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ABSTRACT

Model predictive control (MPC) has become more attractive
in control engineering for the last decades because of its effi-
ciency and robustness. In this paper, an effective control strategy
is proposed for vibration reduction of mechanical flexible sys-
tems in which establishment of a global dynamic model of the
controlled system is not necessary. A modified model-free adap-
tive predictive controller is designed by combination of MPC and
model-free control theory. The novel idea of this contribution is
that by using the compact-form dynamic linearization technique,
the upcoming system outputs within a specified prediction hori-
zon can be predicted in sequence. The data-based prediction
model of the system only requires input/output information, and
therefore the future control input increments as well as the un-
known system parameters called pseudo-jacobian matrix can be
estimated. To improve parameter estimation accuracy, another
online estimation method namely recursive least-squares algo-
rithm is applied instead of using the conventional projection al-
gorithm. The control performance is verified nummerically for
vibration control of a flexible ship-mounted crane represented as
a multi-input multi-output (MIMO) system. Simulation results in-
dicate that significant reduction of the crane oscillations and bet-
ter control performance are observed when using the proposed
controller in comparison with other traditional methods.

INTRODUCTION

Since the last few years, an alternative solution to deal with
control design of unknown MIMO nonlinear systems has been
introduced namely model-free control (MFC) beside a variety
of existing model-based control (MBC) methods. The basic as-
sumption for this type of control is that the required controller
can be designed by using only online or offline input/output (I/O)
data which are measured or calculated directly from the con-
trolled system [1]. An accurate mathematical model of the con-
sidered system is not necessary to be fully known. Therefore,
no information about model structures, unmodeled dynamics or
uncertainties which are important in MBC needs to be investi-
gated. As a typical MFC, model-free adaptive control (MFAC)
was firstly proposed by Z. S. Hou et al. [2] and has been ap-
plied to a class of single-input single-output (SISO) as well as
MIMO nonlinear systems [3–7]. Based on different dynamic lin-
earization techniques such as compact-form, partial-form, and
full-form dynamic linearization [2], an equivalent linearized data
model of the original system is locally established which con-
tains unknown time-varying parameters. These parameters can
be estimated and updated recursively at every time-instant of the
system operation based on the previous system inputs and out-
puts. As result, the required control input signals can be deter-
mined by minimization of an objective function using the cor-
rected system parameters and the current control errors. As dis-
cussed in [2], MFAC possesses several attractive properties com-
pared to MBC. First, only the I/O data obtaining from the closed-
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loop system are used to design controllers. Second, MFAC does
not require any external testing signals as well as training pro-
cesses. Furthermore, MFAC may have simple structures leading
to low computational load. Finally, the convergence and stability
of MFAC algorithms can be guaranteed under some reasonable
assumptions [2].
Model predictive control or MPC has been proved as one of the
most effective control methods since 1970s, which is particularly
useful for constrained control problems. The theory of MPC is
basically related to using an explicit system model to predict the
future process ouputs within a range of future time-instants (pre-
diction horizon) [8]. Afterwards, based on the estimated control
errors, a control input sequence can be calculated and the first
control signal is applied to fulfill the initial control requirements.
Up to now, a variety of MPC algorithms and its modifications
have been proposed to cope with the problem of process noises
or measurable disturbances. As presented in [9], the author re-
viewed the three decade development of MPC in both research
and industrial/commercial activities. Particularly, a survey of in-
dustrial MPC technology is addressed in [10] which provides an
overview of commercially available MPC techniques for linear
and nonlinear control systems.
By combination of MPC and MFC theories, different adaptive
control algorithms are developed for nonlinear dynamical sys-
tems. K. K. Tan et al. [11] proposed a new robust adaptive pre-
dictive proportional-integral (PI) controller which uses standard
recursive least-squares algorithms for system parameter estima-
tion. In [12], a novel data-driven model-free adaptive predictive
control (MFAPC) strategy based on lazy-learning technique is
designed only for SISO nonlinear discrete-time systems. In addi-
tion, based on the compact-form dynamic linearization (CFDL)
concept [2], an extended MFAPC scheme is designed for mul-
tivariate molten iron quality data [13]. A modified projection
algorithm is proposed to estimate and update the unknown pa-
rameter matrix called pseudo-partial derivative (PPD) [13]. Re-
cently, Y. Guo et al. [14] introduce a novel MFAPC program for
MIMO nonlinear systems with stability analysis based on a series
of reasonable assumptions. To design the controller, the modified
projection algorithm as discussed in [2] is needed.
In this contribution, a modified MFAPC scheme is proposed con-
cerning on vibration reduction of mechanical flexible systems.
The designed controller is applied to an elastic crane representing
a typical MIMO system. Motion-induced vibrations are serious
problems which should be suppressed or reduced passively or ac-
tively. Study of vibration control applying to the field of elastic
mechanical systems is highly motivated. In general, a compre-
hensive review of crane types and control issues including a brief
review on modeling of single-pendulum and double-pendulum
crane structures is discussed by L. Ramli et al. [15]. To con-
trol both the sway and the vibration by the inherent capability
of tower cranes, the authors in [16] propose a decentralized con-
trol program which indicates better performance compared with

