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In this contribution a new closed form of a mathematical model of Nickel-Titanium (NiTi) shape memory alloy (SMA) 
and its thermo-mechanical wire hysteresis behavior is developed. The approach is based on experimental data. The 
behavior of the heated and naturally cooled wire is modeled by mathematical expression. The cycle of heating and 
cooling is performed under a constant load. The prediction of the hysteretic behavior is realized through models 
adaptation, as predetermination, or real time determination of the models values, is developed and presented in detail. 
Simulations for position control using PID controller is shown for comparison purposes. The developed approach is 
incorporated in a feed forward control scheme. A comparison between the actual position and the predicted models 
position shows promising results.  
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1. Introduction 

 
The materials behavior of Shape Memory Alloy (SMA) is within the focus and the attention of 
researchers and engineers on its peculiar characteristics for its potential of wide range of use: as micro 
actuators, vascular stents, guide wires, catheters, orthodontic appliances, eyeglass frames, cellular phone 
antennas, valves, fasteners, and heating of thermostats. Beside the practical use of the material, another 
interesting use is controlling the force and the geometrical properties of the material to effect the shape 
of the rotor blades of helicopter, to improve lift and reduction of vibrations [1, 2] etc.  SMA wires, such 
as Nickel-Titanium (Ni-Ti) wires, have a peculiar property of contracting in its length upon heating and 
expanding upon cooling [3]; as a result, the material can be used as actuator realizing forces or changing 
positions. This behavior is called in literature the Shape Memory Effect (SME). The SME occurs when 
the material undergoes a phase change, for example by heating above a certain transition temperature or 
vice versa by cooling. 
 
The modeling of the SMA-material behavior is within the focus of current research, c. f. [4, 5, and 6]. 
The observed complex hysteretic behavior is typically modeled by physical-oriented complex models, 
able to describe the physics of the system (especially the phase changes) on an elementary level. The 
focus of the actual and typical related model development is the representation of the hysteretic effects 
by implementing internal memory using Preissach operators [7, 8] or other suitable approaches. The 
validation of the models shows that the material behavior can be expressed and mathematically 
expressed. The disadvantage of such kind of models is that due to their complex implicit representation, 
they can not be used for online- or real time purposes. This aspect mainly results from necessary spatial 
integrations during time-integration.  
 
The main idea of this contribution is to express explicit models modeling the phenomenological material 
behavior for online use, resp. to be used as model for model-based SMA-force or position control. 
Therefore of course some assumptions have to be made, discussed in the sequel. 
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The paper is organized as follows: in Chapter 2 the theoretical and motivational background is briefly 
illustrated; Chapter 3 explains the mathematical modeling approach in detail. The experimental results 
are illustrated, compared with simulated results, in Chapter 4. In Chapter 5 a very short and initial 
control approach is implemented, whereby in Chapter 6 a conclusion and final remarks are given. 
 
 
2. Theoretical background 
 
The effects of the shape memory effect (SME) and pseudo elasticity of SMA are described 
schematically in Figure 1. Starting with Austenite as phase-A, cooling down under the martensite 
finish transition temperature Mf , a twinned martensite is achieved, denoted as phase-B, or by external 
loading  a detwinned martensite is achieved, denoted as phase-C. The pairs of martensite twins begin 
‘detwinning’ to the stress-preferred variant as phase-C. Heating up the detwinned martensite phase 
above the austenite phase transition temperature Af the transformation to austenite phase occurs again 
and recovers its original geometric configuration. This behavior is called SME. The process and the 
physical background is given in detail in [9, 10, and 11]. 

 
Figure 1. Schematic description of shape memory effect and pseudo elasticity that are caused by 
detwinning and phase transformation among ((A) austenite, (B) twinned martensite, (C) 
detwinned martensite). 

 
 Similarly applying load, austenite phase transforms to stress-induced martensite, as phase-C. But 
when de-twinned martensite as phase-C is unloaded, it transforms to austenite; which is called pseudo-
elasticity [12]. The difference between the transition temperatures upon heating and cooling of shape 
memory alloy results to hysteretic behavior as shown in Figure 2.  

