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Abstract

In this paper, a variable gain design approach for the high-gain disturbance observer,

called Proportional-Integral-Observer (PI-Observer), is proposed to solve the problem of

choosing suitable observer gains. The high-gain PI-Observer is successfully applied to esti-

mate unknown inputs of systems together with the system states. It is known that reasonable

estimations of unknown inputs can only be derived using high observer gains. On the other

hand, extremely large gains will cause serious problems with respect to measurements noise

and unmodeled dynamics. According to the analysis of the estimation quality regarding

to the factors which influence the estimation results, the optimal level of observer gains

is changing during the estimation, an online adaption for the observer gains is therefore

developed. The designed PI-Observer, called Advanced PI-Observer (API-Observer), will

use changing observer gains from the adaption algorithm, which is proved to give stable

estimation error dynamics. Simulation results from an elastic beam example are shown to

illustrate the implementation of the API-Observer.

Key words: High-gain observer; Disturbance observer; Variable gain observer

1. Introduction and motivation

To mitigate large overshooting behavior and the correspondent high input control signals

and to reduce influence from measurement noise and unmodeled dynamics, high observer
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gains for estimating weakly observable eigenmotions (eigenmotions with large correspondent

condition number in the observability matrix) are usually prevented. In spite of this, special

properties and application fields of high-gain Proportional-Integral-Observer (PI-Observer)

are later found very valuable. The observer technique using additional integral part and

corresponding extended states was already introduced by Wojciechowski [10] and then de-

veloped by different authors [2, 7] with different design goals. The goal of the high gain

PI-Observer is to estimate unknown inputs to the system by using high observer gains.

However, the basic problem using high observer gains the conflict between the time be-

havior/quality of estimation and the sensitivity to measurement noise/unmodeled dynamics

still has to be accounted during the development/application of high-gain PI-Observer. This

motivates the work in this paper, namely to choose or keep suitable gains for an high-gain

observer design. In the paper, an approach is proposed to provide a convenient online adap-

tion algorithm to keep the gains of the PI-Observer always at a rational level regarding the

current influence from different aspects.

The underlying task improving the observer gain design is explored by other researchers

in [1, 3]. Most of them recommend solutions for variable observer gains between two fixed

observer gains (usually one high gain and one low gain) according to distinguished switching

conditions. Of course using two gains to be switched is under the consideration of the

clarity of the programming and the simplification of the structure. However, the problem

choosing suitable observer gains for the high gain PI-Observer can only be roughly solved

with approaches using two fixed observer gains, because the level of the high and low gains is

difficult to be determined to match every case of the changing unknown inputs. For example,

in [3] the observer gains are switched once regarding the transient time, but for high gain

PI-Observer design the dynamics of the unknown inputs (also of modeling disturbances) may

strongly change along the time and several switches with different transient time intervals

may be necessary. In [1] the observer gains are also switched regarding to pre-defined

transient time, but more generally the switch is not limited as only once. However, both

the two given observer gains have to be suitably chosen in advance. That means the high

observer gains have to be determined based on assumed situations which can not match
2



every requirement during the whole working time and this approach is not a suitable one to

solve the mentioned problem to choose suitable gains for the high gain PI-Observer.

In this contribution, an optimal level of the PI-Observer gains for general use is defined

and analyzed. A solution strategy based on a bank of observers is proposed to get a high gain

PI-Observer design that can adapt its observer gains to the current situation. In this concept,

two parallel running PI-Observers are simulated together with the main PI-Observer whose

estimation results will be taken. One is working with observer gains larger than the current

main PI-Observer, the other with observer gains smaller than the current main PI-Observer.

The value of suitable chosen cost functions will be compared to get the current rational level

of the observer gain. The whole adaption algorithm is embedded in the numerical algorithm

of the observer. A novel feature of the algorithm includes the adaption process into the

numerically defined step-size control of the numerical integration procedure used to realize

observers functionality in general. The proposed high gain PI-Observer design with online

adaption for observer gains and a bank of PI-Observers is called Advanced PI-Observer

(API-Observer).