a centralized one. In addition, an adaptive control approach for
a flexible crane system with a boundary output constraint is de-
scribed in [17]. A flexible cable with a payload attached at the
bottom is considered to be the model of the crane. Obviously, the
system modeling is essential for control design. As an illustra-
tive example, a robust nonlinear controller using adaptive repet-
itive learning control method is proposed by Y. Qian et al. [18]
for an offshore boom crane in which external disturbances effect
strongly to the controlled system.
However, most of the aboved approaches require system mod-
els which could be very difficult to obtain, especially for MIMO
nonlinear systems. Different from MBC, this contribution dis-
cusses a modified model-free adaptive predictive control method
for a class of mechanical flexible structures. The modified idea
is implemented by applying the modified recursive least-squares
algorithm (RLSA) [2] to improve parameter estimation accuracy.
Then, the predicted system outputs and the future control inputs
are calculated by using the updated system parameters. The pro-
posed controller is used to reduce oscillations of the elastic boom
and the payload of a crane. The remaining parts of the paper are
organized as follows. In Section II, a CFDL-based prediction
model within context of MIMO cases is established for system
output prediction. Detail discussion about using the modified
RLSA for the CFDL model is illustrated. In Section III, discus-
sion about the calculation of the control input signals and some
steps to design the control program is described. Vibration con-
trol example with simulation results and discussion are shown in
Section IV. Finally, a conclusion will be given in the last section.

COMPACT-FORM DYNAMIC LINEARIZATION-BASED
PREDICTION MODEL

In this section, a general compact-form of N-step-ahead pre-
diction equation is established based on the CFDL concept [2].
This linearized dynamical form contains unknown time-varying
parameters which could be estimated and predicted recursively.
For online parameter estimation, instead of using conventional
projection algorithm as introduced in [12, 14], this contribution
discusses recursive least-squares algorithm [19] for estimation
accuracy improvement. The updated parameters are utilized to
predict the future control inputs, and therefore to fulfill the con-
trol requirements.

General compact-form predictive equation
According to [2], for a class of unknown MIMO nonlinear

systems, a general I/O description can be illustrated in discrete-
time as

y(k+1) = f (y(k), ...,y(k−my),u(k), ...,u(k−mu)), (1)
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where y(k) ∈ Rr,u(k) ∈ Rm denote the system outputs and con-
trol inputs at current step k, respectively. The unknown system
orders represented as my and mu, while m and r indicate the num-
ber of input and output signals, correspondingly. The unknown
nonlinear function f (...) contains the previous I/O values up to
step k.
To establish an equivalent linearized form of the original system
(1), according to [2], two reasonable assumptions should be sat-
isfied as follows
Assumption 1: The partial derivatives of f (...) with respect to
u(k) exist and are considered as smooth.
Assumption 2: The system (1) satisfies the general Lipschitz con-
dition ‖y(k+1)−y(k)‖ ≤ b‖u(k)−u(k−1)‖ at each time in-
terval k with ‖u(k)−u(k−1)‖ 6= 0, and b is a positive constant.
Assumption 2 defines an upper bound on the change rate of the
output driven by the change rate of the control input.
Based on the above assumptions, the original unknown system
(1) can be linearized locally at every discrete-time k of the sys-
tem operation. The CFDL data-based model is described as

