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SUMMARY

This paper addresses a robust control approach for a class ofinput-output linearizable nonlinear systems with

uncertainties and modeling errors considered as unknown inputs. As known, the exact feedback linearization

method can be applied to control input-output linearizablenonlinear systems, if all the states are available

and modeling errors are negligible. The mentioned two prerequisites denote important problems in the field

of classical nonlinear control. The solution approach developed in this contribution is using disturbance

rejection by applying feedback of the uncertainties and modeling errors estimated by a specific high-gain

disturbance observer as unknown inputs. At the same time, the non-measured states can be calculated

from the estimation of the transformed system states. The feasibility and conditions for the application

of the approach on mechanical systems are discussed. A nonlinear MIMO mechanical system is taken as a

simulation example to illustrate the application. The results show the robustness of the control design and

plausible estimations of full rank disturbances. Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .
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1. INTRODUCTION

Due to the inevitable nonlinearities in real systems, many nonlinear control methods are developed.

In the remarkable textbooks as [1, 2, 3] several classical nonlinear control methods (e.g., feedback
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linearization, sliding mode control, backstepping approach etc.) are described in detail. As well-

known, classical methods have limitations in application. According to the situationin nonlinear

control, researchers have struggled for decades to realize robust and practical solutions for

nonlinear systems by proposing different approaches or mostly improvingclassical control methods.

Considering the availability of the states and the most commonly used full state feedback, observer-

based robust nonlinear control approaches have also been discussed in a large number of research

works to achieve this goal.

In [4] an exact feedforward linearization approach based on differentialflatness for nonlinear

system control is proposed, which has the same robustness problem as the classical feedback

linearization method. Hence, the authors discussed later in [5] its robustness with respect to

uncertainties and disturbances. In [6], a robust nonlinear predictive control based on exact

feedforward linearization is introduced. It demonstrates that the nonlinear flatness-based control

methods are applicable and rational. Unfortunately, the assumptions with respect to disturbances

and the availability of all the states is not discussed.

In [7, 8, 9, 10, 11] different methods are developed and applied to solve the robustness problem

of the exact feedback linearization method. However, the modeling errorsor the disturbances are

considered with known bounds and/or known dynamical properties within most of the methods

[7, 8, 9]. Robust feedback linearization methods are proposed by improving the design of the

nonlinear feedback in [10, 11].

Besides the robustness, availability of the states has also been consideredin nonlinear control

design. Of course, observer-based control design, especially controllers based on state and

disturbance observers or disturbance observers, have been studied to improve the robustness of

classical nonlinear control and realize tasks like fault diagnosis, e.g., in [12, 13, 14, 15]. The

discrete-time method in [13, 14] can solve the robust control problem of linear Multi-Input Multi-

Output (MIMO) systems with mismatched disturbances that do not change significantly in two

consecutive sampling instances. That means the rate of disturbances is limited. In [15] a robust

control is proposed for a class of uncertain nonlinear systems without assumption of passifiability.

The proposed control approach in [15] is based on an adaptive observer design and can partially

linearize considered systems. Considering no disturbances, the adaptive control approach is suitable

for a general class of nonlinear systems. However, it can only be applied to nonlinear systems with

a basic linear time-invariant state space representation and additive nonlinearities, when external

disturbances and especially measurement noise exist.
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On the other hand, the high-gain PI-Observer firstly presented in [16] is a specific type

of disturbance observer, that estimates both the system states like a Luenberger observer and

additionally the disturbances as unknown external inputs acting to the system.It takes the integration

of the estimation errors as input to the observer and therefore generatesextended states. The PI-

Observer concept has been developed and applied by many authors [17, 18, 19, 20, 21, 22, 23, 24].

In [18, 20, 24] different design methods for the PI-Observer gains are introduced.In [17, 19, 22] the

PI-Observer is applied mainly to improve the robustness of the state estimations.In [23] a robust

PI-Observer is designed for stochastic linear systems under convex bounded uncertainty. In [21] the

application of PI-Observer approach is to estimate both the original states and the bounded unknown

inputs as extended states with high gains, without any information of the dynamics and bounds of

the unknown inputs, which is also the function of the PI-Observer used here.

