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Abstract This paper proposes a data-driven stability criterion for quadratic
stabilization of unknown nonlinear discrete-time systems. The novelty of this
quadratic stability criterion lies in the direct use of the time series of sys-
tem states, instead of using mathematical models. The data-driven stability
criterion is utilized to design a control for stabilizing unknown nonlinear sys-
tems using recurrent neural networks. The effectiveness and the adaptability
of the proposed approach is compared with the adaptive feedback linearization
method with an example of stabilizing a nonlinear aeroelastic system.

Keywords Data-driven - Quadratic Lyapunov function - Quadratic stabi-
lization - Unknown system - Recurrent neural network

1 Introduction

Quadratic stability and stabilization is an important topic in stability analysis
and control of dynamical systems. A system is said to be quadratic stable if
there exists a Quadratic Lyapunov Function (QLF) whose derivative (or first-
order difference in discrete time) along the system trajectories is negative [3].
While in the beginning of 1990s the study of quadratic stability concentrated
on systems with uncertainties [5,14,27,19,24], in the past decade this topic has
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been more intensively investigated in switched systems [12,33,2,25] or fuzzy
dynamical systems [15,9,18,20].

The main issue in the research of quadratic stability is the sufficient and
necessary condition of the existence of a QLF. Nevertheless, the existing re-
sults about quadratic stability conditions, such as those mentioned above,
are model-based. These approaches rely on the accuracy of the mathematical
model describing system dynamics. If a mathematical model is difficult to be
established precisely enough or unavailable, controllers that are designed based
on model-based stability conditions may lead to bad control performance or
even failure of stabilization.

Consider a system trajectory starting from the initial time to an arbitrary
time instant. According to the definition of quadratic stability, a system is
quadratic stable if a QLF exists for arbitrary trajectories. If it can be known
under which condition a QLF exist for the concerned trajectory, the system
can be controlled to be quadratic stable, as long as at any time instant the
trajectory of system under control satisfy this condition of QLF existence.
Under this circumstance, the mathematical system model is not necessarily
known and the model-related stabilization problems mentioned above can be
avoided.

Motivated by these concerns, this paper concentrates on the data-driven
realization of quadratic stability judgment and the corresponding control de-
sign of stabilizing nonlinear discrete-time systems, i.e., establishing the data-
driven condition for QLF existence of a single system trajectory and applying
the data-driven condition for designing control of stabilization problem.

It should be remarked that two assumptions: i) all system states are mea-
surable, and ii) the measurements are free of noise, have to be made at present
stage of this contribution.

The paper is organized as follows: at first, the problem definition of quadratic
stability and stabilization is introduced in section 2; secondly, the proposed
data-driven quadratic stability criterion is presented in section 3; after that,
the stabilization using the proposed stability condition is introduced in sec-
tion 4; in section 5 a numerical example of stabilizing a nonlinear aeroelastic
system is presented; finally, this contribution is concluded in the last section
of the paper.

2 Problem definition
2.1 Data-driven quadratic stability

The discrete-time nonlinear system considered for stability analysis is de-
scribed by

z(k+1) = f(z(k)), (1)
where f(-) : 2 = R™ is a smooth mapping from a compact set 2 C R™ into

R™ and z the state vector defined in 2. According to [3], the definition of
quadratic stability for system (1) can be stated as
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Definition 1 The system (1) is quadratic stable if there exists a positive def-
inite matriz P such that the first-order difference of the function V (x (k)) =
z (k)T Px (k) along the solution of system (1) satisfies

AV (z(k)) = V(z(k + 1)) — V(2 (k))
= V(f(z(k) = V(z(k)) <0.

Correspondingly, the function V (x (k)) is called Quadratic Lyapunov Func-
tion (QLF). If in addition P is diagonal, V(x (k)) is called Diagonal Quadratic
Lyapunov Function (DQLF) and the system (1) is diagonally quadratic stable.