∆y(k+1) = Φ(k)∆u(k), (2)

where the unknown time-varying parameter matrix Φ(k) called
pseudo-jacobian matrix (PJM) which should be estimated con-
tinuously. The structure of the PJM in MIMO case is written
as

Φ(k) =


φ11(k) φ12(k) φ13(k) . . . φ1m(k)
φ21(k) φ22(k) φ23(k) . . . φ2m(k)

...
...

...
. . .

...
φr1(k) φr2(k) φr3(k) . . . φrm(k)


r×m

, (3)

assuming ‖Φ(k)‖ ≤ b according to assumption 2.
In case of the number of system inputs and outputs are identical
(m = r = n), another assumption needs to be given for system
stability analysis [2] as
Assumption 3: The PJM matrix Φ(k) satisfies the diagonally
dominant condition with the following conditions

∣∣φi j(k)
∣∣ ≤

c1;c2 ≤ |φii(k)| ≤ αc2, whereas i, j = 1,2, . . . ,n; i 6= j; α ≥ 1,
and the sign of all elements in Φ(k) are fixed. The two posi-
tive constants are c1,c2 and satisfy c2 > c1 (2α +1)(n−1). As
explained in [2], assumption 3 illustrates the coupling relation-
ship between input and output in closed-loop data, that means
the coupling among the system variables is described via the di-
agonal dominant matrix Φ(k).
The CFDL data model (2) also describes one-step-ahead predic-
tion equation of the system output

y(k+1) = y(k)+Φ(k)∆u(k). (4)

According to (4), N-step-ahead prediction equations of the sys-
tem dynamics can be established as follows



y(k+1) = y(k)+Φ(k)∆u(k)
y(k+2) = y(k+1)+Φ(k+1)∆u(k+1)
y(k+2) = y(k)+Φ(k)∆u(k)+Φ(k+1)∆u(k+1)
...
y(k+Nu) = y(k+Nu−1)+Φ(k+Nu−1)∆u(k+Nu−1)
...
y(k+N) = y(k+N−1)+Φ(k+N−1)∆u(k+N−1)
y(k+N) = y(k)+Φ(k)∆u(k)
+...+Φ(k+Nu−1)∆u(k+Nu−1)
+...+Φ(k+N−1)∆u(k+N−1)

,

(5)

where Nu is the control input horizon with 1≤ Nu ≤ N.
Let the following notations

YN(k+1) = [y(k+1), ...,y(k+Nu), ...,y(k+N)]T , (6)

∆UN(k) = [∆u(k), ...,∆u(k+Nu−1), ...,∆u(k+N−1)]T , (7)

E(k) = [Ir×m,Ir×m, ...,Ir×m]
T , (8)

D(k) = (9)

Φ(k) 0 0 . . . 0 0
Φ(k) Φ(k+1) 0 . . . 0 0

...
...

. . . . . . . . .
...

Φ(k) Φ(k+1)
... Φ(k+Nu−1) 0 0

...
...

. . .
...

. . .
...

Φ(k) Φ(k+1) . . . Φ(k+Nu−1) . . . Φ(k+N−1)


N×N

,

where YN(k+ 1) denotes the N-step-ahead prediction vector of
the system output, ∆UN(k) represents the predicted control in-
put increment vector along the output prediction horizon k =
1,2, ...,Nu, ...,N, while Ir×m is an identity matrix and 0r×m is a
zero matrix.
Consequently, (5) can be rewritten in a general compact-form of
N-step-ahead prediction equation as

YN(k+1) = E(k)y(k)+D(k)∆UN(k). (10)

From (7), assuming that ∆u(k + j− 1) = 0 if j > Nu, then the
prediction equation (10) becomes

YN(k+1) = E(k)y(k)+D1(k)∆UNu(k), (11)
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where

∆UNu(k) = [∆u(k),∆u(k+1), ...,∆u(k+Nu−1)]T , (12)

D1(k) =



Φ(k) 0 0 0
Φ(k) Φ(k+1) 0 0

...
...