The contributions of the paper are:

• analysis of the optimal level of the observer gains for a PI-Observer,

• embedded adaption algorithm in the numerical integration procedure,

• proof of the stability of estimation error dynamics while using the API-Observer, and

• a practical example estimating contact force of a vibrating elastic beam.

The paper is organized as follows: In the second section, high gain PI-Observer design is

briefly introduced. The adaption algorithm for the high gain design and the related theoret-

ical background are discussed in the third section. Simulation results in the fourth section

show the adaption process of the observer gains in application. Summary and conclusions

are given in the last section.
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2. Problem statement

For a class of systems described by

ẋ(t) = Ax(t) + Bu(t) + Nd(x, t) + Eg(t), (1)

y(t) = Cx(t) + h(t), (2)

with the state vector x(t) ∈ R
n, the input vector u(t) ∈ R

l, the measurement vector

y(t) ∈ R
m, the time variant and unknown inputs d(x, t) ∈ R

r, the measurement noise

h(t) ∈ R
m, and the unmodeled dynamics Eg(t) with g(t) ∈ R

p and E ∈ R
n×p. Here, the

information about the dynamics of d(x, t) is assumed as not available. Only the matrix

N (related to the system description) denoting the position of the unknown inputs acting

to the system is assumed as known. The aim is, with the given information of the system

model, the matrices A ∈ R
n×n, B ∈ R

n×l, C ∈ R
m×n, and N ∈ R

n×r, to estimate the

dynamical behavior of the system and the dynamics of the unknown inputs. The system

matrix A is assumed stable. A high-gain PI-Observer can be designed in this case to get

the estimations of the original states x(t) and the unknown inputs d(x, t)[4].

2.1. High-gain PI-Observer design

In this part, the general high-gain PI-Observer design developed in [8] for the considered

class of systems (1)-(2) will be introduced briefly. The purpose of the approach is the robust

estimation of unknown inputs without any assumptions about their dynamics.

2.1.1. Structure of a high-gain PI-Observer

The states x(t) and the unknown inputs d(x, t) in (1) can be estimated by a high-gain

observer design



˙̂x(t)

˙̂
d(t)



 =




A N

0 0





︸ ︷︷ ︸

Ae




x̂(t)

d̂(t)



 +




B

0





︸ ︷︷ ︸

Be

u(t) +




L1

L2





︸ ︷︷ ︸

L

(y(t) − ŷ(t)), (3)

ŷ(t) =
[

C 0

]

︸ ︷︷ ︸

Ce




x̂(t)

d̂(t)



 . (4)
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The structure and the design of the PI-Observer are similar to the design of Extended

Kalman Filters. But the focus here, using the extended integral parts in the observer

to estimate the unknown inputs, is different from the Extended Kalman Filter (instead

of parameters of a given model here the unmodeled unknown input is used as additional

state). To achieve this goal, a requirement for the PI-Observer design has to be fulfilled:

the extended system (Ae, Ce) has to be fully observable, which implies that the condition

rank








λIn − A −N

0 λIr

C 0








= n + r (5)

for all the eigenvalues λ of Ae has to be fulfilled. This condition includes that the dimension

of the unknown input vector d(t) has to be less than or equal to the number of independent

measurements, namely r ≤ m (Proofs refer to [8, 6]). It gives simultaneously the information

that the measurements/the outputs and the states are coupled together to some extent.

Based on Eq. (3) and Eq. (4), considering the estimation errors as e(t) = x̂(t) − x(t)

and fe(t) = d̂(t) − d(x, t), the error dynamics of the extended system becomes



ė(t)

ḟe(t)



 =




A − L1C N

−L2C 0





︸ ︷︷ ︸

Ae,obs




e(t)

fe(t)



 −




Eg(t)

ḋ(x, t)



 +




L1

L2





︸ ︷︷ ︸

L

h(t). (6)

For a suitable observer design, the feedback matrix L has to be chosen in such a way that

the estimation errors tend to zero (e → 0, fe → 0). The error dynamics (6) is affected by

the term ḋ(x, t). In [4, 8], the approximative decoupling ḋ(t) to e(t), fe(t) by applying high

gains matrix L is introduced and will be repeated here briefly. The error dynamics (6) for

stationary behavior can be described by

e(s) = G−1Nfe(s) −G−1Eg(s) +G−1L1h(s) , (7)

fe(s) = −[sI + L2CG−1N ]−1s d(s)

