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Abstract— In this paper robust constrained control of non-
linear systems that have relative degree two with respect tothe
control variable is considered. The first time derivative of the
control variable is assumed to be the constrained variable.The
developed control approach is based on sliding mode control
design. It places sliding manifolds below the bounds of the
constraints so that the constrained variable will be forced
to stay in the admissible region if it approaches a bound.
For the proposed control method it is analytically shown that
the constrained control problem can be solved. This includes
consideration of time-varying behavior of the bounds. Velocity-
constrained control of a two-link robot is considered as a
numerical example.

I. INTRODUCTION

Constrained control problems arise in many applications
like autonomous vehicles, process industry, traffic control or
robotics.

Model predicitve control (MPC) is widely applied and
known for its property to handle constraints of MIMO sys-
tems. In addition to that MPC forecasts the future system be-
havior in order to minimize a defined performance index over
the considered time horizon [1]. However, MPC is model-
based which means that parametric- or external uncertainties
may have a negative influence on the control performance.
In order to overcome this problem several approaches related
to robust MPC have been developed. The strategy behind
the so-called min-max approaches is to minimize the perfor-
mance index of MPC for the worst possible sequence of the
disturbance [2]. The method is known to be computationally
demanding and due to its conservative selection strategy it
may lead to suboptimal performance results [3]. Scenario
optimization [4], [5] is another robust MPC approach. A
finite number of disturbance realizations is drawn from a
known probability measure of the disturbance. The obtained
finite number of realizations forms one scenario for which the
performance index is minimized. Dependent on the number
of disturbance realizations it can be determined how likely
it is that the solution of the optimization problem indeed
satisfies the constraints and reaches the terminal region. Tube
based MPC is another robust control strategy. It guarantees
the sytem states to remain in a tube around the nominal
trajectory although some disturbances may be present [6].
The method was first proposed for linear systems [6] and
later extended to nonlinear systems e. g. [7].

Sliding mode control (SMC) is well established in the
field of nonlinear robust control [8]. It forces the system
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states on a manifold called sliding surface. The dynamics
on the surface can be designed in order to achieve some
desired behavior like convergence of tracking error. Distur-
bances within the range of defined uncertainty bounds are
rejected by pushing the states back on the sliding surface
immediately. This behavior of the SMC provides inherent
robustness against parametric uncertainties and externaldis-
turbances. Compared to MPC the computational burden of
SMC is less. The drawback of conventional SMC is a high
frequency switching of the input signal denoted as chattering.
In order to mitigate this effect several approaches have
been develeoped e. g. the boundary layer approach [9], the
exponential reaching law [10], [11], higher order SMCs [12],
[13], and adaptive gain approaches [14], [15].

Several constrained SMC approaches can be found in
the literature. The authors in [16] make use of a state
transformation to express the constraints in terms of the
sliding variables. A higher order SMC is applied to drive the
sliding variables to zero without violating the constraints. A
maximum domain of attraction is achieved and the approach
can be applied to nonlinear systems with generic relative
degree. In [17] similar results are achieved regarding con-
strained control of nonlinear relative degree two systems.
A maximum domain of attraction is also provided. An
approach denoted as sliding mode reference conditioning is
proposed in [18]. It is an outer loop control approach that
manipulates the reference signal of an already controlled
system. Based on this manipulation the closed loop system
is kept in a sliding mode that guarantees the constraints to
be satisfied. The constraints can be formulated with respect
to the closed loop states. Only bounds of the time derivatives
of the closed loop states are required to be known for
the controller design. The approach can also be applied
to nonlinear systems. In [19] parameters of a linear time-
varying sliding surface are optimized to achieve either input
saturation or to satisfy velocity or acceleration constraints.
The considered system has relative degree three. A similar
approach based on a nonlinear sliding surface is proposed in
[20] to achieve velocity-constrained control of relative degree
two systems. In [21] the class of linear time-invariant systems
with bounded disturbances is considered. A sliding mode
controller is applied and robust positive invariant (RPI) sets
of the closed loop dynamics are determined. The intersection
of a state constraint set and the RPI set of the closed loop
dynamics is studied. Conditions are derived for which the
intersection itself is a RPI set. In [22] output constrained
control of linear single input systems is considered. Multiple
sliding mode controllers are combined with each other using
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a min-max selection strategy. The min-max selection scheme
is a multi-controller approach known e. g. from aerospace
industry where it is used for constrained turbo engine control
[23]. Instead of linear controllers the approach of [22] applies
SMCs within the framework. The approach proposed in [24]
considers robust constrained control of nonlinear systems
that satisfy the so-called conic sector constraint [25]. State
feedback and SMC are combined in order to guarantee that
the quadratic norm of the output variables does not exceed
a defined threshold neither in the reaching phase nor in
sliding mode. In [26] a time-varying nonlinear sliding mode
is designed in order to achieve velocity-constrained control of
relative degree two systems. For constrained control of linear
time-invariant systems with bounded disturbances a SMC has
been proposed in [27]. It considers input saturation and state
constraints. The contribution [28] studies conditions under
which polygonal state constraints are satisfied.