. . .
...

Φ(k) Φ(k+1) . . . Φ(k+Nu−1)
...

... . . .
...

Φ(k) Φ(k+1) . . . Φ(k+Nu−1)


N×Nu

. (13)

Based on the output prediction equation (11), calculation of the
future control input increment vector ∆UNu(k) as well as the cur-
rent control input vector u(k) will be discussed in the next sec-
tions.

Parameter estimation and prediction
The unknown time-varying parameter matrices Φ(k),Φ(k+

1), ...,Φ(k+Nu−1) in (13) could be estimated and predicted by
using only the available system I/O data. To estimate the PJM
parameters at current time Φ(k), this paper considers the RLSA
[19] for estimation accuracy improvement. The other PJM matri-
ces in the next instants Φ(k+1),Φ(k+2), ...,Φ(k+Nu−1) can
be predicted according to the existing values Φ̂(1),Φ̂(2), ...,Φ̂(k)
by applying the multilevel hierarchical forecasting algorithm
[20].
The RLS estimation method [19] can be applied to the CFDL
model (2) to update the system parameters Φ(k) recursively. As
result, the CFDL-RLS algorithm is obtained as

P(k) = P(k−1)−P(k−1)∆u(k−1) (14)[
I +∆uT (k−1)P(k−1)∆u(k−1)

]−1
∆uT (k−1)P(k−1),

K(k) = P(k−1)∆u(k−1)
[
I +∆uT (k−1)P(k−1)∆u(k−1)

]−1
,

(15)

Φ̂(k) = Φ̂(k−1)+K(k)
[
∆y(k)− Φ̂(k−1)∆u(k−1)

]
, (16)

where Φ̂(1) denotes the initial PJM values, P(k),K(k) are the
unknown parameter matrices, and P(0) is any initial positive def-
inite matrix P0.
To improve the performance of the least-squares algorithm, a
modified RLSA [2] is considered and could be applied to the

linearized data-based model (2) which results to

P(k) = P(k−1)−P(k−1)∆u(k−1) (17)[
I +∆uT (k−1)P(k−1)∆u(k−1)

]−1
∆uT (k−1)P(k−1),

Φ̂(k) = Φ̂(k−1)+P(k)∆u(k−1) (18)[
∆y(k)− Φ̂(k−1)∆u(k−1)

]
− γP(k)

[
Φ̂(k−1)− Φ̂(k−2)

]
,

where γ > 0 is a constant parameter.
To predict the future PJM matrices Φ(k + 1),Φ(k +
2), ...,Φ(k + Nu − 1) in (13), the available estimated values
Φ̂(1),Φ̂(2), ...,Φ̂(k) calculating in (17), (18) are used. In this
contribution, the multilevel hierarchical forecasting method
as presented in [20] is applied. As result, an autoregressive
prediction model of the PJM in next step (k+1) is denoted as

Φ̂(k+1) = θ1(k)Φ̂(k) (19)

+θ2(k)Φ̂(k−1)+ . . .+θnp(k)Φ̂(k−np +1),

where θi, i = 1,2, . . . ,np are the coefficients and np = 2÷ 7 as
recommended in [14] indicates the fixed model order. Therefore,
in general the prediction equation of the PJM can be written as

Φ̂(k+ j) = θ1(k)Φ̂(k+ j−1) (20)

+θ2(k)Φ̂(k+ j−2)+ . . .+θnp(k)Φ̂(k+ j−np),

where j = 1,2, ...,Nu−1. Let the following values

θ(k) =
[
θ1(k),θ2(k), . . . ,θnp(k)

]T
, (21)

Ψ̂(k−1) =
[
Φ̂(k−1),Φ̂(k−2), . . . ,Φ̂(k−np)

]T
, (22)

Φ̂(k) = θ
T (k)Ψ̂(k−1). (23)

The unknown parameters θ1(k),θ2(k), . . . ,θnp(k) in (19) and
(20) can be computed by minimizing the following objective
function [14]

J(θ(k)) =
∥∥Φ(k)−Ψ(k−1)θ T (k)

∥∥2
+δ‖θ(k)−θ(k−1)‖2.

