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SUMMARY

This paper addresses a robust control approach for a clagaufoutput linearizable nonlinear systems with
uncertainties and modeling errors considered as unknguuisnAs known, the exact feedback linearization
method can be applied to control input-output linearizatalinear systems, if all the states are available
and modeling errors are negligible. The mentioned two ppgsites denote important problems in the field
of classical nonlinear control. The solution approach e in this contribution is using disturbance
rejection by applying feedback of the uncertainties and elind errors estimated by a specific high-gain
disturbance observer as unknown inputs. At the same tineentim-measured states can be calculated
from the estimation of the transformed system states. Tasilidity and conditions for the application
of the approach on mechanical systems are discussed. AaeanMIMO mechanical system is taken as a
simulation example to illustrate the application. The hssshow the robustness of the control design and
plausible estimations of full rank disturbances. Copytrigh0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Due to the inevitable nonlinearities in real systems, many nonlinear control dsetine developed.

In the remarkable textbooks ak P, 3] several classical nonlinear control methods (e.g., feedback
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linearization, sliding mode control, backstepping approach etc.) areiloeddn detail. As well-
known, classical methods have limitations in application. According to the situgtinonlinear
control, researchers have struggled for decades to realize robdspractical solutions for
nonlinear systems by proposing different approaches or mostly improldsgical control methods.
Considering the availability of the states and the most commonly used full stdteafde observer-
based robust nonlinear control approaches have also been édénsslarge number of research
works to achieve this goal.

In [4] an exact feedforward linearization approach based on differeftataless for nonlinear
system control is proposed, which has the same robustness problera akghical feedback
linearization method. Hence, the authors discussed lateB]irtd robustness with respect to
uncertainties and disturbances. I6],[a robust nonlinear predictive control based on exact
feedforward linearization is introduced. It demonstrates that the nonlifegaess-based control
methods are applicable and rational. Unfortunately, the assumptions witkctéepdisturbances
and the availability of all the states is not discussed.

In[7,8,9, 10, 11] different methods are developed and applied to solve the robustrasdspr
of the exact feedback linearization method. However, the modeling esrdahe disturbances are
considered with known bounds and/or known dynamical properties withit wfothe methods
[7, 8, 9]. Robust feedback linearization methods are proposed by improvingasigrdof the
nonlinear feedback ino, 11].

Besides the robustness, availability of the states has also been considamadinear control
design. Of course, observer-based control design, especiallyotters based on state and
disturbance observers or disturbance observers, have beendstodmprove the robustness of
classical nonlinear control and realize tasks like fault diagnosis, e.g12in1B, 14, 15]. The
discrete-time method inlB, 14] can solve the robust control problem of linear Multi-Input Multi-
Output (MIMO) systems with mismatched disturbances that do not chang#icsigtly in two
consecutive sampling instances. That means the rate of disturbances is.limif&8] a robust
control is proposed for a class of uncertain nonlinear systems withsutrgtion of passifiability.
The proposed control approach 9] is based on an adaptive observer design and can partially
linearize considered systems. Considering no disturbances, the adapitvol approach is suitable
for a general class of nonlinear systems. However, it can only be dgpligonlinear systems with
a basic linear time-invariant state space representation and additive aoitise when external

disturbances and especially measurement noise exist.
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On the other hand, the high-gain PI-Observer firstly presentedléh if a specific type
of disturbance observer, that estimates both the system states like a tgexnbbserver and
additionally the disturbances as unknown external inputs acting to the systakes the integration
of the estimation errors as input to the observer and therefore genexééesled states. The PlI-
Observer concept has been developed and applied by many autidts,[19, 20, 21, 22, 23, 24].

In [18, 20, 24] different design methods for the PI-Observer gains are introdlie¢d7, 19, 22] the
Pl-Observer is applied mainly to improve the robustness of the state estimatid@s] a robust
Pl-Observer is designed for stochastic linear systems under conuaexléd uncertainty. Ir2fl] the
application of PI-Observer approach is to estimate both the original statéseabounded unknown
inputs as extended states with high gains, without any information of the dymamicbounds of
the unknown inputs, which is also the function of the PI-Observer used he

The high-gain PIl-Observer as a state and disturbance observerecappbed to design an
observer-based nonlinear robust control. Due to the simple linear sewdtthe Pl-Observer, the
best complementary method for the PI-Observer in nonlinear controlrdesige exact feedback
linearization approach. The PIl-Observer can offer the estimations efdtes and unknown inputs
for the exact feedback linearization and the linearized model genernatbd feedback linearization
is appropriate for the PI-Observer design. The combination of the twoaplpes may be a potential
robust nonlinear control method for the class of nonlinear systems thaitable for the classical
exact feedback linearization method. Although the combined approachois@entrated on a
small part of nonlinear systems, the simple structure of the Pl-Obserdetharclassical design
of the exact feedback linearization ensure that the approach is eadéystiood by engineers and
therefore a wide application in industry may be possible.

