t] it follows that |o,.| is bounded by arbitrary
smalle £ |o,|pr on intervallt s, t o).

Supposer, (t) > 0 to hold true forc, exclusive orc;: aoler(t)] > |ov]yy > |on ()], (54)
It will be shown that some finite time periog; exists so . .
thatoe, (t1) = —n., (t1) + ye, (t1) < 0 holds fort! = t, + 7/ Based on[(54) it can be seen that the sigr-afe, (t)—o,.(t)
at the latest. As long as., > 0 holds control input[{28) is in (63) equals the sign ofe, (¢). Consequently, ife, (t)| >

applied which satisfies the reachability conditions,, < Z-* holds [53) can be written as

—L4 o, |. Forag, > 0 it follows ' '

el Feree —r(t) = &,(t) = —sgn(e,(t))| — ager(t) — or(t)], (55)
He;

dci = _7.701’ + /yC'L = _ﬁci + ScijjT < - \/5 (46)

holds. In case ofe.(t)| > % it follows




TABLE |
CARTESIAN COORDINATES(Z¢q, Yca) AND JOINT ANGLES OF THE
WAYPOINTS

Tea M Yea M a1 [°] a2 [°]

WP-A | 0.900 0.100 26.511 —51.318
WP-B | —0.700 0.500 168.873 —62.720
WP-C | 0.100 0.400 117.562 —136.817

an interim waypoint B (WP-B). During the movement the
Fig. 1. Rotatory two-link robot with external forcy, link lengthsd;  angular velocities of the joints are restricted. At WP-B a
anddz, joint anglesg: andgz, and torquesry and 7. payload of80kg is picked up simulated by, = 80kg x
. 9.81 m/s?. The Cartesian coordinates of the waypoints and
with their corresponding desired joint angles are shown in Table
| — aper(t) — op(t)] > 0. (56) [ If the Euclidean distance between the actual and desired
end effector position is less th&n)05 m the robot moves to
Substituting [(5b) in[(52) as well ab (53) in_{56) and considthe next waypoint. If the last waypoint is reached with the

ering thaty,.(t) is bounded it follows desired accuracy the simulation terminates. &gt define
o the i-th constraint of the angular velocity. The bound of
_ —le, <0, if g, = le,, the constraint; ; is defined based on
V({t) =1 —l, <0, it — g =L, (57) o
—1 X |CL| <0, if — ZC2 < yr < lcl, lci,j = (GC(WPQJ' - QJ)Q + bc) %7 i,j € {172}1 (61)
la| = | — ager(t) — o (t)] > 0, with a. = 26.26, b. = 10, and WR, denoting the reference

_ o |t of angleg; in radiant. The time-varying bound (61) enforces

in case of V() = [e.(t)] > = . Consequentlyle.(t)]  the robot to slow down when it approaches a waypoint.

converges to the domaiﬁ;‘)—M asymptotically. | To achieve the desired control goals the following MIMO
controller

IV. NUMERICAL EXAMPLE
In this section velocity-constrained point to point cohtro

of a robot is considered. Limitation of the robot velocitywith

is known to be crucial in the context of safe human robot T

interaction [30]. The robot is assumed to be a rotatory two- v=[n w], (63)

link robot as shown in Fid.]1). The same kind of robot hasgs introduced. Substituting (62) ifL(58) yields
been considered for constrained MPC in [31] and [32]. In

7 =B(q)v + C(q,q)q + g(a), (62)

[32] the two-link model has been used to implement MPC i1 =V1(aq,q, Fy) +v1, (64)
on a KUKA LWR V. The dynamics of the two-link robot ir2 = Ua(q,q, Fy) + vo, (65)
are given by

where ¥, ¥, denote uncertainties related to the unknown
B(q)4 + ¢(q,q) =7+ &(q, Fy), (58) friction terms f,, f,, and the unknown payload,. The
control problem is reduced to the design of two SISO
controllers with relative degree two input-output relaso
d(q, ) = C(q, 4)aq + fod + f:5914) + g(q), (59) Algorithm[1 is applied to define the control inputs and s
o N separately. The controller parameters and uncertaintpd®u
where the joint angles, angular velocities, and actuatgfe tuned by trial and error. The uncertainty bounds are

and

torques are increased until sufficient tracking performance is achieve
¢ 0 o) The boundary layer widths, € R>( of the smooth approxi-
Q= [QQ] ’ = [QQ] ’ = L'Q] : (60)  mations sgfu) ~ a/(|a|+¢,) are tuned to find a compromise

. . . . between tracking accuracy and chattering mitigation. Let
The dynamics can be derived using Lagrange equations antrollerj € {1,2} be related to the control of angje. The

the seco_nd kin_d [33]. Model[(58) includes_viscou_s frictin auxiliary functionn,, ;(t) has to be chosen in accordance to
and static frictionf,. An external forceF), is considered to (10). By adapting the difference, ;(t) — 1.,.:(1) > 0 the
: isJ CisJ

simulate a payload. The friction related quantitfgsand f; distance between the constrained variables and their lsound

as well as the payload are assumed unknown. Details ab%létn be adiusted. Functi (1) is finally selected as
model [58 are given in AppendiX I. The goal is to control I - Functiop, ; (¢) is finally

the angles of the joints so that the end effector moves from Tes i (1) = Loy (1) — 2 (66)
an initial waypoint A (WP-A) to a waypoint C (WP-C) via ! e 360’
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Fig. 2. Evaluation of control approach based on Algoritiin(a). Trajectory of the end effector in the Cartesian domaimvéfment from WP-A to

WP-C over WP-B. Visualization of robot configuration (joiagles) at the waypoints. (b) Angle and angular velocityhef first joint dependent on time.
Visualization of reference value, constraints, and eftédhe payload. (c) Angle and angular velocity of the secadtjdependent on time. Visualization
of reference value, constraints, and effect of the payl¢ddTorques generated by the controller. Visualization géction effect related to the payload.

for all i,5 € {1,2}. The values of the remaining controller explicitly depend on time. This enables broader applicetio

parameters arény ; = 6,7m,; = 0.1, 1,; = 0.01, 1, ; = Related to mechanical systems the suggested approach al-
3, fhesj = 2}?21. The assumed uncertainty bounds ardéows velocity-constrained control with online update oé th
Uy=1Tpy=2,T,, =0.2. velocity bounds depending on e. g. the distance to obstacles

The simulation results are visualized in Hig. 2. The wayer set-points.
points are reached with the desired accuracy and the welocit
constraints are satisfied for the complete time horizon. The VI. ACKNOWLEDGMENTS
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down in the vicinity of a waypoint. The approach showsomments.
robust properties as the control goals are achieved in pcese
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APPENDIX |
SIMULATION OF ROBOTIC SYSTEM

According to [33] the quantitieg;, B, C, g, £ of model
(9). (59) are

fr(@) = foa+ fssgn(@), (67)
DN ieh B S I
Cla.d) = —ersini) [ B 0] 69
_ |91c08q1) + g2c0gq1 + ¢2)
gla) = [ 9204 q1 + q2) } ’ (70)
_  |dicodqr) + d2€0gq1 + g2)
fla, Fy) = Fy [ et +as) } SN

The position of the end effector in the Cartesian domain is

hca (q) -

[xca] _ [dlcm(ql) + dacoggr + fh)} 72)
Yea d1Sin(q1) + d2Sin(q1 + q2) |

The model parameters are summarized in Table II.
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