(24)

Differentiating function (24) with respect to θ(k) and letting it
zero, hences the optimal parameters

θ(k) = θ(k−1)+
Ψ̂(k−1)

[
Φ̂(k)−θ T (k−1)Ψ̂(k−1)

]
δ +

∥∥Ψ̂(k−1)
∥∥2 ,

(25)
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where δ ∈ (0,1] is a designed positive constant. Based on
the vector of parameters θ(k) in (21) which are recursively
calculated in (25) and the old PJM values up to current step
Φ̂(1), . . . ,Φ̂(k), the upcoming PJM parameters at steps j =
1,2, . . . ,Nu−1 are predicted via (20).

MODEL-FREE ADAPTIVE PREDICTIVE CONTROL DE-
SIGN

A model-free adaptive predictive controller is designed in
this section. The proposed approach can be applied to vibra-
tion control of a class of mechanical flexible systems. By us-
ing the estimated and predicted system parameters Φ̂(k),Φ̂(k+
1), . . . ,Φ̂(k + Nu − 1) as well as the predicted tracking errors
e(k + 1) within the output prediction horizon N, the required
control input vector u(k) will be calculated to fulfill the initial
control requirements.

Control input calculation
The future control input increment vector ∆UNu(k) in (11)

can be predicted along the control prediction horizon k =
1,2, . . . ,Nu. The control goal is to minimize the predicted output
tracking errors between the future references yd(k + i) and the
predicted system outputs y(k+ i) considering input energy limi-
tation by introducing a weighting factor λ , where i = 1,2, ...,N.
The objective function of the control input increment vector (∆u)
is illustrated as

J(∆u) =
N

∑
i=1

∥∥∥yd(k+ i)−y(k+ i)
∥∥∥2

+λ

Nu−1

∑
j=0
‖∆u(k+ j)‖2,

(26)

where λ > 0 is a constant parameter which is added to restrict
the change rate of the future control inputs. The desired system
outputs yd(k+ i) in (26) along the output prediction horizon N
can be written as

Yd
N(k+1) =

[
yd(k+1), . . . ,yd(k+Nu), . . . ,yd(k+N)

]T
.

(27)

By substituting (6), (12), and (27) into (26), the above cost func-
tion can be rewritten as

J(∆U) =
[
Yd

N(k+1)−YN(k+1)
]T [

Yd
N(k+1)−YN(k+1)

]
(28)

+λ∆UNu
T (k)∆UNu(k).

The future system outputs YN(k + 1) are calculated by using
the general compact-form prediction model (11). Therefore, the
above function can be expressed as

J(∆U) =
[
Yd

N(k+1)−E(k)y(k)−D1(k)∆UNu(k)
]2

(29)

+λ∆UT
Nu(k)∆UNu(k).

Solving the optimal problem by differentiating the function (29)
with respect to ∆UNu(k) and letting it zero, yields

∂J
∂∆UNu(k)

= 2
[
Yd

N(k+1)−E(k)y(k)−D1(k)∆UNu(k)
]

(30)(
−DT

1(k)
)
+2λ∆UNu(k) = 0.

Finally, the predicted control input increment vector can be de-
termined as

∆UNu(k) = (31)[
DT

1(k)D1(k)+λ I
]−1DT

1(k)
[
Yd

N(k+1)−E(k)y(k)
]
,

in which the unknown time-varying parameter matrix D1(k) can
be estimated and predicted using the discussed algorithms (17),
(18), (20), and (25). Then, the current control input vector u(k)
is computed by applying the receding horizon principle [2] as

u(k) = u(k−1)+gT
∆UNu(k), (32)

where g= [Ir×m,0r×m, . . . ,0r×m]
T , with r,m denoting the number

of system outputs and control inputs, respectively.