In the data-driven context, the existence of a QLF cannot be determined by
using the analytical form of f(x) because it is assumed as unknown. Assume
that the system (1) be fully observable and the system states be measured
without noise. At the time instant ¢ = r, the data set containing r consecutive
measurements of system states can be denoted as

X ={z(1), ...,z(r)} . (2)

As mentioned in the introduction section, the data-driven quadratic stabil-
ity judgment needs only to judge the stability of the currently running motion
of the concerned system, i.e., the measured states of the running trajectory,
but not the existence of the QLF for the global state space of the system.
Therefore, the objective of this paper is defined as to determine the existence
of a QLF for the complete system trajectory under initial condition (1) = .
The system is judged as quadratic stable if and only if a QLF can be found
based on the measured data.

2.2 Stabilization using data-driven stability condition

Consider the nonlinear discrete-time system
:E(k + 1) = f(m(k)vu(k))v (3)

where x denotes the state vector and w the control input. The quadratic
stabilization problem related to system (3) is to design a control input

u(k) = u(x(k), x(k — 1), ...,x(k = 1)), (4)

where [ is an integer and [ < k, such that the origin * = 0 in the state
space of the system (3) with control input (4) is a uniformly asymptotic stable
equilibrium point [13].

In this paper, the known information at an arbitrary instant ¢ = r is only
the measurements of historical states, i.e., the vector set X, defined in equation
(2). The structural and physical information of the nonlinear function f(-)
described in (3) is assumed unknown. The objective is to determine the suitable
control input w(k) online to stabilize the system (3), with the measured system
trajectory being the only utilizable information.
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3 Data-driven quadratic stability criterion
3.1 Geometrical preliminaries

Necessary geometric concepts used in this paper are briefly summarized in this
subsection. Most of the geometrical definitions are taken from [6].

The convex hull for a vector set C, denoted as conv C, is defined as the
minimal convex set containing C, i.e., convC = {X 0,x;|lz; € C, 0; >
0, Xm0, = 1,4 =1, .., m}. A convex conic hull of a set C is the small-
est convex cone for a vector set C defined as coneC = {X",0,x;|z; € C, 0; >
0,i = 1, ..m}. The set cone(C°, which is defined as coneC’ = {y|zTy <
0, for all € coneC}, is called the polar cone of coneC.

A set C is said to be a convex polyhedron if it can be written as convC =
{z|Ax > b} for some matrix A and vector b. A set C is a polyhedral cone if
it can be represented by the above form of a polyhedron with b = 0, denoted
as cone(A). A typical example of a polyhedral cone is the R} .

A polyhedral cone has two representation methods: the H-representation
utilizing the form of the set of inequalities with respect to a matrix A, denoted
as cone(A), and the V-representation utilizing the conic combination of the
vectors within a set C, denoted as cone C. The Carathéodory theorem [7] shows
that if the set C, contains the extreme rays of the cone defined by C, then the
polyhedral cone coneC, is identical the polyhedral cone coneC.

3.2 The necessary and sufficient condition for one trajectory

Denote the vector obtained by left-multiplying an orthogonal matrix & to
the vector (k) of the concerned trajectory as &(k), (k) = Px(k). Define a
transformation for every vector (k) as

o(k) = &(k + 1) o @(k + 1) — &(k) o & (k) (5)

where ©(k) represents the corresponding transformed vector and o represents
the calculation of Hadamard product [11] defined by

aob:[ajbj],jzl, ey N (6)

In (6), the symbols @ and b represent two arbitrary n-dimensional vectors with
a; and b; being their components, respectively. Unlike the inner products be-
tween two vectors, the calculation o establish a manipulation from two vectors
to a new vector.

Applying the proposed vector manipulation to all the elements within the
data set X, defined in equation (2) for r = oo, a new vector set of ¥(k) can
be obtained. Denote the complete vector set of v(k), k =1, ..., o0, as f)oo,
and the convex conic hull (the smallest convex cone) determined by Voo as
cone V... Correspondingly, the polar cone of cone Voo, denoted as cone f}go,
can be represented as

coneV’ = {y|17T(k)y <0,9(k) € coneVy, y € R"} . (7)
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Consider the nonlinear discrete-time system (1) with an equilibrium point
at the origin of its state space. The necessary and sufficient condition of the
existence of a QLF for the considered system trajectory X, r = co, can be
given as the following theorem 1.