This paper considers robust constrained control of non-
linear systems that have relative degree two with respect to
the control variable. The first time-derivative of the control
variable is assumed to be constrained. The bounds of the
constraints may explicitly depend on time. The developed
control strategy is a multi-controller approach that combines
sliding mode controllers. Sliding manifolds are placed below
the bounds of the constraints and become active when the
constrained variable approaches a bound. As a result the
constrained variable is pushed away from the bound and kept
in the admissible region. For the suggested approach it is
mathematically shown that the constrained control problem
can be solved. The novelty of the suggested method is its
ability to handle bounds that explicitly depend on time. This
is an extension of our previous work [29] which is restricted
to time-invariant bounds and does only prove boundedness
but not convergence of the tracking error. The aformention
approach of [16] is general in the sense that it can handle
any constraints expressed in terms of the sliding variables.
However, it cannot handle time-varying bounds.

The paper is organized as follows. In Section II the
constrained control problem is described and the assump-
tions are introduced. The control approach is developed and
analyzed in Section III. Velocity-constrained robot control is
considered as a numerical example in Section IV. Concluding
remarks are made in Section V.

II. PROBLEM FORMULATION

In this contribution the class of control-affine nonlinear
relative degree two systems

ẋ = f(x) + g(x)u, (1)

yr = h(x), (2)

with statesx ∈ X ⊆ R
n, control variableyr ∈ R,

and control inputu ∈ R is addressed. Onlyyr and its
time derivativeẏr are assumed to be available. A set-point
tracking problem

lim
t→∞

yr(t) = w, (3)

with constant reference valuew ∈ R is considered. The goal
is to achieve set-point tracking in compliance with constraint

c1 : yc1(t) = sc1 ẏr(t) ≤ lc1(t), sc1 = +1, (4)

being defined by the upper boundlc1(t) and constraint

c2 : yc2(t) = sc2 ẏr(t) ≤ lc2(t), sc2 = −1, (5)

being defined by the lower bound−lc2(t). The bounds of the
constrained variablėyr(t) may be time-varying i. e.lci(t) ∈
R>0 but are assumed to be bounded from above. The input-
output description

ÿr = L2
fh(x) + LgLfh(x)u, (6)

with

Ψ = L2
fh(x), Γ = LgLfh(x), (7)

is obtained from (1)–(2), whereLf andLg denote the Lie
derivatives. The uncertainty bounds

|Ψ| ≤ ΨM , 0 < Γm ≤ Γ ≤ ΓM , (8)

are assumed to be finite. The output constraints are connected
to the sliding manifold

σci(t) = −ηci(t) + yci(t) = 0, i ∈ {1, 2}, (9)

with function ηci(t) and constantηm,ci ∈ R>0 chosen as

∀t : 0 < ηm,ci < ηci(t) < lci(t). (10)

Quantityηci(t) is assumed to be sufficient smooth

max
t

(

|η̇c1(t)|, |η̇c2(t)|
)

< η̇M , (11)

and to be bounded from below

0 < ηm < min(ηm,c1 , ηm,c2), (12)

whereηm, η̇M ∈ R>0 are constant. The sliding variableσr

is related to the tracking task and defines a linear sliding
manifold

σr = −ėr − a0er = ẏr − a0w + a0yr = 0. (13)

Quantityer denotes the tracking error

er = w − yr. (14)

anda0 is a positive constant selected according to

a0 ≥
η̇M
ηm

+ µa, µa > 0, (15)

with µa ∈ R>0 being user-defined. It is assumed thatyr =
h(x) and ẏr = Lfh(x) are continuous functions so thatσr

andσci are continuous.