Steps for model-free controller design
The proposed method can be applied to a class of unknown

MIMO systems in which the system I/O data can be directly
computed or measured. A general MFAPC scheme of a MIMO
crane represented as a multivariable system is shown in Fig.1. To
design a model-free adaptive predictive-based control program,
the following steps have to be implemented:

1. Based on the CFDL data model and the available I/O infor-
mation from the controlled system, the unknown PJM pa-
rameters at current step Φ̂(k) are estimated and updated re-
peatedly by using the modified RLSA (17), (18). According
to [2] and based on assumption 3, to improve the ability in
tracking parameters, a reset condition is considered as

φ̂ii(k) = φ̂ii(1) i f
∣∣φ̂ii(k)

∣∣< c2 or
∣∣φ̂ii(k)

∣∣> αc2 (33)

or sign(φ̂ii(k)) 6= sign(φ̂ii(1)),
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φ̂i j(k) = φ̂i j(1) i f
∣∣φ̂i j(k)

∣∣> c1 (34)

or sign(φ̂i j(k)) 6= sign(φ̂i j(1)),

where φ̂ii(1), φ̂i j(1) are the initial values of the PJM, with
i, j = 1,2, . . . ,n; i 6= j.

2. Using the current updated PJM Φ̂(k) as well as the exist-
ing values from previous steps Φ̂(1),Φ̂(2), ...,Φ̂(k−1), the
unknown parameters θ(k) can be determined via (25). As
discussed in [14], the below condition has to be fulfilled

θ(k) = θ(1) i f ‖θ(k)‖ ≥M, (35)

where M is a positive constant and θ(1) is the initial vector-
value of θ(k).

3. The calculated parameters θ(k) are used to predict the future
pseudo-jacobian matrices Φ̂(k+ j) with j = 1,2, ...,Nu−1,
that means the parameter matrix D1(k) is completely defined
by (13). To improve the tracking ability of the PJM predic-
tion algorithm, another reset condition [2] has to be realized
as

φ̂ii(k+ j) = φ̂ii(1) i f
∣∣φ̂ii(k+ j)

∣∣< c2 or
∣∣φ̂ii(k+ j)

∣∣> αc2
(36)

or sign(φ̂ii(k+ j)) 6= sign(φ̂ii(1)),

φ̂i j(k+ j) = φ̂i j(1) i f
∣∣φ̂i j(k)

∣∣> c1 (37)

or sign(φ̂i j(k+ j)) 6= sign(φ̂i j(1)).

4. By using the estimated and predicted PJM parameters D1(k)
and the output tracking errors e(k+1), the control input in-
crement vector ∆UNu(k) as well as the required control input
values are defined according to (31), (32). Finally, the up-
coming outputs y(k + 1) are computed or measured again
and the given process is implemented repeatedly.

VIBRATION CONTROL EXAMPLE
In this section, the discussed MFAPC program is applied

to reduce free vibrations of a flexible crane. The elastic ship-
mounted crane with the “Maryland Rigging” has been developed
in [21] for cargo transportation in open sea. Due to the effects
of wave motion and wind force represented as unknown external
disturbances together with the excitation from non-zero initial
position of the payload, large oscillations could appear which
might lead to dangerous situations of the crane operation. Con-
sequently, the crane normally becomes unstable if no controller

MIMO crane

PJM estimation
and prediction

CFDL-based
predictive model

1z-

1z-

Optimizer

Control input
calculation

( )
uN
kDU

1( )kD

1( )kD

1z-

( )ku

( 1)k -u

( )ku ( )ky

( )ky

( 1)k -y

( 2)k -y

ˆ ( 1)k +Y
-

+ ( 1)d k +Y

( 1)k +e

Model-free adaptive predictive control

FIGURE 1. GENERAL MODEL-FREE ADAPTIVE PREDICTIVE
CONTROL SCHEME OF A MIMO CRANE

is used. The control goal is to reduce the vibrations of the elastic
part of the boom (at node 6) and the payload m2 (Fig.2). First,
the crane configuration and the linearized state-space model are
reviewed briefly. The model is simulated only to acquire I/O
data for model-free control design. Then, controller parameters
as well as simulation results are illustrated with comparisons to
other conventional approaches.