The key points of this contribution are the combination of advantages of thet éxedback
linearization method and of the abilities of the PI-Observer. The applicatioeofproposed
approach to mechanical systems is revised based on the previous dwmrigbof the authors
[25, 26]. The stability and robustness are proven for the overall closed-loop.

The paper is organized as follows: in the second section, the consigevad of nonlinear
systems with disturbances/uncertainties and the robustness problemdersifstems are stated.
The proposed robust control approach is detailed in the third sectierajtlication on mechanical
systems is discussed in the fourth section with an example in the fifth sectiora3theection

concludes the paper with a summary and conclusions.
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2. PROBLEM STATEMENT

A class of nonlinear systems with unknown inputs can be described by

&(t) = f(x) + g(x)u(l) +Ed(z, 1),
—_————

Nominal model (1)

where z(t) € R" denotes the state vectait) € R! the input vectory(t) € R™ the output to
be controlled. The vectod(x,t) € R® with s < n together with the constant matrik ¢ R"**
represents the unknown inputs. Disturbances, modeling errors, paranmeertainties or other
uncertainties to the nominal model can be subsumed uBdéx, ¢), possibly in all the channels
(when the rank of£ equalsn).

The problem to be solved is to design a controller, which can stabilize thensyshavior or
realize stable tracking and regulation control for the system in spite of theepge of disturbances
d(z,t).

Several assumptions are considered:

The vector fieldsf(-) onR”, d(-) onR?, g(-) onR™*!, andh(-) onR™ are smooth.

The system has an equilibriumat= 0.

The unknown inpuid(x, ¢t) and its derivatives are bounded, but the bounds and the related

dynamical behavior is unknown.

The nominal model of the system is available, input-output linearizable ancethaining
zero dynamics is stable.

¢ In MIMO cases the number of the inputs is equal to the number of the outputeIn = m.

With the classical input-output linearization method as introduce@]irntie system modellj

can be transformed into the following form

u™ (o) on(?) di(x, 1)
= o+ @)
v (8) v (1) A (2, 1)
dx.n
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by feedback linearization with

L’)‘; hy(x) vy (t)
u(t) = I~ '(z) : +I7 () : ; ®)
L?L hom () U (1)
with the decoupling matrix
LglL;*lhl(x) L, L}l’lhl(m)
I(x) = : : , (4)
Lo Ly~ h(®) - Ly, Ly hin(2)

and the transformed unknown effects

ry— ry— 2 ry— (ri—1)
L+ FEg ) + GEg ) + -+ S (Lgghy)

o —1 d Tm—2 d2 Tm—3 d(Tm -1
LEd hm + %(LEd hm) + E(LEd hm) R T(LEdhm)
with r;, i =1,--- ,m, the smallest integer such that at least and firstly one of the inputs appear
in 4" (¢). The total relative degree of the system is defined byr; + ry + - - - + r,,,. After the
input-output linearization, the system model is transformed into a form withredtdynamics (the

input-output dynamics) and internal dynamics. Define new coordinatélse@xternal dynamics as

X)) =) =h(x), X(t)=Li(x), - X,() =L} ()
(6)
XM (t) = ym(t) = hin(2), AZ'(t) = thm(w): e AT(E) = L;m_lhm(w)a

Tm

where the states are theoutputsy; and their derivatives up to orderwithi = 1, - -- ., m. Choosing

n — r variablesn, (t),--- ,n,—.(t), which are independent with respect to each other and to the

X(t
coordinatesX (t) and the new state vectar Q for the system is completed.
n(t)
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The external dynamics

Xit) = A5()
(7)
XL(t) = wi(t)+di(x,t)
fori =1,--- ,mtogether with the internal dynamics (if< n)
n(t) = w(X,n) + P(X,n)u(t) + Q(X,n)d(t) (8)

describes the system dynamicsnlt r, no internal dynamics exists. The system is input-output
linearized.