III. CONTROLLER DESIGN

The control design is separated into two parts. First, a
conventional SMC is designed to solve the tracking problem.
Second, an additional SMC is designed to drive the con-
strained variable to a sliding surface placed below the bounds
of the constraints. If the constrained variable approaches
a bound the additional SMC becomes active pushing the



variable away from the bound. The transitions between the
controllers can be made smooth by choosing a suitable
controller structure.

In the following, a control lawur is derived that solves the
unconstrained set-point tracking task. Related to the reaching
of the sliding manifoldσr = 0, we introduce the Lyapunov
function candidateVr = 0.5σ2

r . The dynamics

σ̇r = Ψ+ Γur + a0ẏr. (16)

of the sliding variableσr are obtained by derivating (13)
with respect to time and substituting (6). To ensure thatVr

is indeed a Lyapunov function the control inputur has to be
selected suitably to guarantee that inequality

V̇r = σ̇rσr = Ψσr + Γσrur + a0ẏrσr ,

≤ ΨM |σr|+ a0ẏrσr + Γσrur,

≤ − µr√
2
|σr| < 0, (17)

is satisfied forσr 6= 0. Quantityµr ∈ R>0 is a user-defined
parameter that influences the rate of convergence. Dividing
(17) by |σr | > 0 andΓ > 0 leads to

−sgn(σr)ur ≥
µr +ΨM

√
2

Γm

√
2

+
a0ẏrsgn(σr)

Γ
, (18)

which is solved by

ur =







−sgn(σr)
(

kr +
a0b|ẏr|
Γm

)

, if b ≥ 0,

−sgn(σr)
(

kr +
a0b|ẏr|
ΓM

)

, if b < 0,
(19)

kr =
µr +ΨM

√
2

Γm

√
2

+
η̇M
Γm

, b = sgn(ẏrσr). (20)

Consequently, by applying control inputur according to (19)
function Vr is indeed a Lyapunov function that makes|σr|
decrease to zero in finite-time as stated by (17). The term
+ η̇M

Γm
of kr is added as it becomes cruical in the proof of

Lemma III.2 which shows thaṫyr will not approach the
bound of constraintc1 (c2) if σr > 0 (σr < 0) holds.

In the following, an additonal control lawuci is designed
to avoid violation of the constraints. From (9) it is known that
the sliding manifoldσci = 0 is placed below the bound of the
constraint. Consequently, surfaceσci = 0 should be reached
if yci is too close to the boundlci . Reaching of the manifold
is considered based on the Lyapunov function candidate
Vci = 0.5σ2

ci
. The controller structure of the addional SMC

is assumed as

uci = ur − scikcisgn(σci). (21)

Derivating (9) with respect to time and considering (4)–(6)
leads to

σ̇ci = −η̇ci + sciΨ+ sciΓuci. (22)

Multiplying (22) by σci yields

V̇ci = σci σ̇ci = σci(sciΨ+ sciΓuci − η̇ci),

≤ −µci√
2
|σci | < 0, (23)

Algorithm 1 Robust Constrained Control Algorithm

Inputs σci(t), σr(t), ηci(t), yci(t), yr(t)
Parametersµci , µr, ǫqi , ǫci , ǫr, ǫb, a0, ΨM , Γm, ΓM , η̇M

kr ← µr+ΨM

√
2

Γm

√
2

+ η̇M

Γm

if sgn(ẏrσr) ≥ 0 then
us,r ← − σr

|σr|+ǫr

(

kr +
a0ẏrσr |ẏr|

(|ẏrσr |+ǫb)Γm

)

else
us,r ← − σr

|σr|+ǫr

(

kr +
a0ẏrσr |ẏr|

(|ẏrσr |+ǫb)ΓM

)

end if
if ∀ci : σci ≤ 0 then

u← us,r

else if ∃ci : σci > 0 then

ps,ci ←
µci

+ΨM

√
2

Γm

√
2

+
σci

sci
|σci

|+ǫci
ur

if −η̇cisgn(σci) ≥ 0 then
ks,ci ← ps,ci −

η̇ci
σci

|η̇ci
σci

|+ǫqi

|η̇ci
|

Γm

else
ks,ci ← ps,ci −

η̇ci
σci

|η̇ci
σci

|+ǫqi

|η̇ci
|

ΓM

end if
u← us,r − sciks,ci

σci

(|σci
|+ǫci )

end if
Output u(t)

whereµci ∈ R>0 is user-defined. Dividing (23) by|σci | 6= 0
gives

sgn(σci)(sciΨ+ sciΓuci − η̇ci) ≤ −
µci√
2
. (24)