The high-gain PI-Observer as a state and disturbance observer can be applied to design an

observer-based nonlinear robust control. Due to the simple linear structure of the PI-Observer, the

best complementary method for the PI-Observer in nonlinear control design is the exact feedback

linearization approach. The PI-Observer can offer the estimations of thestates and unknown inputs

for the exact feedback linearization and the linearized model generated by the feedback linearization

is appropriate for the PI-Observer design. The combination of the two approaches may be a potential

robust nonlinear control method for the class of nonlinear systems that is suitable for the classical

exact feedback linearization method. Although the combined approach is also concentrated on a

small part of nonlinear systems, the simple structure of the PI-Observer and the classical design

of the exact feedback linearization ensure that the approach is easily understood by engineers and

therefore a wide application in industry may be possible.

The key points of this contribution are the combination of advantages of the exact feedback

linearization method and of the abilities of the PI-Observer. The application ofthe proposed

approach to mechanical systems is revised based on the previous contributions of the authors

[25, 26]. The stability and robustness are proven for the overall closed-loop.

The paper is organized as follows: in the second section, the consideredgroup of nonlinear

systems with disturbances/uncertainties and the robustness problem for these systems are stated.

The proposed robust control approach is detailed in the third section. The application on mechanical

systems is discussed in the fourth section with an example in the fifth section. Thelast section

concludes the paper with a summary and conclusions.
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2. PROBLEM STATEMENT

A class of nonlinear systems with unknown inputs can be described by

ẋ(t) = f(x) + g(x)u(t)
︸ ︷︷ ︸

Nominal model

+Ed(x, t),

y(t) = h(x),

(1)

wherex(t) ∈ R
n denotes the state vector,u(t) ∈ R

l the input vector,y(t) ∈ R
m the output to

be controlled. The vectord(x, t) ∈ R
s with s ≤ n together with the constant matrixE ∈ R

n×s

represents the unknown inputs. Disturbances, modeling errors, parameter uncertainties or other

uncertainties to the nominal model can be subsumed underEd(x, t), possibly in all the channels

(when the rank ofE equalsn).

The problem to be solved is to design a controller, which can stabilize the system behavior or

realize stable tracking and regulation control for the system in spite of the existence of disturbances

d(x, t).

Several assumptions are considered:

• The vector fieldsf(·) onR
n, d(·) onR

s, g(·) onR
n×l, andh(·) onR

m are smooth.

• The system has an equilibrium atx = 0.

• The unknown inputd(x, t) and its derivatives are bounded, but the bounds and the related

dynamical behavior is unknown.

• The nominal model of the system is available, input-output linearizable and theremaining

zero dynamics is stable.

• In MIMO cases the number of the inputs is equal to the number of the outputs, namelyl = m.

With the classical input-output linearization method as introduced in [2], the system model (1)

can be transformed into the following form









y
(r1)
1 (t)

...

y
(rm)
m (t)









=









v1(t)

...

vm(t)









+









d̃1(x, t)

...

d̃m(x, t)









︸ ︷︷ ︸

d̃(x,t)

(2)
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by feedback linearization with

u(t) = −Γ
−1(x)









Lr1

f
h1(x)

...

Lrm

f
hm(x)









+ Γ
−1(x)









v1(t)

...

vm(t)









, (3)

with the decoupling matrix

Γ(x) =









Lg1
Lr1−1

f
h1(x) · · · Lgm

Lr1−1

f
h1(x)

...
...

...

Lg1
Lrm−1

f
hm(x) · · · Lgm

Lrm−1

f
hm(x)









, (4)

and the transformed unknown effects

d̃(x, t) =









Lr1−1

Ed
h1 + d

dt
(Lr1−2

Ed
h1) + d2

dt
(Lr1−3

Ed
h1) + · · · + d(r1−1)

dt
(LEdh1)

...