Based on the transformed form of the system with the external and inthmainics in {)-(8),
linear control laws, e.g., state feedback with pole placement or LQR methadhe applied to
control the transformed systerm)( The performance of the control is apparently affected by the
transformed unknown inputs, which makes classical nonlinear contrif¢atiee and leads to the
robustness problem of the classical nonlinear method. Additionally to rethkizeontrol design
for the original system1)) with the classical nonlinear method, it has to be assumed that all the
statese(t) are available (by measurements or reconstruction applying suitable etssassuming
observability).

In the following section, a robust control method based on the combinatitre @xact feedback
linearization and the Pl-observer technique is proposed to solve thetnelss problem and the

availability problem of the states in the classical exact feedback linearizagimod.

3. ROBUST CONTROL METHOD BASED ON THE EXACT FEEDBACK LINEARIATION
AND THE PI-OBSERVER

The proposed approach shown in Figtakes the advantages of the exact feedback linearization
method to get a transformed (input-output linearized) description of tliersyand then applies the
PI-Observer to estimate the transformed states together with the transfankmexiwn inputs. Using

a state feedback control and a disturbance rejection, a robust clamtitee transformed system can

be designed. With the assumption of the stability of the remaining zero dynanhiich) is a typical
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assumption controlling mechanical system and which can be easily realieedhtte control loop

with the proposed control design is stable and robust.

New defined 7~ 777 Tt i T T T T T T T Outputs to
i inputs : Inputs ‘Exact’ nonlinear model .be controlled
Linear robust v=[vl...vm] . Linearization || u=[ul...um] L yr=tyrl...yrm]
control with — - = - o
disturbance > by exact Nominal + Disturbances/ ; >
rejection feed‘t:ack model uncertainties '
A

Input-Output linearized model
(m decoupled subsystems)

Measurements

A

PI-Observer
Estimations

Figure 1. Sketch of the proposed approach

3.1. PI-Observer Design for the Estimations of Transformed System Statésnknown Inputs

From the transformed system modé&),(the transformed system dynamics are decouplegh in

subsystems which can be described uniformly by

yE) = () +di(m,t), i=1,---,m, or ©
X = X0

(10)
X)) = ui(t)+di(m,1).

Every subsystem can be written in an individual state space form

Xi(t) = A XL + Biwi(t) + Nid; (2, 1),
(11)

yi(t) = C; XH(t),
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yi(t) 0 1 - 0
. . yi(t) . 0 0
with state vectorX*(t) = _ ,  System matrix A; = ,
: 0 0 1
ygm)(t) 0 --- --- 0
~ - = r;x1 ~ _ o drixr;
0 0
input matrix B; = | ~ |, matrix A;=| | outputmatrix C; = [ 10 --- 0 }
0 0 1xr;
1 1

= = r;x1 = = r;x1
In this case, it is obvious that the system is fully controllable and fully oladdevaccording to
the structure of A;, B;) and(.A;,C;).
The decoupled subsystems have an appropriate structure for thespdopPt-Observer design

[18]. Therefore, PI-Observers can be constructed for each sidnsygeparately, for example

');(i t — A N Xt B; Ly;
2 ( ) = 2 ( ) + vi(t) + (yl(t) _gi<t))7
Aei L; (12)
wo=[e o T
| S di(mat)
Cei

Furthermore, the requirement of a PI-Observer desigh 27] is fulfilled: the extended system
(Aei, Ce;) is fully observable. With properly chosen observer gain matricgesand £,; with
the corresponding dimension x 1 and1 x 1, the transformed state¥;(¢) and the transformed

disturbanced; (x, t) can be estimated with the PI-Observecgst) andcfi(m, t).

Design of Observer Gain Matrices of a Pl-Observer Based on the transformed system model

(2) and the observerl ), the error dynamics of the extended system is described by

éi t .A,,, - L 7,Cz M ei t 0
0 j M (13)
fe (1) —L2;C; 0 Je'(t) d;(t)
Aei,obs
with estimation errors defined a&(t) = X#(t) — X*(t) and f.i(t) = di(z, 1) — di(a. ¢).
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Itis proved in [L8, 27, 28], with high gains inC2; and|| Lz > || L1:]| 1), the estimation errors
|e’(s)|| » and|| fe'(s)| . can be reduced to an arbitrary small vajugut not to zero), iﬂs di(s) HF
is bounded.