Introduction to the elastic crane

The configuration of the ship-mounted crane is shown in Fig.2.
The boom of the crane is divided into two parts: elastic part (AB)
and rigid part (BC) in which the moment MA is assumed to be
applied to the lower point A (at node 1) of the boom [21]. The
control purpose is to suppress the vibrations of the elastic part
AB represented as the angle θ6 (at node 6) and the angular dis-
placements of the payload cable (φ2) and the upper cable (α2).
The system output vector is denoted in discrete-time as

y(k) = [∆θ6(k) ∆α2(k) ∆φ2(k)]
T . (38)

Three control input variables are defined to fulfill the control re-
quirements namely the displacements of the luff angle (∆ρ), the
total length of the upper cable (∆L with L = L1 + L2), and the
lower suspension point position (∆D) of the upper cable (Fig.2).
The vector of control inputs is written as

u(k) = [∆ρ(k) ∆L(k) ∆D(k)]T . (39)
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FIGURE 2. CONFIGURATION OF THE ELASTIC SHIP-
MOUNTED CRANE WITH THE “MARYLAND RIGGING” [21]

To estimate and predict the unknown time-varying parameters
Φ(k),Φ(k + 1), . . . ,Φ(k + Nu − 1) in (13), the I/O data of the
crane up to step (k−1) has to be calculated. For this purpose,
the linearized state-space model which is taken from the crane
motion equations [21] needs to be transformed into discrete-time
domain as follows

z(k+1) = Gz(k)+Hu(k)+J∆δ (k)+Qp2(k), (40)
y(k) = Cz(k)+Du(k)+F∆δ (k),

where z denotes the system state vector. Here G,H are the cor-
responding system and input matrices, respectively; whereas the
system output and the input direct transmission matrices are indi-
cated as C and D, correspondingly. The disturbance matrices are
represented as J due to ship rolling (∆δ ), and Q due to wind force
(p2). The disturbance direct transmission matrix F is resulted by
the sea motion effects. In Tab.1, several initial parameters of the
crane are given.

Tracking control performance

The modified MFAPC requires the estimated parameters
Φ̂(k) which are obtained from (17), (18) and the predicted PJM
Φ̂(k + 1),Φ̂(k + 2), . . . ,Φ̂(k + Nu − 1) which are calculated
via (20), (25). The required control input values are realized
by using (31), (32). In this contribution, the tracking control

TABLE 1. INITIAL PARAMETERS OF THE ELASTIC SHIP-
MOUNTED CRANE

Parameter Meaning Value [Unit]

β0 Orientation of the boom axis π/4 [rad]

D0 Low-point suspension cable 0.55 [m]

L0 Length of the upper cable 1.60 [m]

m1 Mass of the pulley 0.50 [kg]

m2 Mass of the payload 5.0 [kg]

φ̇20 Initial payload angular velocity 5.0 [rad/s]
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FIGURE 3. COMPARISON OF VIBRATION CONTROL WITH
RESPECT TO THE PAYLOAD POSITION ∆x2 AND ∆y2