Lrm−1

Ed
hm + d

dt
(Lrm−2

Ed
hm) + d2

dt
(Lrm−3

Ed
hm) + · · · + d(rm−1)

dt
(LEdhm)









, (5)

with ri, i = 1, · · · ,m, the smallest integer such that at least and firstly one of the inputs appear

in y
(ri)
i (t). The total relative degree of the system is defined byr = r1 + r2 + · · · + rm. After the

input-output linearization, the system model is transformed into a form with external dynamics (the

input-output dynamics) and internal dynamics. Define new coordinates for the external dynamics as

X 1
1 (t) = y1(t) = h1(x), X 1

2 (t) = Lfh1(x), · · · X 1
r1

(t) = Lr1−1
f h1(x)

...

Xm
1 (t) = ym(t) = hm(x), Xm

2 (t) = Lfhm(x), · · · Xm
rm

(t) = Lrm−1
f hm(x),

(6)

where the states are them outputsyi and their derivatives up to orderri with i = 1, · · · ,m. Choosing

n − r variablesη1(t), · · · , ηn−r(t), which are independent with respect to each other and to the

coordinatesX (t) and the new state vector






X (t)

η(t)




 for the system is completed.
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The external dynamics

Ẋ i
1(t) = X i

2(t)

... (7)

Ẋ i
ri

(t) = vi(t) + d̃i(x, t)

for i = 1, · · · ,m together with the internal dynamics (ifr < n)

η̇(t) = w(X ,η) + P (X ,η)u(t) + Q(X ,η)d(t) (8)

describes the system dynamics. Ifn = r, no internal dynamics exists. The system is input-output

linearized.

Based on the transformed form of the system with the external and internaldynamics in (7)-(8),

linear control laws, e.g., state feedback with pole placement or LQR method, can be applied to

control the transformed system (7). The performance of the control is apparently affected by the

transformed unknown inputs, which makes classical nonlinear control ineffective and leads to the

robustness problem of the classical nonlinear method. Additionally to realizethe control design

for the original system (1) with the classical nonlinear method, it has to be assumed that all the

statesx(t) are available (by measurements or reconstruction applying suitable observers assuming

observability).

In the following section, a robust control method based on the combination ofthe exact feedback

linearization and the PI-observer technique is proposed to solve the robustness problem and the

availability problem of the states in the classical exact feedback linearizationmethod.

3. ROBUST CONTROL METHOD BASED ON THE EXACT FEEDBACK LINEARIZATION

AND THE PI-OBSERVER

The proposed approach shown in Fig.1, takes the advantages of the exact feedback linearization

method to get a transformed (input-output linearized) description of the system and then applies the

PI-Observer to estimate the transformed states together with the transformed unknown inputs. Using

a state feedback control and a disturbance rejection, a robust controlfor the transformed system can

be designed. With the assumption of the stability of the remaining zero dynamics, which is a typical

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(0000)

Prepared usingrncauth.cls DOI: 10.1002/rnc



7

assumption controlling mechanical system and which can be easily realized, the whole control loop

with the proposed control design is stable and robust.

Inputs

=[ ... ]u u1 umLinearization

by exact

feedback

PI-Observer

Nominal

model

Input-Output linearized model

( decoupled subsystems)m

‘Exact’ nonlinear model

Disturbances/

uncertainties

Outputs to

be controlled

=[ ]yr yr1...yrm

Measurements

Linear robust

control with

disturbance

rejection

Estimations

New defined

inputs

=[ ... ]v v1 vm

Figure 1. Sketch of the proposed approach

3.1. PI-Observer Design for the Estimations of Transformed System Statesand Unknown Inputs

From the transformed system model (2), the transformed system dynamics are decoupled inm

subsystems which can be described uniformly by

y
(ri)
i (t) = vi(t) + d̃i(x, t), i = 1, · · · ,m, or (9)

Ẋ i
1(t) = X i

2(t)

... (10)

Ẋ i
ri

(t) = vi(t) + d̃i(x, t).

Every subsystem can be written in an individual state space form

Ẋ i(t) = AiX
i(t) + Bivi(t) + Nid̃i(x, t),

yi(t) = CiX
i(t),

(11)
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with state vectorX i(t) =












yi(t)

ẏi(t)

...

y
(ri)
i (t)












ri×1

, system matrix Ai =












0 1 · · · 0

... 0
... 0

0 · · · 0 1

0 · · · · · · 0












ri×ri

,

input matrix Bi =












0

...