Rearranging and multiplying (24) by−1/Γ < 0 leads to

− sgn(σci)sciuci ≥
µci

Γ
√
2
+ (

sciΨ

Γ
− η̇ci

Γ
)sgn(σci). (25)

From the uncertainty bounds (8), it follows

− sgn(σci)sciuci ≥
µci +ΨM

√
2

Γm

√
2

− η̇ci
Γ

sgn(σci). (26)

Substituting the controller structure (21) in (26) yields

kci ≥
µci +ΨM

√
2

Γm

√
2

− η̇ci
Γ

sgn(σci) + sgn(σci)sciur, (27)

which is required to be satisfied by the controller gainkci .
Finally, from (27) the control law

uc1 = ur − kc1sgn(σc1), (28a)

uc2 = ur + kc2sgn(σc2), (28b)

with

kci =







pci +
sgn(qci )|η̇ci

|
Γm

, if qci ≥ 0,

pci +
sgn(qci )|η̇ci

|
ΓM

, if qci < 0,
(29)

qci = −η̇cisgn(σci), (30)

pci =
µci +ΨM

√
2

Γm

√
2

+ sgn(σci)sciur, (31)



is obtained.
Both control laws (19) and (28) lead to chattering. To

overcome the problem smooth approximations sgn(a) ≈
a/(|a|+ ǫa) with ǫa ∈ R≥0 are introduced leading to

us,r =







− σr

|σr |+ǫr

(

kr +
a0ẏrσr |ẏr|

(|ẏrσr |+ǫb)Γm

)

if b ≥ 0,

− σr

|σr |+ǫr

(

kr +
a0ẏrσr |ẏr|

(|ẏrσr |+ǫb)ΓM

)

if b < 0,
(32)

with ǫr, ǫb ∈ R≥0 for (19) and

us,ci = us,r − sciks,ci
σci

|σci |+ ǫci
, (33)

with

ks,ci =







ps,ci + qs,ci
|η̇ci

|
Γm

, if qci ≥ 0,

ps,ci + qs,ci
|η̇ci

|
ΓM

, if qci < 0,
(34)

qs,ci = −
η̇ciσci

|η̇ciσci |+ ǫqi
, (35)

ps,ci =
µci +ΨM

√
2

Γm

√
2

+
σcisci
|σci |+ ǫci

ur, (36)

andǫci , ǫqi ∈ R≥0 for (28).
The overall control strategy is described as follows. From

(4), (5), (9), (10) it can be seen thatσci ≤ 0 holds true if
and only if the constrained variables are in the admissible
region. In this case control law (32) is applied to achieve
reference tracking. Ifσci > 0 holds the constrained variable
is aproaching a bound so that control law (33) becomes
active. It enforcesσci ≤ 0 so that violation of the constraints
is avoided. The swichting between the controllers appears
whenσci switches from zero to a non-zero positive value and
vice versa. Based on (33) it can be seen thatus,ci → us,r

holds in case ofσci → 0. The transition of the controllers
becomes smooth due to the chosen structure (21) and the
applied smooth approximations of the signum function. The
control strategy is summarized by Algorithm 1.

Based on the following analysis it is shown that the
proposed controller solves the constrained control problem.

Theorem III.1. Consider control of system (1)–(2) based
on the control input defined by Algorithm 1 withǫr = ǫci =
ǫb = ǫqi = 0. There exists some finite timetf so that the
constraints are satisfied fort ≥ tf i. e.

− lc2(t) ≤ ẏr(t) ≤ lc1(t), (37)

holds for t ≥ tf . In addition σci(t) ≤ ∆ is achieved for
t ≥ tf with ∆ > 0 being arbitrary small. If∀ci : σci(t0) ≤ 0
holds for the initial time instantt0 then tf = t0.