Theorem 1 The trajectory X,., v = oo, of the nonlinear discrete-time sys-
tem (1) is quadratic stable, if and only if there exists an orthogonal matrixz @
such that the following two conditions are satisfied:

1. The convex cone cone \}Oo 1S a proper comne.
2. The polar cone cone VS, defined in (7) satisfies

int (cone VN R’}r) # 2, (8)
where int (-) represents the interior of a set and & represents an empty set.

Proof To prove sufficiency, denote an arbitrary vector whose entries are real
positive numbers as d, d € R}, belongs to the set int (cone f/go ﬂR’}r). If
the convex cone cone V., is a proper cone, the polar cone cone 1)30 is also
proper and has non-empty interior, which indicates that d also belongs to
int (cone V2,).

According to the definition of the polar cone cone V2 in (7), it can be
obtained that for all the transformed vectors in the data set Vs, the following

condition holds
(d, v(k)) <0, deRY, k=1, .., 00, (9)

where (-) represents the inner product. Because d € int (cone V), where
int (cone V2) is a convex set, the above inequality can be specified as

(d, o(k)) <0, deR?, k=1, ..., o0, (10)

Using the definition of ¥(k) in (5), the inner product between v(k) and d
in (10) can be represented as

(@(k),d) = d” @k +1) 0@k + 1) — &(k) 0 &(k)) . (11)

Define a diagonal matrix D as D = diag[d]. Obviously D is positive
definite because it is diagonal and its diagonal elements vector d belongs to
R? . With notation that

z(k+1)ox(k+1)=diagz(k+ 1)k +1),

d" diag[z(k +1)] = 7 (k + 1) diag[d] , (12)
and the similar relations for d and &(k), one can obtain the following equation
by substituting (11) and (12) into the inequality (10), as

(@(k),d) = 27 (k+ 1) diag [d] Z(k + 1)
—a"' (k) diag [d] (k)
=z (k+1)D&(k+1)
—&T(kyDa(k) <0. (13)
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Because & (k) is defined as &(k) = ®x(k), the equation (13) can be represented
as
@), d) =" (k+1)Qum(k+1) — " (k) Qz(k) <0, (14)

where the matrix Q is defined as Q = 7 D&. Because D is a positive definite
diagonal matrix and @ is an orthogonal matrix, the matrix @ is also positive
definite. Therefore, according to the definition of QLF it can be seen that the
function V(x(k)) = =¥ (k) Qx(k) is a QLF for the concerned trajectory of
the nonlinear discrete-time system (1), because @Q is a positive definite matrix
and AV (z(k)) = z(k+1)TQx(k + 1) — (k)T Qx(k) < 0. This proves the
sufficiency of the proposed theorem.

To prove the necessity, suppose there exist a quadratic Lyapunov function
for the concerned trajectory, denoted as Vy((k)) = (k)T Q (k). The matrix
Q can be decomposed as

O =& diag[d]d, (15)

with d € R being the eigenvalues of Q and & the eigenvector matrix. Clearly
diag [d] is a positive diagonal matrix and & is an orthogonal matrix, because
Q is positive definite.

Because x(k+1)T Q x(k+1) = &Tdiag [Bx(k+1)|Px(k+1) and (k)T D (k) =
Eleiag [Bx(k)|Px(k), the difference of Vy(a(k)) can be expressed as
AVy(x(k)) = 2(k+1)T Da(k + 1) — (k)" D x(k)
e (diag [z (k + 1)|dz(k + 1)
—diag [Pz (k)| Pz (k))
—d v(k) <0, (16)
where

v(k) = diag [Pz (k + 1)|x(k + 1)
—diag [®x(k)|Px(k)
—a(k+ 1)o@k +1) — (k) o (k), (17)

with & (k) = @z (k). It is shown in equation (16) that the inner product of the
vector v(k) with a vector &, de R, is always less than zero. Due to this fact,
the interior of the polar cone defined in (7) and constructed with the orthogonal
matrix @ is not empty, which indicates that the convex cone constructed by
v(k), k = 1, ..., oo is also proper. Furthermore, because de R?, the polar
cone has common elements with the real positive space R’;.