ability of the designed controllers is evaluated in case of
without considering external disturbance effects, that means
∆δ (k) = p2(k) = 0. However, by consideration of non-zero
initial excitation to the payload (φ̇20 = 5.0 [rad/s] in Tab.1), there
are still unexpected oscillations in the system. The recursive
least-squares-based model-free adaptive predictive control
(RLS-MFAPC) results are shown and compared with that of the
projection algorithm-based MFAC (PA-MFAC) and standard
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PI control. In Fig.3, the comparison of vibration control with
respect to the payload position in x- and y-direction denoted as
∆x2 and ∆y2 is illustrated. The control part of the simulation
starts from t = 30 [s]. It can be seen that the RLS-MFAPC (green
lines) has better tracking control performance with respect to
smaller control error amplitudes compared to the PA-MFAC
(blue lines) and PI control (red-dot lines). It takes approximately
10 [s] to reduce the oscillation of the payload position in case
of applying the modified model-free controller. To observe the
system dynamic behaviors due to non-zero initial condition
of the payload (φ̇20), the results in uncontrolled situation are
also given (pink-dash lines). The designed parameters of the
RLS-MFAPC and PI controller are given in Tab.2. In addition,
the output control results regarding the upper cable (∆α2) and
the payload cable (∆φ2) are described in Fig.4. It is clear
that the angular displacements are reduced significantly from
∆α2 = 30 [deg] and ∆φ2 = 50 [deg] to nearly zero at the end
of the simulation when using the RLS-MFAPC (green lines).
Therefore, the modified model-free control results are much
better than those of the conventional approaches.

Control input energy-based evaluation
A method to evaluate control efficiency is using the relation-

ship between control input energy
∫

u2(t)dt and output tracking
error

∫
e2(t)dt within a suitable length of time T = [t1, t2] [22].

By varying controller parameters, different trajectories (PK) of
the required control input signals u = [∆L,∆D] as well as the
payload tracking control errors e = [∆x2,∆y2] are obtained

PK =

 t2∫
t1

u2(t)dt,

t2∫
t1

e2(t)dt


K

, (41)

where K = [λ ,δ ,Kp,Ki] is a set of controller gains of the RLS-
MFAPC, PA-MFAC, and PI controller. Here λ > 0 is an im-
portant parameter which can be chosen suitably to improve the
modified model-free control performance via (31). In Fig.5, the
control performance evaluation with respect to the criteria (41)
within a specified interval length of time T1 = [30,160] [s] (or
transient phase) is presented. It can be observed that the trajec-
tory PK of the RLS-MFAPC (black dots) is closer to the origin
(0,0) when varying the controller parameters K, that means the
proposed control approach is more robust in comparison with
the conventional PA-MFAC (blue dots) and PI control (red dots).
To evaluate the control performance in stationary phase with the
simulation time T2 = [130,160] [s], the results of trajectory of
the three discussed controllers are depicted in Fig.6. Generally
speaking, the RLS-MFAPC indicates better control performance
regarding to smaller tracking control error amplitudes. However,
the proposed controller still requires more control input energy
compared to the other traditional methods.

TABLE 2. DESIGN PARAMETERS OF THE RLS-MFAPC AND PI
CONTROLLER

Parameter Meaning Value [Unit]

λ Constant weighting factor 75 [-]

ε Small positive constant 10−5 [-]

δ Designed positive constant 0.75 [-]

N Prediction horizon of the output 6 [-]

Nu Control input prediction horizon 2 [-]

γ Constant design parameter 0.75 [-]

np Prediction model coefficient 2 [-]

M Designed positive constant 5 [-]

Kp PI control parameter 0.002 [-]

Ki PI control parameter 0.1 [-]

CONCLUSION
This paper introduces a modified online parameter estima-

tion method by applying the recursive least-squares algorithm
to improve parameter estimation accuracy. The estimated and
predicted system parameters are used to design an improve
model-free adaptive controller for a class of unknown MIMO
systems. To reduce unexpected oscillations in mechanical
flexible systems, the proposed method has been applied to an
elastic ship-mounted crane. The simulation results show that
the vibrations of the elastic boom and the payload are reduced
considerably, and better control performance is observed when
using the modified controller in comparison with traditional
approaches.
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[22] Liu, Y. and Söffker, D., 2012. “Variable high-gain distur-

bance observer design with online adaption of observer
gains embedded in numerical integration”, 82(5), Mathe-
matics and Computers in Simulation, pp. 847–857.

10 Copyright c© 2020 by ASME