Proof. From Algorithm 1 it is known that the controller
satisfies the reachability condition (23) in case ofσci > 0.
Consequently,σci(t) < ∆ holds for t ≥ tf with tf being
finite and∆ > 0 being arbitrary small. Replacing∆ by some
some specific̃∆(t) = lci(t)−ηci(t) > 0 and considering the
definition σci(t) = −ηci(t) + yci(t) leads toyci(t) < lci(t)
for t ≥ tf . �

Lemma III.2. Consider control of system (1)–(2) based on

the control input defined by Algorithm 1 withǫr = ǫci =
ǫb = ǫqi = 0. Assume∀ci : σci(tf1) ≤ 0 to hold at some
finite timetf1. Thenσr(t) reaches zero at a finite timetf2 ≥
tf1. For t ∈ [tf1, tf2] the value|σr(tf1)| is an upper bound
of |σr(t)|.

Proof. The casesσr(tf1) > 0 andσr(tf1) < 0 are discussed
separately.

Supposeσr(tf1) > 0 to hold: It will first be shown that
if σr(tf1) > 0 and∀ci : σci(tf1) ≤ 0 hold then only input
(19) or input (28b) are applied untilσr reaches zero.

As ∀ci : σci(tf1) ≤ 0 holds control input (19) is applied
at time tf1. Control input (19) is

ur = −
(

kr +
a0|ẏr|
Γm

)

< 0, (38)

in case ofσr > 0 and if ẏr > 0 is assumed. Replacinguci

in (22) byur < 0 from (38) and consideringσr > 0 as well
as assuminġyr > 0 yields

σ̇c1 = −η̇ci +Ψ+ Γur,

≤ η̇M +ΨM + Γmur = −
µr√
2
− a0|ẏr| < 0. (39)

If σc1 = 0 thenẏr = ηc1 > 0 holds andẏr is indeed positive.
Consequently, (39) holds in case ofσc1 = 0 guaranteeing that
σc1 cannot become positive. Finally, as long asσr > 0 holds
true and only control input (19) is appliedσc1 ≤ 0 holds.

Quantity σc2 may become positive so that the input
changes to (28b). However, control input (28b) is only
applied if σc2 = −ηc2 − ẏr > 0 holds which leads to
σc1 < −ηc1 − ηc2 < 0. So σc1 ≤ 0 holds true. Statement
σc1 ≤ 0 also holds if input (28b) switches to input (19).
In this caseσc2 = −ηc2 − ẏr = 0 holds which leads to
σc1 = −ηc1 − ηc2 < 0. Consequently, input (28a) is not
applied as long asσr > 0 holds.

It will be shown that by applying input (19) or (28b)
sliding variableσr decreases to zero at finite timetf2 and
σr(tf1) is an upper bound ofσr(t) with t ∈ [tf1, tf2]. For
input (19) the statement directly follows from the satisfied
reachability condition (17) which implies thatσr strictly
decreases. Consider application of control input (28b). As
∀ci : σci(tf1) ≤ 0 holds initially there may exist some
instants of timet2 > t1 > tf1 with σc2(t1) = σc2(t2) =
0. Considert† ∈ (t1, t2) to be a time interval in which
σc2(t

†) > 0 holds. According to (13) it is

σr(t
⋆) = ẏr(t

⋆)− a0w + a0yr(t1) +

∫ t⋆

t1

a0ẏr(τ)dτ, (40)

at any timet⋆ ∈ [t1, t2]. Fromσc2(t
⋆) ≥ 0 it is known that

ẏr(t
⋆) ≤ −ηc2(t⋆) holds leading to

σr(t
⋆) ≤ a0(yr(t1)− w) +

∫ t⋆

t1

a0ẏr(τ)dτ − ηc2(t
⋆). (41)

Considera0 to be a positive constant defined as

a0 =
η̇M
ηm

+ µa ≥
η̇c2(t)

ẏr(t)
+ µa, µa > 0. (42)



Substituting the right hand side of (42) in (41) and solving
the integral and considering thatẏr is negative and bounded
as ẏr ≤ −ηm < 0 gives

σr(t
⋆) ≤ a0(yr(t1)− w) − µaηm(t⋆ − t1)− ηc2(t1). (43)

Fromσc2(t1) = 0 it is known that−ηc2(t1) = ẏr(t1) holds.
Replacing−ηc2(t1) in (43) and considering the definition of
σr from (13) yields

σr(t
⋆) ≤ σr(t1)− µaηm(t⋆ − t1), µaηm > 0. (44)

Supposeσr(tf ) < 0 to hold: The proof is similar to the
σr(tf1) > 0 case. �

Lemma III.3. Consider control of system (1)–(2) based on
the control input defined by Algorithm 1 withǫr = ǫci =
ǫb = ǫqi = 0. There exists some finite timetf so that
σr(tf ) = 0 holds andσci(t) ≤ ∆ is achieved fort ≥ tf
with ∆ > 0 being arbitrary small.