In [8], it is shown that the complete set of the matrix P in QLF can
be mapped surjectively from the special orthogonal group SO(n,R) and the
conventional topology of R’} . This mapping can be defined as

(®,d) — P : P =&"diag[d]®, (18)
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where @ is an orthogonal matrix in SO(n,R) and d is a real vector in R}.
Because the mapping (18) is surjective, which is proven in [8], it can be con-
cluded that no QLF exists if no element over the complete set SO(n,R) x R
can be found and to construct a QLF, and vice versa, which also is consistent
with the sufficiency and necessity of theorem 1.

Therefore, theorem 1 shows that the existence of a QLF can be determined
by searching through the special orthogonal group SO(n,R) and the conven-
tional topology of R’}. It does not require explicitly an analytical form of the
nonlinear function f(-) in system (1), but the complete time history of system
state vectors. This fact makes it possible to apply the above theorem in the
data-driven context to judge quadratic stability.

3.3 Stability condition for finite time measurements

At the time instant ¢ = r, every system vector (k) € R", k =1, ...,r — 1,
can be transformed with one certain orthogonal matrix ® into a new vector
(k) with use of the mapping defined in equation (5). Correspondingly, these
transformed vectors determine a new vector set, denoted as V,_, = {#(k)},
k=1,..,r—1.

It should be noted that the vector set f)r_l is different from the set f/oo
in theorem 1. The reason is that the set V is obtained by transforming all
the states vectors x(k) within the measured system states, but due to the
finiteness of the measured data, the vector set &’ is only a subset of {2 where
the nonlinear mapping f(-) is defined. Thus V,_1 =7V is true only if r — oo.

The polar cone cone V" 1 can be determined by substituting Voo with Vy_4
into equation (7), as

conef/f_’_l = {y|17Ty <0,9 €coneV,_1,y € R"} . (19)

By examining (19), it can be seen that cone V?_; is a convex cone by adding
an inequality constraint —v(r — 1) d > 0 to cone V" o , which implies that

coneV? | = ﬂ coneV; ;. (20)
1=1

Substituting equation (20) into the stability condition (8) in theorem (1), it
can be obtained that

int (cone Vo n R’}r) = int <(ﬂ cone VY ;)N Rﬁ)
1=1

= m (int (cone f/f_l N Ri))

=1

£ 0. (21)
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It is shown in equation (21) that if coneV? ; N R? # @ at t = r, the
intersections between R’ and any of the cones cone VP formulated at former
time instants 1 <[ < r — 1, are inherently nonempty. This fact implies that if
the condition 3

int (cone Vign Ri) # O (22)

holds at every time instant, which guarantees that cone f)f_l # &, the con-
cerned trajectory is quadratic stable, and vice versa.

Therefore, the quadratic stability of the concerned trajectory can be judged
by checking the condition (22), the constructed convex cone is proper at every
time instant. Hence, theorem 1 can be reformulated for practical implementa-
tion as

Theorem 2 The concerned trajectory of nonlinear discrete-time system (1)
is quadratic stable if and only if there exists an orthogonal matrix @ such that
at every time instantt =r, r =1, ..., oo, the following two conditions can be
satisfied:

1. the convex cone cone l}rfl constructed by the data set X,. and the matriz
@ is proper, R R
2. the polar cone coneV?_; of coneV,_ follows the relationship

coneV’ | NR" £ &. (23)

Theorem 2 states that if the intersection between the set cone f)ﬁ_l and R}
is not empty at every time instant, the system is quadratic stable. Furthermore,
letting d be any vector located within cone ]};’_1 NRY, r = oo, the QLF for
this system can be expressed as

V(x) = xT® diag [d] " . (24)

The condition (23) must be satisfied at every time instant for a quadratic
stable system. Thus, to give a correct stability judgment to the considered
trajectory, this criterion has to be implemented online and checked at every
time instant. If at any time instant the constructed cone is not proper or
condition (22) cannot be satisfied, the concerned trajectory can be judged as
not quadratic stable.

