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Abstract—The chemical process industry is currently 
undergoing a transformation to Chemistry 4.0, where 
digitalization, modularization, sustainability, and the circular 
economy are coming into focus. A growing interest in the use of 
process data with the aim of gaining a better understanding of 
the production process and conserving resources can be 
observed. Data-driven modeling is used in chemical industry 
when the production process is too complex to be described by 
chemical laws. Gaining knowledge of the chemical relationships 
can lead to resource-conserving production. In this paper, a 
framework to optimize the process of data-driven modeling in 
an industrial environment is presented. For generating data-
driven models of industrial processes, many manual and time-
consuming steps have to be carried out. This leads to delay in 
information acquisition and process optimization. Therefore, 
the presented framework automates these steps to accelerate the 
process of data-driven modeling. The steps are to extract the 
data from a process control system (PCS), make the data 
available for data-driven modeling, train the model, and deploy 
the model for predicting the process. To achieve high 
availability of the data and generate data-driven models, cloud 
services are used. The framework of this paper is applied to a 
high-throughput formulation system (HTFS) for coatings. In 
this paper, Gaussian processes are used for data-driven 
modeling. The evaluation of the framework shows the usefulness 
in this domain, but also the flexibility and scalability of this 
framework. 
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I. INTRODUCTION 

Chemistry 4.0 is the new era of chemical process industry, 
in which digitalization, sustainability, and circular economy 
play key roles [1]. This includes the use of artificial 
intelligence to learn from experimental data, to gain a better 
understanding of the production processes, and to conserve 
resources [2]. 

In the process industry, the PCS is the data aggregation 
point of an industrial plant. There are different types of data in 
industrial processes, like numeric representations of 
parameter and process values as well as images [3]. The 
variety of data poses a huge difficulty to integrate, access, and 
query data in an efficient way. Data lakes have been proposed 
as a solution to this problem [4]. They provide a common 
access interface and are repositories storing the raw data in 

their original formats. This leads to reducing the upfront 
integration costs and provides more flexibility in data 
integration [5]. 

One aim of chemical engineering is to develop new 
materials. This is mostly based on empirical experience due 
the complexity of the chemical processes. It is possible to 
model certain properties of a real coating by chemical laws, 
but it often fails due to the complexity of chemical 
composition. Therefore, data-driven modeling is used [6]. 
In [7], the usage of data-driven modeling for coating 
technologies is shown with a combination of neural networks 
and Gaussian processes. The batchwise and adaptive design 
of experiment (DoE) increases the efficiency of the chemical 
formulation and reduces the number of experiments necessary 
compared to classical approaches [7]. Reducing the number of 
experiments, leads to reduction of resources and costs for 
production [8]. 

In [3], the whole life cycle of a machine learning (ML) 
model is considered for the process industry in general. In this 
work, the data-preprocessing, learning, and deployment is 
adapted to a framework in an automated way. It is 
implemented in the field of coating formulation. The 
implementation is done and evaluated at a HTFS at the 
Institute of Surface Technology of the University of Applied 
Sciences Niederrhein, Krefeld, Germany (HIT). 

The process to get the necessary data from an industrial 
plant and the data-driven modeling with new incoming data 
are not automated in the HTFS and consume time. Data 
collection with more stages such as data cleaning and data 
labeling, has always been the bottleneck for data-driven 
modeling approaches [3]. To store data and compute data-
driven models in a flexible, scalable, and high performing 
way, cloud computing services are used [9]. 

The contribution of this paper is the automation of the 
data-driven learning process in an industrial environment. 
This paper is structured as follows. First, a short introduction 
and further references to an existing architecture, cloud 
computing, data lake, and the usage of Gaussian processes are 
given in section II. In section III, the automation framework is 
presented. The framework is implemented in section IV and 
the evaluation is presented in section V. Finally, a short 
summary and an outlook of future work are given. 
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II. BACKGROUND AND RELATED WORK 

In this section, the necessary components to develop a 
framework for data-driven modeling with cloud services in 
the process industry are presented. These consist of a general 
architecture, cloud services, data lake, and a modeling 
algorithm. 