Proof. As the controller satisfies the reachability condition
(23) in case of∃ci : σci > 0 it is always possible to find
some finite timetf1 at which∀ci : σci(tf1) ≤ 0 holds and
∀ci : σci(t) ≤ ∆ is achieved fort ≥ tf1 with ∆ > 0 arbitrary
small. By applying Lemma III.2 it follows that the finite time
tf ≥ tf1 exists at whichσr(tf ) = 0 holds. �

Theorem III.4. Consider control of system (1)–(2) based
on the control input defined by Algorithm 1 withǫr = ǫci =
ǫb = ǫqi = 0. There exists some finite timetf so that for
t ≥ tf the tracking error |er(t)| converges to the domain
|σr |M
a0

asymptotically, where|σr|M > 0 is arbitrary small.

Proof. Based on Lemma III.3 it is known that a finite time
tf exists so thatσr(tf ) = 0 holds and

σci(t) ≤ ∆, (45)

with ∆ > 0 arbitrary small is achieved fort ≥ tf . Under the
mentioned conditions it will be shown thatσr(t) remains
bounded fort ≥ tf until σr(t) reaches zero again. Ifσr

reaches zero it will again be bounded afterwards as the
preliminary formulated conditions are again satisfied i. e.σr

equals zero and (45) is satisfied. Consider an arbitray small
ǫ > 0 to be the maximum value of|σr(t

∗)| on some time
interval t∗ ∈ [tf , tǫ].

Supposeσci(tǫ) ≤ 0 to hold true forc1 and c2:
It follows from Lemma III.2 thatσr reaches zero at some
finite timetf2 ≥ tf . As stated by the Lemma|σr | is bounded
by |σr(tǫ)| on interval[tǫ, tf2]. As |σr | is bounded byǫ on
interval [tf , tǫ] it follows that |σr| is bounded by arbitrary
small ǫ , |σr |M on interval[tf , tf2].

Supposeσci(tǫ) > 0 to hold true forc1 exclusive orc2:
It will be shown that some finite time periodτf exists so
thatσci(t

†) = −ηci(t†) + yci(t
†) ≤ 0 holds fort† = tǫ + τf

at the latest. As long asσci > 0 holds control input (28) is
applied which satisfies the reachability conditionσci σ̇ci ≤
−µci√

2
|σci |. For σci > 0 it follows

σ̇ci = −η̇ci + ẏci = −η̇ci + sci ÿr ≤ −
µci√
2
. (46)

As σci is known to be bounded by∆ according to (45) it
follows thatσci(tǫ+ τf ) ≤ 0 can be achieved after the finite
time periodτf = ∆

√
2

µci

at the latest. Sinceσci(tǫ + τf ) ≤ 0

holds Lemma III.2 can be applied and it is known thatσr

reaches zero at some finite timetf2. Following the Lemma
|σr| is bounded by|σr(tǫ + τf )| in interval [tǫ + τf , tf2].
Boundedness in interval[tf , tǫ + τf ] is studied as follows.
Sliding variable|σr| can only increase by applying input (28)
(input (19) can only decrease|σr|). By applying the triangle
inequality on (16) and considering the uncertainty bounds it
follows

|σ̇r| = |Ψ+ Γu+ a0ẏr| ≤ ΨM + ΓM |u|+ a0lM , (47)

with constantlM defined as

max
t

(

lc1(t), lc2(t)
)

< lM . (48)

Substituting (29)–(31) in (28) yields

uM,ci ,
µci +ΨM

√
2

Γm

√
2

+
|η̇ci |
Γm

≥ |uci|, (49)

for inputuci . Substitutingu of (47) byuM,ci from (49) gives

|σ̇r| ≤
(µci +ΨM

√
2)ΓM

Γm

√
2

+
|η̇ci |ΓM

Γm

+ΨM + a0lM , |σ̇r|M . (50)

Multiplying (50) by τf leads to

|σr(t
§)| ≤ |σ̇r|Mτf + ǫ,

=
|σ̇r|M

√
2

µci

∆+ ǫ , |σr |M , (51)

for t§ ∈ [tf , tǫ + τf ]. From (45) it is known that∆ > 0
is arbitrary small. As∆, ǫ > 0 in (51) are abitrary small it
follows that|σr| is bounded by|σr |M > 0 arbitrary small on
time interval[tf , tǫ + τf ]. Since|σr| is bounded by|σr(tǫ+
τf )| on [tǫ+ τf , tf2] as mentioned before it follows that|σr|
is bounded by|σr |M > 0 arbitrary small on[tf , tf2].