As for numerical implementation, the stability condition (23) can be judged
by solving a max-min problem [32]. If the optimized value of the max-min
problem is greater than zero, the interior of the intersection is not empty and
shows that there exists at least one QLF for the concerned trajectory of the
system (1) at the time instant ¢ = r. If the optimized value of the max-min
problem is positive at every time instant, the concerned trajectory is globally
quadratic stable; if at any time instant the optimized value is not positive,
then the concerned trajectory is not quadratic stable.

It should be remarked that the stability judgment of the proposed algo-
rithm is only necessary and sufficient with respect to the considered trajectory,
but not to the whole system. Nevertheless, the proposed algorithm can still
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be used in control problem, if the control design can be realized online when
only the current running trajectory needs to be considered.

For the purpose of control, if a controller can always drive the closed-loop
system to satisfy the stability condition under arbitrary initial conditions,
all the trajectories of the controlled system starting from this neighborhood
converges to the equilibrium. This means all the perturbed motions starting
from this neighborhood shall converge to the considered equilibrium. In this
case the controlled system shall possess a (both sufficiently and necessarily)
stable equilibrium and thereby be stabilized.

In the next section, a preliminary design of control using this stability
criterion is discussed in the problem of stabilizing unknown nonlinear systems.

4 Application in stabilizing unknown systems

The control input u(k) is considered as a function of z(k), as shown in equation
(4). Therefore, the system (3) under control of u(k) can be expressed as the
same form of (3). Correspondingly, the stability of controlled system can be
discussed by using the proposed data-driven stability criterion.
The stabilization problem defined in section 2 can be reformulated as to find
a control input (k) such that the complete considered trajectory of closed-
loop system
Xoo ={z(k), k=1, ..., 0o}, (25)

satisfies the condition (8) in theorem 1.

Specific to an arbitrary time instant ¢ = r, it means that to find the value
of u(r) such that the trajectory X, satisfies the condition (23) in theorem 2,
with X1 being defined as

Xrp1 =AU {:I}(T + 1)} = {.’I:(l), 7$(T) ) :B(T‘ + 1)} ) (26)

where x(k + 1) = f(x(k), u(k)) and X, is defined in 2.

Due to the fact the nonlinear function f(-) in system dynamics is unknown,
the states @(r + 1) in (26) cannot be calculated directly with use of system
equation at an arbitrary time instant r, even if the value of control input
u(r) is known. Consequentially, the vector set X1 cannot be established and
the stability condition (23) cannot be judged. This problem can be solved
by using the online system identification techniques using Recurrent Neural
Network (RNN).

4.1 Solving the stabilization problem using RNN

The RNN system identification is a well-developed online system identification
method [26,10]. Denote the identified system dynamics by RNN as

&(k+1) = f(a(k), u(k)), (27)
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where f(-) represents the identified dynamics of f(-) in (3) and &(k + 1)
represents the one-step prediction of the future states of the plant at the time
instant t = k. With suitable training algorithms, the RNN can make a one-
step prediction of system states online and the error of one-step prediction by
RNN is incrementally precise with time. This means that

lim || en,(k+1)|—0, (28)
k—o00
where
emk+1) =a(k+1)—x(k+1), (29)

with &(k + 1) being the one-step prediction at time instant ¢ = k and x(k+1)
the true system states at t = k + 1.

The equation (28) indicates that if the complete time series of the predicted
states, denoted as
converges to origin, the trajectory of true system states Xo, defined in (25) also
converges to the origin, because the error between these two time sequences
goes to zero with time.

Correspondingly, specific to every arbitrary time instant ¢ = r, if the vector
set )Er+1, defined as

X1 = X U{a(r+ 1)} = {&Q), ..., &0), &0 +1)}, (31)

satisfies the condition (23) in theorem 2, the vector set X411 defined in (26)
is also stable in the sense of theorem 2.