The Linear Quadratic Regulator (LQR) method is applied to design the highRggDbserver
feedback matrices by solving the algebraic matrix Riccati equation.

For a stable observer, suitable observer gains can be calculated,givéor positive definite

matricesQ, R the Riccati equation
AP+ PA,T +Q—PC;"R'C.;P = 0 (14)

has a unique positive definite solution matix The observer feedback matrix is then calculated

with £; = PC.;” R, also other suitable approaches designingan be chosen.

3.2. Robust Control Design for the Transformed Systems

Realizing a robust control, a state feedback control with a disturbajezsion
vi(t) = —KCEXE(t) — dy(z, t) (15)

can be taken to stabilize the transformed system dynamics, because the essiftiy and

d;(x,t) are available from the PI-Observer and the transformed system is assasn@ully
controllable. The state feedback control (gain maiG¥ is designed by pole placement method
with the characteristic polynomial to be a Hurwitz polynomial. Using the nonlineedliack %),
the inputs to the original system dynamics can be constructed. At the samertmethiem PI-
Observers the external unknown inpdisc, ¢) can be estimated in the transformed coordinations.
Of course all the states(t) and outputg(t) in the original coordinates should be available to realize

the input-output linearization as usual.

3.3. Stability of the Closed-loop System

The following theorem is addressed in order to analyze the stability andtradss of the closed-

loop system.

tThe norm|-|| - denotes here the Frobenius noiffa| . = JZ > aZ; = \/trace(A* A) for Ain Rm*™,

i=1j=1
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Theorem 1

Assume the systeml) has relative degree and its zero dynamics is locally asymptotically
stable. With state feedback matrid€$ = Ki Ky - K for every subsystem satisfying
Hurwitz stability criterion and PI-Observers designed by LQR method with ldeitahoosing
observer gains, the closed-loop system is locally asymptotically stable #&odtragainst the

unknown disturbances.

Proof

The external dynamics]) is transformed with the control input designed h)(into
Xi = KR KRR — e — KL X+ di(, ) — di(, 1), (16)
which can be analyzed after Laplace transformation in frequency domain

(s7 4+ KCL 8" 4o+ Khs + K3 (s) = K (xi(s) - lCl?%i(s)> +d;(s) — di(s) 17)
—_————

ICiei(s) fel(s)

with e’(s) and f.’(s) as the estimation errors from the PI-Observer desigrifi). (The output
yi(s) = X{(s) accordingly the external dynamics is stable, because the characterigtiomaal
in (17) is Hurwitz stable and the inputs to the transfer behavior, the estimation efrtnge PI-
Observer, converge to an arbitrarily small vatue

Due to the fact that the zero dynamics is assumed to be stable, it can bedemhitiat the whole

control loop is stable and robust to the disturbantes O

4. CONDITIONS FOR THE APPLICATION OF THE PROPOSED ROBUST CTROL
APPROACH ON MECHANICAL SYSTEMS

In the following subsections, the conditions for the application of the pegbapproach on a typical

class of mechanical systems will be discussed.
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11

4.1. Modeling of General Mechanical Systems

Without loss of generality, the discussed class of nonlinear mechanstainsy is described hy

second order differential equations

Q1(t) fl(qlaqla"' 7Qna(jn)
Q’n(t) fn(qlaq.lv"' 7Q7laq.n)
gll(‘]laéh"' aqn7qn) gll(qla(jla"’ 7qna(jn)
; ; ; wt)  (18)
gnl(q17qla"' aanq.n) gnl(Qladlv"' 7Q7laq'n)

dl(qh‘jlf" ,qn,(jnyt)

+ ;
L dn(qlaq'h o 7qnaq.n7t)
namely
§(t) = fla.q9)+9(q,q)u(t) +d(q,q1), (19)
Nominal model
yn(t) = q(b), (20)
y.(t) = Ceq(t), (21)
a1(t)
. q2(t) . .
with q(t) = _ € R, input vectoru(t) € R', outputs to be controlleg,.(¢) € R™ and
| (1) |

measurements,, (t) € R™. The vector fieldsf(-) onR™ andg(-) onR"*! are assumed as smooth.
The assumed system structut)(is typical for systems like mass-spring systems, multibody

systems or systems modeled by finite element method.