In the sequel it is shown that fort ≥ tf the tracking
error |er(t)| converges to the domain|σr |M

a0

asymptotically.

ConsiderV (t) = |er(t)| > |σr|M
a0

to hold. DerivatingV (t)
with respect to time yields

V̇ (t) = sgn
(

er(t)
)

ėr(t). (52)

From (13) it is known that

− ẏr(t) = ėr(t) = −a0er(t)− σr(t), (53)

holds. In case of|er(t)| > |σr|M
a0

it follows

a0|er(t)| > |σr|M ≥ |σr(t)|. (54)

Based on (54) it can be seen that the sign of−a0er(t)−σr(t)
in (53) equals the sign of−er(t). Consequently, if|er(t)| >
|σr |M
a0

holds (53) can be written as

−ẏr(t) = ėr(t) = −sgn(er(t))| − a0er(t)− σr(t)|, (55)



xca

yca

q1

q2
d2

d1

Fy

τ2

τ1

Fig. 1. Rotatory two-link robot with external forceFy, link lengthsd1
andd2, joint anglesq1 andq2, and torquesτ1 and τ2.

with

| − a0er(t)− σr(t)| > 0. (56)

Substituting (55) in (52) as well as (53) in (56) and consid-
ering thatẏr(t) is bounded it follows

V̇ (t) =















−lc1 < 0, if ẏr = lc1 ,

−lc2 < 0, if − ẏr = lc2 ,

−1× |a| < 0, if − lc2 < ẏr < lc1 ,

(57)

|a| = | − a0er(t)− σr(t)| > 0,

in case ofV (t) = |er(t)| > |σr |M
a0

. Consequently,|er(t)|
converges to the domain|σr|M

a0

asymptotically. �

IV. NUMERICAL EXAMPLE

In this section velocity-constrained point to point control
of a robot is considered. Limitation of the robot velocity
is known to be crucial in the context of safe human robot
interaction [30]. The robot is assumed to be a rotatory two-
link robot as shown in Fig. 1). The same kind of robot has
been considered for constrained MPC in [31] and [32]. In
[32] the two-link model has been used to implement MPC
on a KUKA LWR IV. The dynamics of the two-link robot
are given by

B(q)q̈+ φ(q, q̇) = τ + ξ(q, Fy), (58)

and

φ(q, q̇) = C(q, q̇)q̇+ fvq̇+ fssgn(q̇) + g(q), (59)

where the joint angles, angular velocities, and actuator
torques are

q =

[

q1
q2

]

, q̇ =

[

q̇1
q̇2

]

, τ =

[

τ1
τ2

]

. (60)

The dynamics can be derived using Lagrange equations of
the second kind [33]. Model (58) includes viscous frictionfv
and static frictionfs. An external forceFy is considered to
simulate a payload. The friction related quantitiesfv andfs
as well as the payload are assumed unknown. Details about
model (58 are given in Appendix I. The goal is to control
the angles of the joints so that the end effector moves from
an initial waypoint A (WP-A) to a waypoint C (WP-C) via

TABLE I

CARTESIAN COORDINATES(xca, yca) AND JOINT ANGLES OF THE

WAYPOINTS

xca [m] yca [m] q1 [
◦] q2 [

◦]

WP-A 0.900 0.100 26.511 −51.318
WP-B −0.700 0.500 168.873 −62.720
WP-C 0.100 0.400 117.562 −136.817

an interim waypoint B (WP-B). During the movement the
angular velocities of the joints are restricted. At WP-B a
payload of80 kg is picked up simulated byFy = 80 kg×
9.81m/s2. The Cartesian coordinates of the waypoints and
their corresponding desired joint angles are shown in Table
I. If the Euclidean distance between the actual and desired
end effector position is less than0.005m the robot moves to
the next waypoint. If the last waypoint is reached with the
desired accuracy the simulation terminates. Letci,j define
the i-th constraint of the angular velocitẏqj . The bound of
the constraintci,j is defined based on

lci,j =
(

ac(WPqj − qj)
2 + bc

) 2π

360
, i, j ∈ {1, 2}, (61)

with ac = 26.26, bc = 10, and WPqj denoting the reference
of angleqj in radiant. The time-varying bound (61) enforces
the robot to slow down when it approaches a waypoint.