+[sI + L2CG−1N ]−1L2CG−1Eg(s)

+[sI + L2CG−1N ]−1L2(I − CG−1L1)h(s), (8)
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with G = [sI − (A −L1C)]. The state estimation error e(s) and the estimation error

of unknown inputs fe(s) are considered separately. The feedback matrices L1 and L2 are

required to stabilize the extended system described by the matrix Ae,obs and are also required

to minimize the influence from the disturbance ḋ(t) as unknown inputs to the estimations

e(t) and fe(t). From Eq. (8), it can be seen that to minimize the influence, the transfer

function from sd(s) to fe(s) should satisfy
∥
∥[Is + L2CG−1N ]−1

∥
∥
∞

≤ γ, γ −→ Minimum.

Assuming without loss of generality a full rank of matrix G and high gains of L2, the

values of L1 in G are smaller relative to L2 (‖L2‖F ≫ ‖L1‖F
1), so that γ becomes very

small. Assuming that the unknown inputs ‖s d(s)‖F are bounded, the estimation error

‖fe(s)‖F can be reduced to an arbitrary small value (but not to zero), if the measurement

noise and the unmodeled dynamics are not taken into account.

From the two other parts in Eq. (8), large ‖L2‖F will increase the influence from mea-

surement noise h(s) and unmodeled dynamics g(s) to the estimation error ‖fe(s)‖F . In

[4, 8] detailed proofs and further applications are given.

2.1.2. Design of observer gains

The Linear Quadratic Regulator (LQR) method can be applied to design the high-gain

PI-Observer feedback matrices by solving the algebraic matrix Riccati equation. Later on

for the optimization of observer gain matrices design this method will be used.

For a stable observer, suitable observer gains can be calculated, if for given positive

definite matrices Q, R the Riccati equation

AeP + PAT
e + Q − PCT

e R−1CeP = 0 (9)

has a unique positive definite solution matrix P . The observer feedback matrix is then

calculated with L = PCT
e R−1.

1The norm ‖·‖F denotes here the Frobenius norm, ‖A‖F =

√
√
√
√

m∑

i=1

n∑

j=1

a2

ij =
√

trace(A∗A) for A in Rm×n.
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3. Proposed API-Observer design

The purpose of the API-Observer design is to find suitable observer gains to get reason-

able/acceptable estimation errors for both the state and the unknown input. The optimiza-

tion problem of the adaptive scheme for observer gains is formulated in the following and

one algorithm for the problem is given next.

3.1. Formulation of the optimization problem

As discussed in section 2.1.1, high observer gains, which are evaluated here by ‖L2‖F , will

lead to possibly non-negligible influence from measurement noise and unmodeled dynamics.

On the other hand, the ratio between ‖L2‖F and ‖L1‖F , δ = ‖L2‖F /‖L1‖F , should be large

to compensate the effect from the unknown input dynamics. These principle aspects can be

seen from the discussion in Eq. (7) and (8).

To illustrate the conflict/the problem clearly and tersely, here without loss of generality

the weighting matrices in Eq. (9) are chosen as

Q =




In 0n×r

0r×n qIr



 , R = Im, (10)

with only one scalar design parameter q > 0.

It can be proven that the parameter q can reflect almost all the important aspects which

should be considered. Using the given definitions of the weighting matrices, the solution of

the Riccati equation and the observer gain matrix can be calculated by

P =




P 11 P 12

P T
12

P 22



 , (11)

L = PCT
e =




P 11C

T

P T
12

CT



 , (12)

AP 11+P 11A
T −P 11C

T CP 11 =−(In+NP T
12

+P 12N
T ), (13)

P T
12

CT CP 12 = qIr, (14)

AP 12 + NP 22 = P 11C
T CP 12. (15)
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For the design/proof, the relation between the preferred design parameter q, the norm

‖L2‖F and the ratio δ is considered.

3.1.1. Theoretical analysis of the relation among the design parameter q, the norm ‖L2‖F ,

and the ratio δ

Theorem 1. For increasing design parameter q, the ratio δ, and the norm ‖L2‖F will

increase correspondingly.