4.2. Conditions for the Application of the Proposed Robust Control Ambroa

Several assumptions are made here for mechanical systems to adoptphsegk robust control

approach:

¢ all the displacements are measurable, 86 (
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12

e part of displacements is to be controlled, s28 (
e the number of inputs is equal to the number of outputs to be controlled, ndmely in
subsectiont.1and

e the nominal system model in9) is input-output linearizable.

With the assumptions given above, the syst&@) ¢an be written in a general form withn first

order differential equations

¢n+1
. 0, 0,
(1) = T w |
(22)
| f(9) |
Ycontrol (t) = CCOntT¢(t)v
ymeasure(t) = C’Vneasure¢(t)7
. q(t) .
with the state vectoo(t) = and output matrice€’ .o aNAC 1, cqsure-
q(t)

For such systems, the application of the proposed approach is feasitdeide the requirements

of the approach are fufilled.

o Availability of all the states
For the nonlinear feedback in the input-output linearization proces3-5), usually all the
system states, the outputs, and the derivatives of the outputs in the odgoradinates are

required. This includes for the application on mechanical systems:

— All the displacements as well as the outputs to be controlled are assumed asabkeas
— The velocities, which are also states in the original coordinates, can be testima
i) either by PI-Observers as the states in the transformed coordinates the
corresponding displacements are to be controlled
i) or by additional PI-Observers designed for estimation of the internahuohycs if the
corresponding displacements do not appear in the outputs.
— The derivatives of the outputs can be obtained from the PI-Obseasél® states in the

transformed coordinates.

e Possibility of full rank disturbance estimation
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Another important aspect is that the estimations of modeling errors/dist@basainknown
inputs possibly with full rank in the original coordinates it8) are available based on the

estimations of transformed unknown inputs by the Pl-Observers.

5. APPLICATION EXAMPLE FOR THE ROBUST NONLINEAR CONTROL MEAIOD ON A
MECHANICAL SYSTEM

5.1. Modeling of a Nonlinear MIMO Mass-spring System

An example of nonlinear MIMO mechanical systems, based on the benclsysigm P9] shown

in Fig. 2, is given to illustrate the proposed method. The system is modelled by

X1
— X2

> X3

.y

[, [u:

Figure 2. Nonlinear MIMO mechanical system example

mi1 = k(=21 + 12) + k:p[—xi’ + (w9 — 21)%] + ug +dy,
mfi'g = k(l’l — 2%2 + 1’3) —+ kp[(l'g — (EQ)3 — (fEQ — xl)B} + u2 =+ dz,

mis = k‘(l‘g — 1‘3) + kp($2 — .133)3 + d3, (23)
T
Ymeas = |: T1 To X3 :|, and

T T
Yeontr = |: Y1 Y2 :| = |: xr1 I3 :| .

The parameters used in simulation are= 0.5 kg, k = 217.0 N/m, and kp = 63.5 N/m?. The
dynamics of the disturbances in the inpdtsds, d3 are assumed as unknown to the control design
but present in the simulation as = 5, d> = 10sin(5t), andds = 20sin(10t) additionally to the
nominal model presented ir29], which can be considered as uncertainties in the parameters or
external disturbances.

The input-output linearized form of the system can be written in

. d _
y1r = v+ 2= v + 1M1, (24)
m
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k 3k dy d
@ = vt [+ T (1 —w3)? (2 — ) = va+ 7, (25)
m m m m
if the inputs are chosen as
k kp 3 3
up = m|vy — —(—2x1 +ax2) — — [—xl + (xo — 1) ] and (26)
m m

U9 = 3%, ( ( )2

The remaining zero dynamics/internal dynamics

[k(:cl — 219 + $3) + k‘p[(mg - 332)3 — (IQ — l‘1)3] + uo + dg}

. 1
Tro = —
m

is stable, if the disturbancg is bounded.