0

1












ri×1

, matrix Ni =












0

...

0

1












ri×1

, output matrix Ci =

[

1 0 · · · 0

]

1×ri

.

In this case, it is obvious that the system is fully controllable and fully observable according to

the structure of(Ai,Bi) and(Ai,Ci).

The decoupled subsystems have an appropriate structure for the proposed PI-Observer design

[18]. Therefore, PI-Observers can be constructed for each subsystem separately, for example






˙̂
X

i(t)

˙̂
d̃i(x, t)




 =






Ai Ni

0 0






︸ ︷︷ ︸

Aei






X̂ i(t)

ˆ̃
di(x, t)




 +






Bi

0




 vi(t) +






L1i

L2i






︸ ︷︷ ︸

Li

(yi(t) − ŷi(t)),

ŷi(t) =

[

Ci 0

]

︸ ︷︷ ︸

Cei






X̂ i(t)

ˆ̃
di(x, t)




 .

(12)

Furthermore, the requirement of a PI-Observer design [18, 27] is fulfilled: the extended system

(Aei, Cei) is fully observable. With properly chosen observer gain matricesL1i and L2i with

the corresponding dimensionri × 1 and1 × 1, the transformed statesXi(t) and the transformed

disturbances̃di(x, t) can be estimated with the PI-Observer asX̂i(t) and ˆ̃
di(x, t).

Design of Observer Gain Matrices of a PI-Observer Based on the transformed system model

(2) and the observer (12), the error dynamics of the extended system is described by






ėi(t)

ḟe

i
(t)




 =






Ai − L1iCi Ni

−L2iCi 0






︸ ︷︷ ︸

Aei,obs






ei(t)

fe
i(t)




 −






0

˙̃
di(t)




 , (13)

with estimation errors defined asei(t) = X̂ i(t) − X i(t) andfe
i(t) =

ˆ̃
di(x, t) − d̃i(x, t).
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It is proved in [18, 27, 28], with high gains inL2i and‖L2i‖F ≫ ‖L1i‖F
†), the estimation errors

∥
∥ei(s)

∥
∥

F
and

∥
∥fe

i(s)
∥
∥

F
can be reduced to an arbitrary small valueγ (but not to zero), if

∥
∥
∥s d̃i(s)

∥
∥
∥

F

is bounded.

The Linear Quadratic Regulator (LQR) method is applied to design the high-gain PI-Observer

feedback matrices by solving the algebraic matrix Riccati equation.

For a stable observer, suitable observer gains can be calculated, if forgiven positive definite

matricesQ, R the Riccati equation

AeiP + PAei
T + Q − PCei

T R−1
CeiP = 0 (14)

has a unique positive definite solution matrixP . The observer feedback matrix is then calculated

with Li = PCei
T R−1, also other suitable approaches designingLi can be chosen.

3.2. Robust Control Design for the Transformed Systems

Realizing a robust control, a state feedback control with a disturbance rejection

vi(t) = −KiX̂ i(t) −
ˆ̃
di(x, t) (15)

can be taken to stabilize the transformed system dynamics, because the estimations X̂ i(t) and

ˆ̃
di(x, t) are available from the PI-Observer and the transformed system is assumed as fully

controllable. The state feedback control (gain matrixKi) is designed by pole placement method

with the characteristic polynomial to be a Hurwitz polynomial. Using the nonlinear feedback (3),

the inputs to the original system dynamics can be constructed. At the same time, from them PI-

Observers the external unknown inputsd̃(x, t) can be estimated in the transformed coordinations.

Of course all the statesx(t) and outputsy(t) in the original coordinates should be available to realize

the input-output linearization as usual.

3.3. Stability of the Closed-loop System

The following theorem is addressed in order to analyze the stability and robustness of the closed-

loop system.

†The norm‖·‖F denotes here the Frobenius norm,‖A‖F =

√
√
√
√

m∑

i=1

n∑

j=1

a
2

ij =
√

trace(A∗A) for A in Rm×n.
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Theorem 1

Assume the system (1) has relative degreer and its zero dynamics is locally asymptotically

stable. With state feedback matricesKi =

[

Ki
1 Ki

2 · · · Ki
ri

]

for every subsystem satisfying

Hurwitz stability criterion and PI-Observers designed by LQR method with suitable choosing

observer gains, the closed-loop system is locally asymptotically stable and robust against the

unknown disturbancesd.