This fact shows that if the trajectory of predicted system states is stable,
the trajectory of true system states is also stable. Therefore, the task of finding
u(r) at t = r such that the vector set X1 satisfies (23) is identical to find
the w(r) that let vector set X,y satisfy condition (23).

The function f(-) the identified dynamics (27) can be obtained by training
the RNN at an arbitrary time instant ¢ = r. As a result, the prediction &(r+1)
can be obtained if the control input w(r) is known. If a suitable control input
u(r) can be found at every time instant ¢t = r, for r = 1, ..., 0o, such that the
data set )Er+1, including the predicted states &(r+ 1), satisfies the geometrical
condition (23), the data set )2‘7‘-1-1 is stable in the sense of theorem 2 and this
input u(r) can also stabilize the system to be controlled.

4.2 Candidates of feasible control inputs

Denote the vector set obtained by applying the transformation defined in (5)
to x(k), k =1, ..., r, as V,_1. The elements of V,_; are denoted as v(k),
k=1,...,r—1,

Consider the problem of determining the control input u(r) at an arbitrary
time instant ¢ = r when the historical predicted states &(k), k = 1, ..., r,
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satisfy the proposed stability condition (23). This means that the following
fact

int (cone Ve n Ri) # O, (32)

is true, where the superscript (-)° denotes the polar cone and the symbol
cone Vr,l represents the convex conic hull of )A)T,l.

The prediction &(k 4+ 1) can be obtained by substituting w(r) into the
identified system (27). A new transformed vector ©(r) can be obtained by
applying the transformation (5) of (k) and &(k + 1). Defining the set V, as

V, = {o(r)} UVs_q, (33)

the remaining problem is how to determine the value of w(r), so that the
condition

coneV? N R" # @, (34)

can be fulfilled.
Assume the condition (34) is true. It can be obtained from (33) that

coneV, = coneV,_; U cone {i(r)}, (35)
and correspondingly
cone V? = cone V°_, N cone {0(r)}°, (36)

where {9(r)} represents the vector set containing only the vector o(r).
Substituting the equation above into (34), it can be obtained that

int (cone {6(r)}° Ncone V?_; N R’}r) # . (37)

The equation (32) shows that the polyhedral cone 1};’71 NR? is not empty. Ac-

cording to the computational geometrical theory, the equation (37) is true if the

vector 9(r) is not located in the dual cone of cone V?_, N R, which contains

all the vectors having positive inner products with elements of cone 1};’_1 NRY .
In other words, the condition (34) is true if the vector ©(r) satisfies

o(r) € 4, (38)

where /A is the complementary set of the dual cone of cone f)f_l NR?}, denoted
as

A =R"\(coneV?_; NR%)*. (39)

If the condition (34) is true, the trajectory of predicted system states & (k),
k=1, ..,r, r+1is stable in the sense of theorem 2. As a result, the feasible
values of control input w(r) which can guarantee stability at ¢ = r are the ones
which can make the vector ©(r) located in the set A defined in (39).
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input : current system state z(k);
searching region =
identified plant dynamics at t = k
Bk + 1) = F(k), u(h));
data set X = {Z(0), ..., &(k)};
output : feedback gain matrix K;
initialize: set value i+ 0, j + O;
set value J « oo;
set value n, number of elements of =
while i < n do
set value K <+ K; with K; € £}
calculate u;(k) = —Kz(k);
caleulate &;(k + 1) = f(x(k), wi(k));
for j < 1 to k do
calculate Xk+1 with &(k + 1);
calculate 9(j) ; // according to the equation (5)
end
calculate A = R™\(cone V?_, N RT)* 5 // feasible region for ¥(j)
if 9(r) € A then
calculate J;;

if J; < J then
| calculate J = J;

end
calculate i =7 + 1;
else
| calculate i =4+ 1;
end

end

Algorithm 1: Solving optimization task given in (40)

4.3 Choosing suitable control input from candidates

The discussion about feasible control inputs shows that the control input u(k)
should be chosen from the ones fulfilling (38). In this paper, the problem of
seeking u(k) at one certain time instant is solved by solving an optimization
problem, as
min. J
K
s.t. u(k) = —K (k)x(k), (40)
o(r) € R™\(cone V?_; NR7})*,

where J is a suitably chosen performance measure that can be evaluated online
with respect to the system states. For example, this measure can be chosen as

ty
J :/ ' Ex + v Fudt, (41)

to

where tg and ¢; are the starting time and the final time of the evaluation, E
and F' are positive definite matrices, which has been used in the classic linear
optimal control as one kind of representation of the input and state energy.
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Fig. 1 2-D Wing-flap aeroelastic model.