 



 
Figure 2. Schematic description of typical hysteresis loop for SMA. 

 
 The use of SMA wire as actuators is attractive for its actuating ease and that is accomplished by 
applying voltage difference to the wire ends so leading by the electrical current the wire is heated, 
phase changes are initialized and the wire achieves shortening effects, but including the SME 
phenomena.  
 
   The advantages of this type of actuators are ease of actuation, low cost, light weight, small size, high 
force to weight ratio, and noiseless. The disadvantages are the existence of the hysteresis loop and the 
unsymmetric behavior related to phase changes, here usually the cooling of SMA is slower than its 
heating. Despite their limitations, shape memory alloys are considered as actuators of the highest 
payload to weight ratio among smart materials. 
 
   Precise control of a system which has SMA actuator is due to the complex thermal-electrical-
mechanical characteristics very difficult to control. The behavior depends on temperature and also on 
external load, is sensitive to temperature changes, and due to the elasticity of the wires, vibrations may 
occur.  Therefore, the control of SMA actuators requires robustness for environmental changes, 
modeling errors and vibration suppression. In addition to that, the controllers should have the ability to 
handle both position and force control with the existence of hysteresis as a nonlinear element in the 
control system.  
 
   Developing a mathematical model which characterizes the behavior of SMAs as a result of 
temperature changes, external load, and phase transition is very complicated. Researchers continue to 
study about the optimal strategies to model and therefore to control SMA actuators [13]. Some of the 
methods to establish mathematical model for SMA actuators are based on experimental data to relate 
force, deformation, and temperature [14, 15]. Other methods are based on introducing a variable α that 
represents volume fraction of martensite phase in the thermo-mechanical constitutive equation of SMA 
wire [16, 17]. Mathematical modeling of magnetic hysteresis was adopted for strain-temperature loops 
in shape memory alloy [18]. Modeling the one-dimensional thermo mechanical behavior of SMA is 



divided into four categories [19] where the constitutive models [12, 20-22] are focused on describing 
different aspects of SMA.  
 
   The scope of this contribution is different: instead of theoretical modeling representing also the 
internal physical effects, here a phenomenological approach is realized. The idea is to use 
mathematical modeling; this includes that the developed models should represent the same Input-
Output behavior as observed in experiments, based on a simplified and perfectly explicit closed 
mathematical expressions. They will build the base for further and easier realization of model-based 
control approaches. 
 
3. Model development 
 

Typical experimental data that relates length change of SMA to temperature change during heating and 
cooling [23] are shown in Figure 3 showing a hysteresis loop with two sides. The upper side is for 
heating while the lower side is for ‘free’ cooling. The two curves diverge at low temperature (T1, Y1) 
and converge back at high temperature (T2, Y2). The two points are denoted the first and second 
common points respectively. In order to explain the model development a schematic drawing of an 
experimental hysteresis loop is shown in Figure 4.  
 

 
Figure 3. Hysteresis loop of experimental results of NiTi SMA loaded wire [20]. 

 



 
Figure 4. Schematic behavior of the material structuring the hysteresis loop. 

 
   For a more convenient and suitable understanding of the hysteresis loop shape, the loop has been 
rotated about the second common point (T2, Y2). The rotation is accomplished when the straight line 
that passes through the two common points (the diagonal) becomes horizontal in the coordinate system 
Length-Temperature at Y2 ordinate.  
 
The equation of the diagonal which connects the two common points is given by 
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The two sides of the hysteresis y1 (T) and y2 (T) are been rotated by α angle using the transformation 
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where the point (Ti, yi) is any point on the hysteresis curve of the two sides y1(T) and y2(T), and (Tri, yri) 
defines the corresponding rotated point. An example of hysteresis loop of experimental results before 
and after rotation is shown in Figure 5. 



 
Figure 5. Hysteresis loop of experimental results before rotation and after rotation. 