A. NAMUR Open Architecture 

In the process industry an architecture is developed to 
extend the traditional and hierarchical automation structure, 
which is called NAMUR Open Architecture (NOA) [10]. For 
faster access and data exchange between the layers of the 
existing automation structure, NOA provides an open and 
secure side-channel. The guideline for the implementation of 
NOA is currently under development. The first three guideline 
sheets are available, containing the general concept [10], the 
information model [11], and the security gateway [12]. In the 
concept of NOA, the existing automation structure is called 
Core Process Control (CPC). The NOA aims to make 
production data of the CPC easy and secure usable  for 
Monitoring and Optimization (M+O) [10]. 

The concept of NOA is visualized in Fig.1 and includes 
different modules which are defined as follows: 

 NOA Information Model: Defines the syntax and 
semantics of data. 

 NOA Diode and IT-Security: Defines the 
unidirectional data flow from the CPC domain to the 
M+O domain. 

 NOA Verification of Request: Defines the safe and 
reliable return path of data from the M+O domain to 
the CPC domain. 

 NOA Aggregating Server: Defines and structurizes 
the data communication paths from the various 
NOA diodes and M+O applications. 

 

Information are sent to the plant specific M+O via the 
NOA Diode, which is pointing the information flow. The plant 
specific M+O collects all  data. For the use of advanced 
analytics like predictive maintenance [13] or data-driven 
modeling, an additional channel to the central M+O is 
provided. 

B. Cloud Service Platform 

Cloud computing can be seen as a service-oriented 
architecture, which includes almost all computing 
capabilities [14]. Many cloud computing platforms exist, but 
with Microsoft Azure, Amazon AWS, and Google Cloud 
Platform, three platforms exist, which rule the cloud 
computing market [9]. 

Fig. 1: NAMUR Open Architecture overview (acc. to [10]) 

These three cloud computing platforms are compared to each 
other in several papers for different use cases, like in [9], [14], 
and [15]. The performance of Microsoft Azure and Amazon 
AWS is above Google Cloud Platform in almost every case. 
The comparisons of different cloud service aspects, such as 
computing or storage performance, show that Amazon AWS 
and Microsoft Azure are in a head-to-head race. According to 
[16], Microsoft Azure is overall more cost effective. 
Therefore, Microsoft Azure is used in this work. 

C. Data Lake 

In [4], a data lake is defined as a flexible, scalable data 
storage, and management system. This kind of storage 
contains raw data from heterogeneous sources in their original 
format. It also allows users to query and explore data. Data 
lakes do not need any information about the schematic or 
mappings of the stored data. But, without any management of 
metadata, a data lake can turn into a so called data swamp. 
Therefore, according to [4], it is important to extract as much 
metadata as possible from the data sources. 

D. Data-Driven Modeling 

In this work, Gaussian processes (GPs) are used for data-
driven modeling. The GPs are a probabilistic approach using 
kernel machines [17]. The principle advantage over other 
kernel-based approaches is given by a measurement, how 
certain predictions are. In [7], it was shown, that GPs work 
well in the process industry. 

A GP is a collection of random variables, any finite 
number of which have a joint Gaussian distribution. The mean 
function 𝑚(𝑥)  and the covariance function 𝑘(𝑥, 𝑥 )  (also 
called kernel function) are completely specifying the GP. The 
GP can be written as 

𝑓(𝑥) ~ GP 𝑚(𝑥), 𝑘(𝑥, 𝑥 ) . (1) 

The development of coatings often includes the usage of 
many different chemicals. This leads to a high dimensional 
feature space for the algorithm. For distance-based machine 
learning algorithms, this leads to the curse of dimensionality 
[18]. To avoid this, unimportant features can be removed with 
automatic relevance determination (ARD) by techniques, 
which are presented in [19]. For GPs the ARD is realized by 
introducing a lengthscale parameter for each feature [20], 
which has been used successful in [21]. 

In this work, the squared exponential kernel [22] is used 
for modeling. It is defined by 

𝑘(𝑥, 𝑥′) =  𝜎  exp −
(𝑥 − 𝑥′)

𝑙
.  (2) 

With the lengthscale 𝑙  and the output variance 𝜎  two 
hyperparameters are used for fitting the model to the given 
data. For fitting the model, the maximum likelihood 
estimation (MLE) 

ln 𝑝(𝑦|𝜇, 𝜎 ) =  −
1

2𝜎
 (𝑦 − 𝜇) −  

𝑁

2
 ln(𝜎 )

− 
𝑁

2
 ln(2𝜋) 

(3) 

is used. The Adam optimizer [23] as a gradient descent 
method is used in this paper to search for the optimal 
hyperparameters of the GP. 