It should be noted here that to minimize the performance measure J is
not the primary goal at the current stage of this research. Instead, it serves as
the selecting measure to obtain one certain control input which can be used
to achieve the primary goal of stabilization.

One possible algorithm to find the suboptimal solution to the optimization
problem (40) is shown in algorithm 1. In this example algorithm, a finite set of
the feedback gain matrix K is given and denoted as =. The example algorithm
calculates the value J of the cost function defined in the optimization problem
(40) for every K (k) in =, determines the one which possesses the smallest .J,
and additionally, make the sequence of the predicted states satisfy the stability
condition. So a suitable feedback gain K can be defined to stabilize the plant
at the time instant ¢ = r. Although this K (k) is only optimal for the present
time instant, it can be applied to construct the suitable control input w(k)
and applied to the plant to fulfill the goal of control.

5 Numerical example of stabilizing a nonlinear aeroelastic system

In this paper, a nonlinear aeroelastic system [22] is used as a benchmark exam-
ple to show the effectiveness and flexibility of the proposed control approach.
The control of this benchmark system has been widely studied with different
control approaches [25,29,28,23,30,31].

5.1 Configuration of the aeroelastic system

The configuration of the considered 2-D nonlinear aeroelastic wing section is
shown in figure 1. The two degrees of freedom, the pitching movement and the
plunging one, are respectively restrained by a pair of springs attached to the
elastic axis (EA) of the airfoil. A single trailing-edge control surface is used
to control the air flow, thereby providing more maneuverability to suppress
instability. This model is accurate for airfoils at low velocity and has been
confirmed by both computational tests [4] and wind tunnel experiments [21].
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According to [22], the equations of motion governing the aerolastic system
are given as

mr  MwIab h c, 0 h
mwzab Iy o' 0col |

Loellel =[]

where plunging and pitching displacement are denoted as h and « respectively.
In Eq. (42) mw denotes the mass of the wing, my represents the total mass
of the wing and its support structure, b the semi-chord of the wing, I, the
moment of inertia, x, the non-dimensional distance from the center of mass
to the elastic axis, ¢, and ¢, the pitch and plunge damping coeflicients respec-
tively, k. and kj the pitch and plunge spring constants respectively, and M
and L denote the quasi-steady aerodynamic lift and moment. In the case when
the quasi-steady aerodynamics is considered, M and L should be written as

(42)

L = pU%e, [a +hyd- a)b%} + pU?bey, B

272 h 1 j 219 ’ (43)
M = pU?b*cyy,, {a—i—ﬁ—l—(g—a)b%] + pU?b%cpn, B

where the denotations are explained in table 5.1.

Table 1 Denotation list of aerodynamic coefficients

Symbols  Representations

p Density of air

a Nondimensional distance from
mid chord to elastic axis

b Semi-chord of the wing

Ch, Ca Pressure coefficients

Crmas Lift and moment coefficients

Cmg per angle of attack

Clg, Lift and moment coefficients

Cmg per angle of control surface de-
flection

U Free stream velocity

To Distance from elastic axis to

mass center

The structural nonlinearity is supposed to exist in the pitching spring con-
stant k,, which is assumed as to be a polynomial of «, shown as

4
ko =Y koo, (44)
=0

The control objective is to drive the flap angle 8 properly so that the instability
caused by structural nonlinearities can be suppressed in the vicinity of the
nominal system flutter speed with smaller control errors and less input energy.
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Fig. 2 Open-loop system phase portraits with different nonlinearities

5.2 Problem settings and specific tasks of control

As pointed in [17], a stable pitch motion of the 2-D wing section leads at the
same time to a stable plunging motion, and vice versa. Due to this knowledge,
it is reasonable to only take the subsystem consisted of pitching angels and
pitching velocity into consideration. If this subsystem can be stabilized, the
stability of global system can be guaranteed.