 
As it can be seen, the shape of the two rotated curves yr1 and yr2 are resemblance to half of sinusoidal 
function. In this case, the hysteresis loop can be modeled using half sine function that can be 
determined using the experimental data without going through the complexity of the constitutive law 
of SMA. The lower curve yr1 can be modeled with half sine that starts at T11 and ends at T2 with A1 
amplitude, while the upper curve yr2 has two parts, first part starts at (T11, Y2) point and ends at (T12, 
Y2) which is the point of intersection between yr2(T) curve and the horizontal line at ordinate Y2, its 
value can be found by numerical method. The amplitude of this half sine is A21. The second part starts 
at (T12, Y2) point and ends at (T2, Y2) point and its amplitude is A22. The amplitudes can be calculated 
by finding the minimum or the maximum of both curves yr1 and yr2 by the expressions 
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Assuming the amplitudes the equations as known all curves can be written as 
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with 
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  A comparison between the experimental hysteresis loop of Figure 5 and its model hysteresis loop of 
half sinusoidal is shown in Figure 6. In this figure, the ordinate is been enlarged to see the deviations. 
It shows that the two loops are almost identical.  

 
Figure 6.  Comparison between hysteresis of experimental results (blue color) and the  
hysteresis of the proposed mathematical model (red color) at the rotated position.  

 
 

Next, the model hysteresis loop is rotated in opposite direction by the same α angle to the position of 
the experimental hysteresis loop using the transformation  
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Figure 7.  Hysteresis loop of experimental results (in blue color), and hysteresis loop of mathematical 
model (in red color) before and after rotation. 
 
The result is shown in Figure 7. Algebraic simplification yields to a first mathematical model as  
:  
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  All the model coefficients are based on the coordinates of the two common points (T1, Y1) and (T2, 
Y2).  
 
  Since the previous approach is based on half sine function and curve rotation, a second mathematical 
model could be achieved without curve rotation which is a half sine function added to the diagonal 
straight line function y(T). As result, a second mathematical model appears as                                                            
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   The positive and negative signs are for upper and lower curves respectively. The lower curve of the 
hysteresis loop is modeled as 
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   The diagonal intersects the upper curve of the hysteresis loop to two parts; one part is above the 
diagonal and a second part is under the diagonal. The two parts have different amplitude and length; 
therefore, two halves of sinusoidal functions are needed to model the upper side of the hysteresis loop. 
The crossing point location defines the f ratio. The two parts of the upper curve are 
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To improve the model accuracy, tuning coefficients c11, c21, and c22 have been added to the model. The 
final form of the second mathematical model of the hysteresis loop results to 
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 The second mathematical model also is based on defining the two common points (T1, Y1) and (T2, 
Y2) of the hysteresis loop.  
The model steps are: defining the abscissa Tcr (the intersection point of the upper curve with the 
diagonal) and calculating the f ratio, estimating the abscissa Tc and the amplitude A. By knowing all 
the aforementioned parameters the model can be determined. Then, a calculation of the average of 
relative deviation is needed to check model accuracy. For unsatisfied accuracy, a fine tuning has to be 
done. The tuning can be achieved by moving the common points a very small distance and modifying 
the values of the coefficients c1, c21, and c22. A typical result is shown in Figure 8. 



 
Figure 8.  Experimentally measured hysteresis loop 
(a) Hysteresis loop of experimental results (blue color), and the diagonal between the common two 
points (black color).  (b) The same as in (a), and the second mathematical model (red color).  
(c) The same as in (b) with tuned amplitudes. (d) The same as in (d) added to it metal expansion curve. 

 
   For higher temperature above T2, the region to the right of the hysteresis loop can be considered as a 
metal expansion of the SMA wire. This range can be modeled with a second order polynomial, where 
by its coefficients are related to the metal heat expansion properties; see Figure 8(d).    
 
   Both mathematical models can be achieved based on the experimental hysteresis loop that relates the 
length of the SMA wire and temperature. The temperature is being determined by knowing the input 
electrical current and solving the following SMA wire unidirectional heat transfer equation for 
electrical heating and free convection by 
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   where  
m represents the wire mass, Cp represents specific heat, h is heat convection coefficient, A denotes the 
circumferential area, Troom represents the room temperature, I represents the electrical current, and R 
denotes the wire electrical resistance.   
 