 

 

III. AUTOMATION FRAMEWORK FOR DATA-DRIVEN 

MODELING 

The main goal of the framework, presented in this paper, 
is to automate the workflow from generating a DoE to train 
and deploy a ML model. The architecture describes the static 
components of the framework that interact with each other. 
The workflow includes the execution of these architecture 
components. 

A. Architecture of the Framework 

The currently manually executed processes such as data 
extraction and ML model training need to be automated, 
because the work carried out by humans is cumbersome and 
can lead to errors. In case of errors in handling data, the ML 
model will have no practical relevance. Another reason to 
automate these processes is the reduction of computational 
load in comparison to manual data processing and model 
training. 

In addition, the data of the DoE are uniquely assigned, 
whereby data consistency is given in the database of the PCS. 
With the automated extraction from the local database of the 
PCS to the cloud, data have higher availability. Because of 
this, it is possible for any authorized user to access the process 
data location-independent, to analyze the process in different 
ways, without many manual steps. 

In Fig. 2, the automation framework is shown. It is based 
on the idea of NOA. The PCS and the industrial process plant 
are parts of the CPC. The data are generated in the industrial 
process plant. These data are composed of parameters and 
characterization variables. The parameters can be further 
subdivided into chemical composition and process 
parameters. 

The data are acquired in the PCS and stored in a 
proprietary database as well as transferred to the cloud via the 
cloud gateway. Here, the cloud gateway is the bridge between 
the proprietary database and the cloud. In the context of NOA, 
the cloud gateway can be seen as the NOA aggregating server 
as a part of the plant specific M+O. This includes the firewall, 
encryption and authentication. 

In this architecture, as in the NOA concept, only automated 
data traffic from the CPC domain to the M+O domain is 
allowed, to prevent uncontrolled feedback to the PCS. The 
cloud includes the data storage and computational power to 
train the model. For storing the process data, a data lake is 
used. In addition, the scripts to be executed for data pre-
processing and model training are located in the data lake. 

Fig. 2: Automation Framework of data-driven modeling 

The model training takes place in compute clusters, which are 
scalable for low or high computing tasks, depending on the 
ML tasks, like regression or image classification. The 
outsourcing of the model training in the cloud is needed for 
scalability. 

B. Workflow of the Framework 

In the following, the workflow of the framework is 
presented, which is also shown in Fig. 2. First, the workflow 
starts with the DoE, which is done by a chemical engineer. At 
the start of the DoE, a unique identifier (ID) is assigned to the 
new product being developed. With this ID, the data from the 
DoE and the measured data of the process plant can be 
uniquely assigned. The chemist first determines the initial 
experiments and which parameters are held constant over the 
series of experiments and which are varied. This information 
is labeled in the DoE file. Furthermore, the target value for the 
ML algorithm is defined in this file. Finishing the DoE, the 
file is uploaded to the data lake in the cloud. 

It is assumed, that the DoE file is read into the PCS, which 
configures the run and the run is carried out on the industrial 
process plant. A run contains several experiments. In the 
production of coatings, an experiment is a single chemical 
formulation. After finishing the run, the process data are 
recorded and stored in a proprietary database. 

After that, the data are extracted from the database and 
uploaded to the data lake in the cloud via the cloud gateway. 
If there is no existing folder for the new product, it will be 
generated. In the case of an existing folder, the data from the 
new batch is concatenated with the previous batches. After 
activating the compute cluster, a script is searching for the ID 
of the product in the data lake. 

The compute cluster loads and executes the ML training 
script. This script is used to select the variable features and the 
target variable from the data for the ML algorithm. The model 
training follows with the search of hyperparameters, which fit 
best to the training data. The last steps are validating the model 
and storing the model with its metadata in the data lake. 

Finally, the model can be deployed and used for 
predictions. The results are visualized for the chemist, who 
gets a feedback of the product and can plan further 
experiments. 

IV. APPLICATION OF THE FRAMEWORK IN HIGHTROUGHPUT 

COATING FORMULATION 

This section shows the application of the automation 
framework and is illustrated in Fig. 3. During a workference 
at the University of Applied Sciences Niederrhein, data were 
generated at the HIT. The aim of this workference was to use 
ML to develop a coating formulation with as few experiments 
as possible. The coating should be optimized in terms of gloss, 
haze and hiding power. This means, that the gloss and haze 
should be minimized and the hiding power should be 
maximized. The creation of the different coating compositions 
was carried out in five iterations with an initial set of 15 
experiments and four further iterations with ten experiments 
in each iteration. In total, there is a dataset of 55 experiments 
available, which were carried out at a HTFS. This dataset 
contains 17 parameters as inputs and three characterization 
variables as outputs. Eleven of these input parameters were 
variable and the remaining six were either dependent or 
constant. 