Proof

The external dynamics (7) is transformed with the control input designed by (15) into

Ẋ i
ri

= −Ki
1X̂

i
1 −Ki

2X̂
i
2 − · · · − Ki

ri
X̂ i

ri
+ d̃i(x, t) −

ˆ̃
di(x, t), (16)

which can be analyzed after Laplace transformation in frequency domain

(sri + Ki
ri

sri−1 + · · · + Ki
2s + Ki

1)X
i
1(s) = Ki

(

X i(s) −KiX̂ i(s)
)

︸ ︷︷ ︸

Kiei(s)

+ d̃i(s) −
ˆ̃
di(s)

︸ ︷︷ ︸

fe
i
(s)

(17)

with ei(s) and fe
i(s) as the estimation errors from the PI-Observer design in (12). The output

yi(s) = X i
1(s) accordingly the external dynamics is stable, because the characteristic polynomial

in (17) is Hurwitz stable and the inputs to the transfer behavior, the estimation errorsof the PI-

Observer, converge to an arbitrarily small valueγ.

Due to the fact that the zero dynamics is assumed to be stable, it can be concluded that the whole

control loop is stable and robust to the disturbancesd.

4. CONDITIONS FOR THE APPLICATION OF THE PROPOSED ROBUST CONTROL

APPROACH ON MECHANICAL SYSTEMS

In the following subsections, the conditions for the application of the proposed approach on a typical

class of mechanical systems will be discussed.
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4.1. Modeling of General Mechanical Systems

Without loss of generality, the discussed class of nonlinear mechanical systems is described byn

second order differential equations









q̈1(t)

...

q̈n(t)









=









f1(q1, q̇1, · · · , qn, q̇n)

...

fn(q1, q̇1, · · · , qn, q̇n)









+









g11(q1, q̇1, · · · , qn, q̇n) · · · g1l(q1, q̇1, · · · , qn, q̇n)

...
...

...

gn1(q1, q̇1, · · · , qn, q̇n) · · · gnl(q1, q̇1, · · · , qn, q̇n)









u(t)

+









d1(q1, q̇1, · · · , qn, q̇n, t)

...

dn(q1, q̇1, · · · , qn, q̇n, t)









,

(18)

namely

q̈(t) = f(q, q̇) + g(q, q̇)u(t)
︸ ︷︷ ︸

Nominal model

+d(q, q̇, t), (19)

ym(t) = q(t), (20)

yc(t) = Ccq(t), (21)

with q(t) =












q1(t)

q2(t)

...

qn(t)












∈ R
n, input vectoru(t) ∈ R

l, outputs to be controlledyc(t) ∈ R
m and

measurementsym(t) ∈ R
n. The vector fieldsf(·) on R

n andg(·) on R
n×l are assumed as smooth.

The assumed system structure (19) is typical for systems like mass-spring systems, multibody

systems or systems modeled by finite element method.

4.2. Conditions for the Application of the Proposed Robust Control Approach

Several assumptions are made here for mechanical systems to adopt the proposed robust control

approach:

• all the displacements are measurable, see (20),
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• part of displacements is to be controlled, see (21),

• the number of inputs is equal to the number of outputs to be controlled, namelyl = m in

subsection4.1and

• the nominal system model in (19) is input-output linearizable.

With the assumptions given above, the system (19) can be written in a general form with2n first

order differential equations

φ̇(t) =












φn+1

...

φ2n

f(φ)












+






0n×1

g(φ)




 u(t) +






0n×1

d(φ, t)




 ,

ycontrol(t) = Ccontrφ(t),

ymeasure(t) = Cmeasureφ(t),

(22)

with the state vectorφ(t) =






q(t)

q̇(t)




 and output matricesCcontr andCmeasure.

For such systems, the application of the proposed approach is feasible, because the requirements

of the approach are fufilled.