 



4. Experimental test bed 
 

The experimental test bed at the laboratory of the Chair of Dynamics and Control, at University of 
Duisburg-Essen was used to perform the required tests. The test bed has besides suitable measuring 
devices, the capability of position and force control for SMA wire. The tests were performed on a 
Nitinol SMA wire of 525 mm length and 0.19 mm radius, which is connected to force sensor in one 
end and to a small slider at the other end. As shown in Figure 9, the slider is connected to a load 
through a pulley. The displacement of the slider is measured online by laser sensor.  The wire was 
heated by electrical current that can be controlled with a DSP-system using a real time control system 
in combination with MATLAB and SIMULINK. The room temperature is measured by temperature 
sensor that is shown in Figure 10. The material properties of the SMA wire are taken from the 
manufacture data.  

 
Figure 9.  Schematic drawing of the test bed at Chair of Dynamics and Control,  
University of Duisburg-Essen. 

 

 
Figure 10. Picture of the experimental test bed (Chair of Dynamics and Control at U DuE). 

 
 

5. Simulations results and experimental validation 



 
Experiments were performed for various current inputs. Therefore currents up to two amperes, in 
combination with constant loads of 1, 2, 3, and 4 kg are applied to the system. The results are shown in 
Figures 5, 6, 7, and 8. The observed behavior represents  

i) the experimental hysteresis loops, whereby the diagonal connects the two common points, and 
ii) the mathematical model hysteresis loop.  

For both models, the average of relative deviation was calculated. In the first model, the average of 
relative deviation was about 1.0%, illustrated in Figure 7. In the second model, the average of relative 
deviation was around 3%; see Figure 8(b). With amplitude modification (achieved by measuring the 
amplitude from the experimental data) the value of the coefficients achieved were c1=1.2, c21=1.0, and 
c22= 0.333. In this case, the average of relative deviation can be reduced to 1.1%; see Figure 8(c).  
 
    Hysteresis loops shape change was examined for 
i) different preloading,  
ii) parameters changes, and 
iii) various types of excitations.  
 
With respect to i) the SMA wire was preloaded by 1, 2, 3, and 4 kg. The load remains constant during 
operation. The hysteresis loop change was a position shift of the loop toward up because of wire pre-
elongation which is expected, also the loop gets narrower with larger load; see Figure 11(a).  
With respect to ii) several values of h, the coefficient of heat convection are considered and as result it 
can be stated that the hysteresis loop gets wider for larger value of h, while keeping the same shape of 
the upper side of the hysteresis loop and bending to the left the lower side of the hysteresis loop, see 
Figure 11(b). Similar examination was done for Cp , the specific heat coefficient, the hysteresis loop 
gets thinner while keeping the same shape, see Figure11(c).  
With respect to iii) various repeated excitations are applied: 1) The slider was given enough time to 
return back to its original position by letting the cooling process to be completed, the hysteresis loop 
repeats itself almost the same, see Figure 12(a).  2) Repeated excitations but the system was excited 
again before the slider reaches its original position, the result was a shift down of the upper curve of 
the hysteresis loop, see Figure 12(b).  3) Repeated excitations where applied so that the time between 
excitations is shorter than before in order to keep the slider close to its final position, in this case inner 
loops where achieved, see Figure 12(c).  



 
(a) 

 

 
(b) 



 
(c) 

 
(d) 

Figure11. Hysteresis loop shape changes caused by: (a) Using four preloads. (b) Using three values of 
coefficient of heat convection, arrow shows larger values. (c) Using three values of specific heat 
convection. (d) The outer hysteresis loop of (b) and the adapted model (red color). 



 
 
Model Adaption 
The experience, which has been achieved regarding shape changes of the hysteresis loop under 
different operation conditions, provides the ability to adapt the models to the new conditions. 
 