Two PI-Observers are designed for the transformed decoupledanigm&4) and 5)

) 0 1 0 0. .
Zq = Za + v+ M+ Lia(y1 — 1),

0 0 1 1
i (28)
m = Laa(y1 — 1),

Y1 = 1 0 | Za

and

Zy = zp + v + 2 + L1y (y2 — 92),

—_
o

o o O

o o O

(29)

o o o O
o o O
o
—

0 0 1 1

72 = Loy(y2 — 92),

y2=11 0 0 0 |2
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o
. j 0 .
with the state vectors, = Al and z, = A2 , to estimate the transformed states and
7 12
~(3
i

disturbances, namely,, i1, i1, &3, 43, &3, 5, andij,. To construct the inputs ir26) and @7),
besides the displacements x5, andz; the velocitiesi, andzs are also required. As a transformed
coordinate, the velocity; can be estimated by the PI-Observe®)( To estimate the velocity.,

an additional PI-Observer is designed by

. 0 1 0 0. X
Ze = Ze + vz + N3 + Lic(za — &2),
0 0 1 1 (30)

with the state vector, = , V3 = L3 [(1’1 — 219 + 1’3) + kp[(zg — 172)3 — (IQ — 1’1)5} + UQ},

m

=

andqs = ¢z,

With the estimations from the three PI-Observers mentioned above, the s{Beman be
transformed into an input-output linearized form with nonlinear feedbaékand @7). To realize
the robust control, linear control methods can be applied to the linearized if2a)i and ¢5), for

example as linear state feedback control

v = —20&; — 100(z1 — T1pef) — 1, (31)

vy = —200&LY — 1500035 — 500000d5 — 6250000(25 — T3pef) — Ta- (32)
The desired values taken in the simulation &g ; = 0.25 andzs,.; = 0.3. The dynamics of the

disturbanced, d», andds are calculated from the estimatioiis 72, ands.

5.2. Simulation Results

The simulation results in comparison with classical input-output linearization mhettgogiven in
Fig. 3. It should be noted that classical nonlinear control methods cannagatiylapplied, because
not all the states are assumed as measurable.

According to the illustrated results, the proposed approach shows fiostlsiness against the

external disturbances and the reconstruction of the unmeasured btates\parison, the classical
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T T
------ Desired value

= = = Control result with classical method
Control result with proposed method | |

0.4}

0.1 L L L n n
0

0.5 1 1.5 2 25 3
Time, sec.
(@
------ Desired value
= = = Control result with classical method
04k Control result with proposed method | |
'l
1 - -
0.3yt e = - -
\
.
<’ 0.2 4
0.1 1
) ]
01 L L L
0 0.5 1 1.5 2
Time, sec.

(b)

Figure 3. Comparison of the control results

input-output linearization method with estimated states from Luenbergervebsand the same
state feedback control as in the proposed approach is strongly inldidrycthe disturbances and
leads to large control error, especially in controlling

Secondly, the proposed approach estimates the velocities based on theemesxs of the
displacements and therefore avoids numerical differentiation of the neghsignals to get the
information of all the states.

At last, the proposed approach not only realizes a robust controltifer considered
class of nonlinear MIMO systems, but also generates plausible estimatiotiee ainknown

disturbances/modeling error. This may be in addition suitable for extendati Batection
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and Isolation (FDI) approaches and/or Structural Health Monitoringnigales supervising the
condition and states of the system by for example evaluating residualsisTaabreakthrough
in both application and nonlinear robust control. The estimated disturbéoicése example are

shown in Fig4.

— Real disturbances in the simulation

© 2 Estimated/calculated disturbances |
0 L L L

0 0.5 1 1.5 2
20 T T T

ok i W\
-20 : - :

0 0.5 1 1.5 2

T L L
0 0.5 1 1.5 2
Time, sec.

Figure 4. Estimation of the disturbances

6. SUMMARY AND CONCLUSIONS

In this contribution, a robust control design approach is proposednfart-output linearizable
nonlinear systems with modeling errors or uncertainties. To realize the inppiHdinearization,
the information of the states is derived by measurements together with the estsrgeinerated
by PI-Observers. A robust disturbance rejection control is realigeagsing state feedback of the
linearized model and estimations of the unknown inputs, which include possideling errors
and uncertainties with unknown dynamics. The stability and robustness pfeékented approach
are proven. Additionally the estimations of unknown disturbances/modeliogseare given by
the PI-Observer design. The conditions are listed for the application ohaneal systems. The
simulation results of a mechanical MIMO system illustrate the effects and tdyes of the

proposed robust control method with use of PI-Observer technique.
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