Mathematical description:

For two general design parameters qa and qb, the corresponding solution matrices P a and

P b are denoted by

P a =




P a

11
P a

12

P a
12

T P a
22



 and P b =




P b

11
P b

12

P b
12

T
P b

22



 . (16)

Similarly,

La =




La

1

La
2



 =




P a

11
CT

P a
12

T CT



 and Lb =




Lb

1

Lb
2



 =




P b

11
CT

P b
12

T
CT



 (17)

are used.

If the parameters fulfill qa > qb > 0, it follows that

i) ‖La
2
‖F >

∥
∥Lb

2

∥
∥

F
and correspondingly

ii) δa = ‖La
2
‖F /‖La

1
‖F > δb =

∥
∥Lb

2

∥
∥

F
/
∥
∥Lb

1

∥
∥

F
.

Proof. i) The matrices P a and P b are solution matrices of the Riccati equation (6), satisfying

the equation (8), which can be rewritten by

P T
12

CT CP 12 = (CP 12)
T (CP 12) = qIr. (18)

Considering the trace of the matrices in (10), it follows

tr((CP 12)
T (CP 12)) = tr(L2L2

T ) = tr(qIr) = rq, (19)
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so each expression is described using r. Considering the above obtained results, the norm

of the gain matrix can also be expressed to

‖L2‖F =
∥
∥L2

T
∥
∥

F
=

√

tr(L2L2

T ) =
√

rq. (20)

With the assumption qa > qb > 0 and r as constant, it holds

‖La
2
‖F =

√
rqa >

√
rqb =

∥
∥Lb

2

∥
∥

F
. (21)

⇒ ‖La
2
‖F >

∥
∥Lb

2

∥
∥

F
. (22)

ii) From (7)

P 11C
T CP 11 = AP 11 + P 11A

T + (In + NP T
12

+ P 12N
T ), (23)

it can be obtained

‖L1‖2

F =
∥
∥P 11C

T
∥
∥

2

F
= tr(P 11C

T CP 11)

= tr(AP 11 + P 11A
T ) + n + tr(NP T

12
+ P 12N

T )

= 2tr(AP 11) + n + 2tr(NP T
12

). (24)

Therefore, it follows

‖La
1
‖2

F −
∥
∥Lb

1

∥
∥

2

F
= 2tr(A(P a

11 − P b
11)) + 2tr(N (P a

12 − P b
12)

T ). (25)

It is obvious that the matrices Qa ≥ Qb
2 for qa > qb > 0. If the algebraic Riccati equation

(8) is considered, then it can be obtained that P a ≥ P b, because of the monotonicity of

maximal solutions of algebraic Riccati equations [9].

Due to the assumed stability of the matrix A, the extended system matrix Ae is also

stable. Considering the condition P a ≥ P b, it holds then

(P a − P b)Ae + (P a − P b)AT
e = H̃ =




H̃1 H̃2

H̃3 H̃4



 ≥ 0, (26)

2Note that if the matrices A and A−B are positive semidefinite, it is written here A ≥ 0 and A ≥ B or

B ≤ A respectively. A and B are assumed to be hermitian matrices.
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Figure 1: Relations between the estimation error fe(t) and the design parameter q

where

H̃1 = A(P a
11 − P b

11) + (P a
11 − P b

11)A
T

+N (P a
12 − P b

12)
T + (P a

12 − P b
12)N

T ≥ 0, (27)

because H̃1 ∈ Rn×n is one of the principal submatrices of H̃ . It follows that

tr(H̃1) = 2tr(A(P a
11 − P b

11) + N (P a
12 − P b

12)
T )

= ‖La
1
‖2

F −
∥
∥Lb

1

∥
∥

2

F
≤ 0. (28)

That means ‖La
1
‖F ≤

∥
∥Lb

1

∥
∥

F
. With the result from i), it holds that

δa = ‖La
2
‖F /‖La

1
‖F > δb =

∥
∥Lb

2

∥
∥

F
/
∥
∥Lb

1

∥
∥

F
. (29)

3.1.2. Graphical illustration of the relation between the design parameter q and the estima-

tion error fe(t)

According to Theorem 1., with increasing design parameter q the estimation quality will

be improved regarding the increasing ratio δ but be more sensitive to the measurement

noise and unmodeled dynamics considering the increasing norm ‖L2‖F . The relations are
10



graphically shown in Fig. 13. At different time point, the minimal level of the estimation

error is different. It is obvious that to reach minimum estimation error the design parameter

q has to be adjusted online. In the following section, an adaption algorithm is presented.