 

 

Fig. 3: Application of the framework 

These previously recorded data are used and in the 
following, treated as if just created during testing the 
workflow. The data are downloaded from the HTFS and 
stored locally on the IPC to test the workflow. Hence, no direct 
communication to the HTFS is necessary during the tests. The 
use of these data is an example to illustrate the automated data 
flow and the automated process of data-driven modeling. 

The implementation starts with the evaluation of the DoE 
file, which specifies the input and output parameters for the 
entire workflow. The DoE and the configuration of the run are 
not part of the implementation in this work, since previously 
recorded data are used. Apart from this, the entire workflow 
from section III is implemented with the exemplary data and 
described in the following. 

A. Process Control System 

The linux-based PCS APROL from B&R is used in this 
work. It provides a tamper-proof database as required in areas 
of the process industry, for example in the pharmaceutical 
industry. The data acquisition and the saving of the data is 
executed in the process control system via the Continuous 
Function Chart (CFC) and an integrated Python script. In this 
work, the HTFS data are read from the local filesystem as csv 
files. The DoE and the HTFS data are generated batchwise as 
database entries. The DoE contains the metadata of the 
experiments, which are needed to associate DoE data, process 
data and ML models. Table I shows the exemplary structure 
of the DoE file. In this table, the first five rows represent 
metadata. The following rows represent an experiment per 
row. 

TABLE I STRUCTURE OF THE DOE FILE 
Date Time Author  Prod. ID Run ID Num. Exp. 

29.07.22 08:54 DP 30 1 10 

Parameter1  … Parameter17 Char. var.1 … Char. var.3 

Input … Input Output … Output 

Var./Const./Dep. … Var./Const./Dep.    

Value Value Value Value Value Value 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

B. Cloud Gateway 

The PCS has implemented library modules with a 
Python 2.7 interpreter. The PCS can therefore not access the 
latest Python libraries, as is necessary for cloud services. 
Therefore, the cloud gateway is implemented as a Docker 
container, to get a separated system. Inside of this separated 

system, the choice of the Python interpreter and the libraries 
to be used are flexible. Another advantage of choosing a 
container is, that the PCS stops the container in the event of to 
high computing power, to not endanger the CPC domain. For 
the usage of the Azure cloud services, a Python 3.7 interpreter 
and some libraries of the data lake and machine learning 
environment are needed. A slim base image with the required 
Python interpreter and Azure libraries is used in this work. The 
container and the host system share an assigned folder 
structure for the exchange of data. The container gets the 
python scripts from this folder to execute the functions of the 
cloud gateway. The container is started via the PCS after an 
experiment is executed, then the data is stored and extracted. 
If no connection can be established, the data is kept in a queue 
folder until the connection is restored. Then, the data is 
uploaded. To know, which data are already uploaded and 
which are still in the queue, a local data archive of the current 
products is maintained. 

The connection and authentication between the data lake 
of Azure and the cloud gateway is token-based and takes place 
exclusively via HTTPS. Therefore, the Docker container is 
only allowed to communicate via port 443. 

The cloud gateway also manages the configuration of the 
compute clusters in Azure to execute the configured ML job. 
The communication between the compute cluster and the 
cloud gateway takes place in the same way. In addition, a 
device registration, which must be carried out once by a user, 
is also required for the communication to the compute cluster. 
This covers IT security aspects and protects the cloud account 
against unauthorized access. 

C. Compute Cluster 

In this work, compute clusters are registered with 
Microsoft Azure and used to support data-driven modeling 
outside of the production environment. In this work, the GP 
model with ARD is developed using the GPyTorch 
library [24]. For PyTorch [25], prebuilt docker images already 
exist on Azure, so there is no need to create an additional 
image for data-driven modeling. 