To achieve the desired control goals the following MIMO
controller

τ = B(q)ν +C(q, q̇)q̇+ g(q), (62)

with

ν =
[

ν1 ν2
]T

, (63)

is introduced. Substituting (62) in (58) yields

ÿr,1 = Ψ1(q, q̇, Fy) + ν1, (64)

ÿr,2 = Ψ2(q, q̇, Fy) + ν2, (65)

whereΨ1, Ψ2 denote uncertainties related to the unknown
friction terms fs, fv, and the unknown payloadFy. The
control problem is reduced to the design of two SISO
controllers with relative degree two input-output relations.
Algorithm 1 is applied to define the control inputsν1 andν2
separately. The controller parameters and uncertainty bounds
are tuned by trial and error. The uncertainty bounds are
increased until sufficient tracking performance is achieved.
The boundary layer widthsǫa ∈ R≥0 of the smooth approxi-
mations sgn(a) ≈ a/(|a|+ǫa) are tuned to find a compromise
between tracking accuracy and chattering mitigation. Let
controllerj ∈ {1, 2} be related to the control of angleqj . The
auxiliary functionηci,j(t) has to be chosen in accordance to
(10). By adapting the differencelci,j(t) − ηci,j(t) > 0 the
distance between the constrained variables and their bounds
can be adjusted. Functionηci,j(t) is finally selected as

ηci,j(t) = lci,j(t)− 4
2π

360
, (66)
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Fig. 2. Evaluation of control approach based on Algorithm 1.(a) Trajectory of the end effector in the Cartesian domain. Movement from WP-A to
WP-C over WP-B. Visualization of robot configuration (jointangles) at the waypoints. (b) Angle and angular velocity of the first joint dependent on time.
Visualization of reference value, constraints, and effectof the payload. (c) Angle and angular velocity of the second joint dependent on time. Visualization
of reference value, constraints, and effect of the payload.(d) Torques generated by the controller. Visualization of rejection effect related to the payload.

for all i, j ∈ {1, 2}. The values of the remaining controller
parameters are{η̇M,j = 6, ηm,j = 0.1, µa,j = 0.01, µr,j =
3, µci,j = 2}2j=1. The assumed uncertainty bounds are
ΨM = 1, ΓM = 2, Γm = 0.2.

The simulation results are visualized in Fig. 2. The way-
points are reached with the desired accuracy and the velocity
constraints are satisfied for the complete time horizon. The
funnel shape of the velocity bounds forces the robot to slow
down in the vicinity of a waypoint. The approach shows
robust properties as the control goals are achieved in presence
of model uncertainties and the unknown exogenous payload.
A rejection effect related to the simulated payload can be
observed from the control inputs.

V. CONCLUSIONS

In this contribution constrained sliding mode control is
considered. As an extension to the existing works we pre-
sented a novel approach that can handle constraints which

explicitly depend on time. This enables broader applications.
Related to mechanical systems the suggested approach al-
lows velocity-constrained control with online update of the
velocity bounds depending on e. g. the distance to obstacles
or set-points.
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APPENDIX I
SIMULATION OF ROBOTIC SYSTEM

According to [33] the quantitiesff , B, C, g, ξ of model
(58), (59) are

ff (q̇) = fvq̇+ fssgn(q̇), (67)

B(q) =

[

b1 + b2cos(q2) b3 + b4cos(q2)
b3 + b4cos(q2) b5

]

, (68)

C(q, q̇) = −c1sin(q2)

[

q̇1 q̇1 + q̇2
−q̇1 0

]

, (69)

g(q) =

[

g1cos(q1) + g2cos(q1 + q2)
g2cos(q1 + q2)

]

, (70)

ξ(q, Fy) = Fy

[

d1cos(q1) + d2cos(q1 + q2)
d2cos(q1 + q2)

]

. (71)

The position of the end effector in the Cartesian domain is

hca(q) =

[

xca

yca

]

=

[

d1cos(q1) + d2cos(q1 + q2)
d1sin(q1) + d2sin(q1 + q2)

]

. (72)

The model parameters are summarized in Table II.
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