3.2. Adaption algorithm

Based on the analysis above, an objective function is chosen as

arg min
q

J(q), J = αhey
2(t) + ‖L2‖2

F , (30)

where the parameter α is used for normalization and the variable h denotes the current

step size of the numerical time integration of the observer. The measurable estimation error

ey(t) = y(t)−ŷ(t) in the first part of (30), which is implicitly dependent on the parameter q,

represents the estimation error under ideal conditions, namely without measurement noise.

On the other hand, the second part of the cost function J(q) is taken into account for the

evaluation of effects from unmodeled dynamics and measurement noise. The description of

J(q) is to some extent proportional to the estimation quality from the PI-Observer according

to the former discussion. The goal here is not to reach the absolute minimal level of the

estimation error, but to get acceptable relative minimal levels of the estimation error over

the time. Therefore, the search for the local/relative minimal value of the cost function J(q)

is a suitable process for adapting the parameter q to get rational relative minimal levels of

the estimation error.

A sketch of the adaption process is given in Fig. 2. The adaptive scheme shown in Figure

2 deciding the observer gains to be applied is based on a bank of PI-Observers. The main

PI-Observer with the design parameter qm is the observer which generates the final valid

estimation. To realize the rational change, two parallel running PI-Observers which use

different design parameters α = 0.1 and β = 10 respectively are included to compare the

cost functions Jm, Jl, and Jr for the last step. If the cost function Jm is the smallest one,

3Note that the estimation error of the outputs ey(t), of the states e(t), and of the unknown inputs fe(t)

are coupled together as mentioned in section 2.
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Main PI-Observer
with qm

y(k)

x (k) = x (k), d (k) = d (k), q = qr m r m r mb

J = min{J , J , J } ?m m r l

x (k+1), d (k+1)m m

Calculation of J , J , Jm r l

t = t t = t + h

q = qm opt

System
Known inputs Outputs

u(k)

Adaption of parameter q embedded in the integration routine

No Yes

k = k k = k + 1

PI-Observer

with q = qr mb

PI-Observer

with q = ql ma

^
.

^
.

x (k), d (k), qm m m
^ ^

x (k+1), d (k+1)r r
^
.

^
.

x (k+1), d (k+1)l l
^
.

^
.

x (k), d (k), ql l l
^ ^

x (k), d (k), qr r r
^ ^

x (k+1), d (k+1)m m^ ^

x (k+1), d (k+1)r r^ ^

x (k+1), d (k+1)l l^ ^ q = argmin Jopt

∩q   {qm,qr,ql}

x (k) = x (k), d (k) = d (k), q = ql m l m l ma

x(k) = x (k)m

d(k) = d (k)m

^ ^ ^ ^

^ ^ ^ ^

^ ^

^ ^

Bank of PI-Observer

Figure 2: Sketch of proposed adaption process

namely qm = qopt, where qopt = arg minq∈{qm, ql, qr} J , then the estimation results will be taken

as valid and the integration will go on.

Otherwise the estimation results will not be taken and the integration will be repeated

with new defined qm = qopt, ql = 0.1qm, and qr = 10qm. The integration will go on for the

next step until it fulfills qm = qopt. The step size h is controlled inside the integral algorithm

with the integrated step-size control.

Briefly speaking, the task of the optimization is to keep the design parameter qm of the

main PI-Observer always having the relative minimal value of the cost function.

3.3. Stability of the estimation error dynamics

According to the algorithm illustrated in Fig. 2, the observer gain changes stepsize-

wise. In general, the changing observer gains can lead to an unstable estimation error

dynamics even if every observer gain matrix is designed to make the error dynamics converge

12



asymptotically.