• Availability of all the states

For the nonlinear feedback in the input-output linearization process in (3)-(5), usually all the

system states, the outputs, and the derivatives of the outputs in the originalcoordinates are

required. This includes for the application on mechanical systems:

– All the displacements as well as the outputs to be controlled are assumed as measurable.

– The velocities, which are also states in the original coordinates, can be estimated

i) either by PI-Observers as the states in the transformed coordinates when the

corresponding displacements are to be controlled

ii) or by additional PI-Observers designed for estimation of the internal dynamics if the

corresponding displacements do not appear in the outputs.

– The derivatives of the outputs can be obtained from the PI-Observersas the states in the

transformed coordinates.

• Possibility of full rank disturbance estimation
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Another important aspect is that the estimations of modeling errors/disturbances as unknown

inputs possibly with full rank in the original coordinates in (18) are available based on the

estimations of transformed unknown inputs by the PI-Observers.

5. APPLICATION EXAMPLE FOR THE ROBUST NONLINEAR CONTROL METHOD ON A

MECHANICAL SYSTEM

5.1. Modeling of a Nonlinear MIMO Mass-spring System

An example of nonlinear MIMO mechanical systems, based on the benchmarksystem [29] shown

in Fig. 2, is given to illustrate the proposed method. The system is modelled by

m

u1

x1

x2

x 3

d d
1

2 d3

m

u2

m

Figure 2. Nonlinear MIMO mechanical system example

mẍ1 = k(−2x1 + x2) + kp[−x3
1 + (x2 − x1)

3] + u1 + d1,

mẍ2 = k(x1 − 2x2 + x3) + kp[(x3 − x2)
3 − (x2 − x1)

3] + u2 + d2,

mẍ3 = k(x2 − x3) + kp(x2 − x3)
3 + d3,

ymeas =

[

x1 x2 x3

]T

, and

ycontr =

[

y1 y2

]T

=

[

x1 x3

]T

.

(23)

The parameters used in simulation arem = 0.5 kg, k = 217.0 N/m, andkp = 63.5 N/m3. The

dynamics of the disturbances in the inputsd1, d2, d3 are assumed as unknown to the control design

but present in the simulation asd1 = 5, d2 = 10sin(5t), andd3 = 20sin(10t) additionally to the

nominal model presented in [29], which can be considered as uncertainties in the parameters or

external disturbances.

The input-output linearized form of the system can be written in

ÿ1 = v1 +
d1

m
= v1 + η̄1, (24)
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y2
(4) = v2 + [

k

m
+

3kp

m
(x2 − x3)

2](
d2

m
−

d3

m
) = v2 + η̄2, (25)

if the inputs are chosen as

u1 = m

[

v1 −
k

m
(−2x1 + x2) −

kp

m

[
−x3

1 + (x2 − x1)
3
]
]

and (26)

u2 =
m

k
m

+
3kp

m
(x2 − x3)2

{v2 −

[
k

m
+

3kp

m
(x2 − x3)

2

] [
k

m
(x1 − 3x2 + 2x3) +

kp

m

[
2(x3 − x2)

3 − (x2 − x1)
3
]
]

(27)

−6
kp

m
(x2 − x3)(ẋ2 − ẋ3)

2}.

The remaining zero dynamics/internal dynamics

ẍ2 =
1

m

[
k(x1 − 2x2 + x3) + kp[(x3 − x2)

3 − (x2 − x1)
3] + u2 + d2

]

is stable, if the disturbanced2 is bounded.

Two PI-Observers are designed for the transformed decoupled dynamics (24) and (25)

ża =






0 1

0 0




 za +






0

1




 v1 +






0

1




 ˆ̄η1 + L1a(y1 − ŷ1),

ˆ̄̇η1 = L2a(y1 − ŷ1),

ŷ1 =

[

1 0

]

za,

(28)

and

żb =












0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0












zb +












0

0

0

1












v2 +












0

0

0

1












ˆ̄η2 + L1b(y2 − ŷ2),

ˆ̄̇η2 = L2b(y2 − ŷ2),

ŷ2 =

[

1 0 0 0

]

zb,

(29)
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with the state vectorsza =