It is assumed in this example that the pitching motion is fully measurable,
i.e., the states a and & are known as measurements. As mentioned in the
introduction, the measurements are assumed as noise-free.

The task of control is to stabilize the system following the above assump-
tions with two different nonlinearities of the pitching spring stiffness according
to [16] and [1], respectively, as

ko1 = [6.8 10.0 667.7 26.6 —5087.9] [a], (45)

and
ko2 = [2.8 —62.3 3709.7 —24195.6 48756.9} [o/]. (46)

The adaptive feedback linearization control in [16] is also applied in the
simulation to be compared with the proposed control method. It should be
mentioned that the parameter settings of the both control methods, including
the feedback gains in adaptive feedback linearization method, are kept as the
same in the both simulations when the nonlinearity k.1 is changed into kqs,
in order to compare the adaptive abilities of the both control approaches.

5.3 Simulation results

The open-loop responses of the concerned aeroelastic system with different
nonlinearities ko1 and k,2 are shown in figure 2(a) and figure 2(b). It can be
seen from these two figures that the structural nonlinearity in the pitching
stiffness leads the system response to the Limit Cycle Oscillation (LCO).
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Fig. 3 Closed-loop response with nonlinearity kq1

The system functionality measure in this example uses the form similar to
the objective function in linear optimal control introduced in equation (41).
The optimization problem (40) here is solved by heuristic search. The searching
space is defined as the varying region of the flapping motion £, which is detailed
as (—4bdeg, 45deg).

Simulations of the close-loop system are performed with wind speed U =
20m/s and structural parameter ¢ = 0.8 (nondimensional distances from mid-
chord to the elastic axis). The initial conditions for the state variables of the
system are selected as «(0) = 5.75 (deg), h(0) = 0.01m, &(0) = 0 (deg/s), and
h(0) = Om/s. The sampling time is set as 1 x 10~ 4sec.

The simulation results of the closed-loop system with the nonlinearity kq1
and kq2 are given in figure 3 and figure 4, respectively. The red dashed curves
in figure 3 and figure 4 show the simulation results with the proposed control
method, from which it can be seen that both system trajectories converge to
the origin of the state space with increasing time. From these simulation results
it can be seen that the proposed control method can stabilize the unknown
nonlinear aeroelastic system with different nonlinearities. This fact shows that
the proposed control strategy can not only be used to stabilize the unknown
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Fig. 4 Closed-loop response with nonlinearity kq2

nonlinear system, but also adapt the variation of system dynamics and realize
the goal of stabilizing unknown plants.

The simulation results of adaptive feedback linearization control with re-
spect to the two different nonlinearities are shown as the blue curves in figure
3 and green curves in figure 4, respectively. It can be seen that in the case of
ko1 the adaptive feedback linearization has better control performance with
respect to the error and settling time than the proposed method. However, it
cannot stabilize the system to the desired position (origin in the state space)
in the second simulation with k42, in which case the sytem dynamics are as-
sumed unknown to feedback linearization control and its parameters are kept
as the same as those in the first simulation.

From this comparison it is shown that the proposed method possesses
higher adaptability than the adaptive feedback linearization method when the
system dynamics is unknown.

6 Conclusion

This paper firstly proposes the necessary and sufficient condition of the ex-
istence of a QLF only for a trajectory of nonlinear discrete-time systems,
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without necessity of knowing the mathematical description of the system. The
existence of a QLF for the considered trajectory can be determined by exam-
ining the existence of a suitable orthogonal matrix, with which a convex cone
can be constructed and have a non-empty intersection with positive real space.

Based the proposed stability criterion, a new control method is proposed
and can be applied to stabilize a nonlinear aeroelastic system using only the
information of the measured system states. Simulation results show that the
proposed control can adaptively fulfill the task of stabilizing unknown systems
without changing any parameters.
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