Step

q

k k+1 k+2

q(k)

q(k+1)

q(k+2)

q(k+3)

k+3

Figure 3: Illustration of the changing gains

The stability condition for switching observers has been already addressed in many lit-

eratures, e.g., in [5]:

If all the observer gains are chosen/designed to have the Euclidean norm of the estimation

error as a Lyapunov function of the error dynamics, then the estimation error will vanish

asymptotically.

For the case which is considered in this paper, the observer matrix L is designed using

LQR method for different design parameters q. That indicates that a piecewise Lyapunov

function of the estimation error dynamics exists, but it can not ensure the convergence of

the estimation error during the changing of observer gains. However, the convergence of

the estimation error can be proven, if the condition for the changing is taken into account.

The reason is that the observer gain respectively the parameter q is changed only if the

cost function J from the current observer gains, which is to some extent proportional to the

norm of the estimation error, is no more the local minimal one. That is to say, the change is

towards the direction that makes the cost function J smaller, which ensures the convergence

of the estimation error.

In order to explain it more clearly, an adaption example of the API-Observer among three

parameters qi, qii, and qiii is shown in Fig. 4. It is known that if the change of parameter

q is arbitrary among the three parameters, the whole trajectory of the cost function J as

well as the estimation error of API-Observer may diverge in case that the switch is alway

13



J

k1 k2 k3 Stepk4

Case 1 Case 2

J(q )i

J(q )ii

J(q )iii

J of all q possible
to be chosen

J(q) of API-Observer

J(q )ii

J(q )ii

J(q )i

J(q )iii

Figure 4: Cases of changing parameter q illustrated by cost function J

towards the direction of a larger J , although the observer design is Hurwitz stable for every

parameter. However, in the considered example with the given three parameters the variable

parameter q is chosen with the proposed adaptive scheme to keep the cost function J at

a minimal level as marked with the colored solid line in Fig. 4. The adaptive parameter

q in this example is q(k1) = q(k2) = qii, q(k3) = qi, and q(k4) = qiii. The convergence of

the estimation error is discussed as follows. There exist two possible cases for the change

of parameter q: the first possibility is the one as shown by Case 1 that the cost function

J from one design parameter qii is the minimal one for two consecutive steps t1 and t2,

namely Jmin(k1) = J(qii, k1) and Jmin(k2) = J(qii, k2); the second case is that the minimal

cost function in the last step is no more the minimal one in the following step as shown by

Case 2 with Jmin(k2) = J(qii, k2) and Jmin(k3) = J(qi, k3). For Case 1, the convergence of

the cost function J as well as the estimation error is guaranteed by the asymptotic design

with parameter qii. For Case 2, the estimation error converges towards zero, because the

change of parameter q is made to get a smaller cost function (J(qi, k3) < J(qii, k3)) where

the speed of convergence is even faster than with the parameter q(k3) = qii. This discussion

can be extended to the general case of API-Observer with uncertain number of parameters

q for choosing. Considering the shaded area in Fig. 4 as all possible values of J , the final

trajectory of the cost function from an API-Observer with uncertain number of parameters
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q for choosing will be the gray solid line that ensures the convergence of the estimation error

towards zero.

4. Simulation example

An elastic beam example [8] shown in Fig. 5 is given here to illustrate the proposed

approach.

Figure 5: Modeled structure of the beam

The elastic beam system is modeled using Finite Element Method. The length of each

element is 98 mm, the cross-sectional area is 125 mm2. The displacements zi and the angles

θi (i = 1, · · · , 5) as well as the corresponding velocities and angular velocities are considered

as the system states.

The system model can be described in the standard state space form

ẋ(t) = Ax(t) + b(t) + Nd(x, t), (31)

y(t) = Cx(t) + Chh(t), (32)

with the state vector

x(t) =
[

z1 θ1 · · · z5 θ5 ż1 θ̇1 · · · ż5 θ̇5

]T

, (33)
15



one known input b(t), one unknown input d(x, t) acting at the moment of contact between

vibrating beam and contact device. Two measurements, the displacements at the third and

the fourth nodes (y1(t) = x3(t), y2(t) = x7(t)), are taken. The task is to estimate the

unknown and not measured contact force d(x, t) acting on the last node of the beam.