ŷ1

ˆ̇y1




 and zb =












ŷ2

ˆ̇y2

ˆ̈y2

ŷ
(3)
2












, to estimate the transformed states and

disturbances, namelŷx1, ˆ̇x1, ˆ̄η1, x̂3, ˆ̇x3, ˆ̈x3, x̂
(3)
3 , and ˆ̄η2. To construct the inputs in (26) and (27),

besides the displacementsx1, x2, andx3 the velocitiesẋ2 andẋ3 are also required. As a transformed

coordinate, the velocitẏx3 can be estimated by the PI-Observer (29). To estimate the velocitẏx2,

an additional PI-Observer is designed by

żc =






0 1

0 0




 zc +






0

1




 v3 +






0

1




 ˆ̄η3 + L1c(x2 − x̂2),

ˆ̄̇η3 = L2c(x2 − x̂2),

(30)

with the state vectorzc =






x̂2

ˆ̇x2




, v3 = k

m

[
(x1 − 2x2 + x3) + kp[(x3 − x2)

3 − (x2 − x1)
3] + u2

]
,

andη̄3 = d2

m
.

With the estimations from the three PI-Observers mentioned above, the system(18) can be

transformed into an input-output linearized form with nonlinear feedback (26) and (27). To realize

the robust control, linear control methods can be applied to the linearized model (24) and (25), for

example as linear state feedback control

v1 = −20ˆ̇x1 − 100(x1 − x1ref ) − ˆ̄η1, (31)

v2 = −200x̂
(3)
3 − 15000ˆ̈x3 − 500000ˆ̇x3 − 6250000(x3 − x3ref ) − ˆ̄η2. (32)

The desired values taken in the simulation arex1ref = 0.25 andx3ref = 0.3. The dynamics of the

disturbancesd1, d2, andd3 are calculated from the estimationsˆ̄η1, ˆ̄η2, andˆ̄η3.

5.2. Simulation Results

The simulation results in comparison with classical input-output linearization method are given in

Fig.3. It should be noted that classical nonlinear control methods cannot be directly applied, because

not all the states are assumed as measurable.

According to the illustrated results, the proposed approach shows firstly robustness against the

external disturbances and the reconstruction of the unmeasured states.In comparison, the classical
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Figure 3. Comparison of the control results

input-output linearization method with estimated states from Luenberger observer and the same

state feedback control as in the proposed approach is strongly influenced by the disturbances and

leads to large control error, especially in controllingx1.

Secondly, the proposed approach estimates the velocities based on the measurements of the

displacements and therefore avoids numerical differentiation of the measured signals to get the

information of all the states.

At last, the proposed approach not only realizes a robust control forthe considered

class of nonlinear MIMO systems, but also generates plausible estimations ofthe unknown

disturbances/modeling error. This may be in addition suitable for extended Fault Detection
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and Isolation (FDI) approaches and/or Structural Health Monitoring techniques supervising the

condition and states of the system by for example evaluating residuals. Thatis a breakthrough

in both application and nonlinear robust control. The estimated disturbancesfor the example are

shown in Fig.4.

0 0.5 1 1.5 2
0

2

4

6

d 1

 

 

0 0.5 1 1.5 2
−20

0

20

d 2

0 0.5 1 1.5 2

−20

0

20

Time, sec.

d 3
Real disturbances in the simulation
Estimated/calculated disturbances

Figure 4. Estimation of the disturbances

6. SUMMARY AND CONCLUSIONS

In this contribution, a robust control design approach is proposed forinput-output linearizable

nonlinear systems with modeling errors or uncertainties. To realize the input-output linearization,

the information of the states is derived by measurements together with the estimations generated

by PI-Observers. A robust disturbance rejection control is realized by using state feedback of the

linearized model and estimations of the unknown inputs, which include possiblemodeling errors

and uncertainties with unknown dynamics. The stability and robustness of thepresented approach

are proven. Additionally the estimations of unknown disturbances/modeling errors are given by

the PI-Observer design. The conditions are listed for the application on mechanical systems. The

simulation results of a mechanical MIMO system illustrate the effects and advantages of the

proposed robust control method with use of PI-Observer technique.
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