When a compute cluster is started on Azure, a virtual 
machine is started.  The virtual machine configures a docker 
container with the required Python packages installed. Then, 
the job receives the inputs, which contain the training script, 
the DoE file, and the data of the runs, which are carried out so 
far. The data of the runs are concatenated to one learning 
dataset, which is used by the ML algorithm.  For scaling the 
data, the Scikit-Learn library [26] is used. With the knowledge 
of the DoE file, the constant and dependent parameters are 
sorted out before learning. The model is then trained until the 
MLE no longer changes and thus the optimization of the 
hyperparameters is completed. For the validation of the 
model, a cross-validation is performed on the dataset. 
Afterwards the model and the metadata are transferred to the 
data lake as an output of the job and the compute cluster is 
closed. 

D. Model Deployment and Visualization 

The model deployment and visualization of the results also 
runs in a docker container, like the cloud gateway. Here, the 
data of a chosen product are downloaded from the data lake 
via HTTPS and a token based authentication. In Fig. 4, the 
visualization of the given product feedback is shown. The user 
interface allows to select a product and a run to download the 
data.  



 

 

Fig. 4: Visualized product feedback 

This includes all experimental data up to the selected run and 
the associated model. The process can be displayed depending 
on two input parameters and a characterization variable. On 
the 𝑥- and 𝑦-axis, input parameters are selected. In this case, 
these two parameters contain a thickener and a coalescing 
agent, which are two chemical substances used in the 
production of coatings. On the 𝑧 -axis, the corresponding 
values of the characterization variable are displayed. Here, the 
gloss of the coating is chosen. 

In the left figure, the confidence intervals of the Gaussian 
process are shown in addition to the predicted values. These 
indicate in which range the value can lie, i.e., which standard 
deviation exists in the model prediction. The right figure gives 
an overview of the height profile of the model mean values. 
Thus, it is quickly possible to visually determine the minima 
and maxima of the characterization variables. It is also 
possible for the user to view the training data and metadata. 
With this information, it is easier for the chemical engineer to 
prepare new experiments. 

V. RESULTS AND DISCUSSION 

The presented automation framework allows a flexible and 
scalable way to integrate data-driven modeling in an industrial 
environment. The flexibility is given by the fact, that any type 
of DoE can be handled according to the file structure 
presented in this paper and independent of the number of input 
parameters and experiments. In addition, the framework 
allows the replacement of the modeling algorithm in the case 
of regression tasks by adapting or replacing the training script 
in the cloud. The use of a data lake storage as a cloud service 
offers the possibility of accessing data outside the production 
environment. This adds further flexibility to the handling of 
the data. The flexibility and generality of the framework was 
tested in the context of application in high throughput coating 
formulation with data from the workference. Therefore, 
different combinations of input parameters and 
characterization variables were chosen and the automated 
modeling process was carried out successfully. 

The scalability of this framework is given, as the 
computing power can be adjusted in the cloud, for example if 
deep learning is to be used. It is also possible to perform data 
processing or data-driven modeling on several computing 
units in parallel and at the same time. Through the usage of a 
data lake, the framework is not limited to a specific type of 

data. This means, that the framework is designed in such a 
way, that other data, like images, can also be integrated for 
machine learning in the future. 

To ensure, that the framework can be used in an industrial 
environment, the architecture of this framework is based on 
NOA. With the use of token-based authentication and device 
registration at Microsoft Azure, a secure way to connect the 
production environment to the cloud was offered. By using 
containers, this framework demonstrates the possibility of 
integrating the latest libraries to interact with innovative cloud 
technologies in robust production environments. Another 
advantage of using containers is, that they can be stopped by 
the PCS if too much computation is required. This ensures the 
high availability of the CPC domain. 

With the visual feedback of the product through the model 
predictions, it is possible for the chemical engineer to get a 
sense of the product to be developed. With the Gaussian 
processes, the chemical engineer is also given feedback on 
confidence intervals, to know how reliable the model 
predictions are in the specific regions. 

VI. SUMMARY AND FUTURE WORK 

In this work, a framework for automated data-driven 
modeling in an industrial environment with cloud services is 
developed. Therefore, the standardized architecture NOA is 
introduced as an orientation. With this framework, the manual 
processes of data extraction and preparation from a production 
environment are automated. Furthermore, the data-driven 
modeling and the storage of important metadata is integrated 
in the framework. For modeling, Gaussian processes are used 
in this work and a visual feedback of the modeling process is 
given. 

In future work, it is possible to extend the framework to 
different data sources and also to other modeling tasks, like 
image recognition. Future work should also integrate the DoE 
into the workflow. Furthermore, the chemical engineer should 
be assisted in the DoE by the ML algorithm proposing new 
experiments. 
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