The relevant matrices are the system matrix A =




010×10 I10×10

−M−1K −M−1D



, input ma-

trix N =








018×1

1

0








, the output matrix C =




01×2 1 01×17

01×6 1 01×13



, and Ch =




cx3

cx7



,

where in the simulation it is assumed that cx3 = 0.3 and cx7 = 1.

The stiffness matrix K and the mass matrix M are calculated using finite element theory.

The damping matrix is taken as D = ξK, where ξ is suitably chosen (using raleigh damping

hypothesis).

For the simulation, the contact force calculation is realized by

d(x, t) = −3.8 × 106(x9(t) − 1 + 5 × 10−4)2, (34)

if the displacement of the last node fulfills x9(t) ≥ 1 representing a nonlinear and stiff

elastic contact, which is unknown to the observer. It is assumed that white noise h(t) with

amplitudes of 0.5% of the measurements is included. Furthermore, certain model uncertainty

is taken into account, here the real damping coefficient ξ is 10% larger than the nominal

value which is used in the observer.

In Fig. 6 and Fig. 7, the estimations of the unknown input and the displacement at node 5

from the API-Observer are compared with the estimations of two normal PI-Observers with

constant design parameters q = 1010 and q = 1014 respectively. It is clearly shown that with

a large constant design parameter q = 1014 the estimation of the unknown input is strongly

influenced by the measurement noise. In contrast, the estimation from the PI-Observer

with low design parameter q = 1010 shows almost no effect from the measurement noise

and model uncertainty but a large delay time and a non precise amplitude of the estimated

contact force. The estimations from the API-Observer combines the advantages of both

16
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Figure 6: Estimation results of the contact force
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Figure 7: Estimation results of the displacement (at node 5)
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the high and low parameters for q. The estimated contact force from the API-Observer

reacts rapidly as with a high design parameter q and shows no strong influence from the

measurement noise and the unmodeled dynamics. The same results can also be found clearly

in the estimation of the displacement x9.

In Fig. 8, the changing parameter q in the adaption process is given. It can be found

that during the time intervals when the contact exists the design parameter q is adjusted to

be larger than without contact. That is exactly what the adaptive scheme should realize.
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Figure 8: Online adjusted parameter q

As a conclusion, it can be stated, that the online adaption of the PI-Observer design

is necessary for estimation improvement and can be realized by the proposed approach as

shown.

5. Conclusion

This paper presents the first time an API-Observer design based on online adaption of

observer gains integrated in the numerical realization of the observer. A general analysis

of the high gain PI-Observer design is given and the stability of the estimation error dy-

namics is proven. A practical simulation example shows the effects and functionality of
18



the adaption process. From the algorithmic design, it can be concluded that the online

variable gain PI-Observer design can attenuate the influence from the measurement noise

and unmodeled dynamics significantly. The shown simulation results verify this statement,

the results show in detail a very good quality of the unknown inputs estimation. Using

this easy-to-realize approach now the API-Observer can be used in more complex task with

respect to measurement noise and so on.
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[8] D. Söffker, New results of the development and application of robust observers to elastic mechani-

cal structures, in: H. Ulbrich, W. Günthner (Eds.), Vibration control of nonlinear mechanism and

structures, solid mechanics and its applications, Springer 130 (2005) 319–330.

[9] H. K. Wimmer, Monotonicity of maximal solutions of algebraic riccati equations, Systems & Control

Letters 5 (1985) 317–319.

[10] B. Wojciechowski, Analysis and synthesis of proportional-integral observers for single-input single-

output time-invariant continuos systems, Gliwice, Poland, 1978.

19



List of Figures

1 Relations between the estimation error fe(t) and the design parameter q . . 10

2 Sketch of proposed adaption process . . . . . . . . . . . . . . . . . . . . . . . 12

3 Illustration of the changing gains . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Cases of changing parameter q illustrated by cost function J . . . . . . . . . 14

5 Modeled structure of the beam . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Estimation results of the contact force . . . . . . . . . . . . . . . . . . . . . 17

7 Estimation results of the displacement (at node 5) . . . . . . . . . . . . . . . 17

8 Online adjusted parameter q . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

20