    Models generalization and adaptation can be done in two ways: First, is predetermination of the two 
common points (T1, Y1), (T2, Y2) and amplitudes. This strategy is applicable, when the operation 
repeats itself under the same condition as it shown in Figure 12(a). The second strategy is a real time 
determination of one of the two common points and the amplitude. This way is used when the 
hysteresis loop changes shape. It is explained using the aforementioned tests results. As examples; 1) 
The third hysteresis loop in Figure 11(b) has relatively the worst shape; it's lower side bends to the left 
and extends its straight right part. Therefore, the model lower side is the one which has to be modified. 
The modification is done by taking another second common point for it, so that T2 is different from the 
one of the upper side. Therefore, its second common point will be to the left from its original location. 
In this case T2 is the only modified value and it is taken as the temperature when the change in the 
actual elongation becomes larger than a specific value. The adapted model is shown in Figure 11(d) in 
red color. 2) For repeated excitation, as in Figure 12(a), the same model can be applicable for all the 
hysteresis loops. In Figure 12(b) the modification is only for the first common point (T1, Y1) where the 
abscissa and ordinate are taken as the last values when the curve changes direction.  For inner loops, as 
in Figure12(c), the two common points are modified as illustrated in Figure 11(d) and as in Figure 
12(b). The amplitude can be modified by minimizing the deviation between the model and the 
measured elongation based on the first measuring values.  
 

 
(a) 



 
(b) 

 
( c) 

Figure 12. Hysteresis loops (blue color) and the adapted model (red color) for repeated excitation:   
(a) Complete cycle of operations. (b) Incomplete cycles of operations. (c)  Short cycles within the 
complete one produces the inner loops. 



 
 
    To examine the behavior of the proposed models to be used in control systems, a SIMULINK 
simulation is realized for position control using standard PID controller with two different inputs, as 
illustrated in Figure 13. For a step input, the result is shown in Figure 14(a). The model position and 
the desired position are very close except at the time where cooling takes place. Since the cooling of 
the SMA wire is realized by a free convection process, its expansion is slower than it can be realized 
by the abrupt change of the step function-like heating. For a cyclic sine function input, the result is 
shown in Figure 14(b). In this case, a better matching along the hysteresis loop between the model 
position and the desired position as a result of gradual change in sine function.  

 

 
Figure 13. Block diagram of SIMULINK control system. 

 

 
(a) Step response function  



 
(b) Cyclic sine input given as input produces output behavior 

 
Figure 14. Comparison between desired position (blue color) and model position (red color),  
(a) for step input, (b) for cyclic sine input. 

 
   Another comparison between the experimental actual position of the SMA wire control system and 
the position of the model for the same current input on real time control is illustrated in the block 
diagram shown in Figure 15. The control system of the SMA wire, specified in section 4, uses in this 
case a standard PID controller. The hysteresis model block is the developed model, the heat transfer 
model block is developed in equation (16). The mechanical system block is the system shown in 
Figure 9. As an example of the comparison, results are shown in Figure 16. The major deviation 
between the two curves exists outside the region of the hysteresis loop which shows that the developed 
approach is able to realize the Input/Output behavior of complex hysteretic structures without using 
complex modeling approach, and has a promising use in control. 
 

 
Figure 15. Block diagram of the control system. 



 
Figure 16 . Comparison between the actual position (blue color) and the model  
position (red color) on real time control. 

 
 

6. Conclusions 
 
In this paper two mathematical models for SMA wire behavior are developed, proposed, and validated. 
The closed mathematical form composed of algebraic and trigonometric functions will allow the 
online-use of the model. From a computational point of view, as advantage the easy implementation 
and realization aspects are important. The models’ parameters depend only on the coordinates of two 
common points, while the amplitudes are been calculated or estimated according to each model 
calculation steps. The experimental hysteresis loop can be obtained by using the measuring devices 
which exist in the control system. To validate the models various experiments were performed on an 
existing test bed. The measured and calculated data which relates SMA wire length and temperature 
under external force gives various hysteresis loops. Model validation is shown as well as a real time 
model adaptation and prediction for various cases is explained. Simulation and actual position control 
using the proposed models were examined. The experimental results of the actual position and the 
models position are close together along the hysteresis loop. The calculated average of relative 
deviation is less than few percents. The parameters in the first model are more accurate than in the 
second model, while the final form of the first model needs less effort. The validation of the introduced 
modeling approaches shows that they are very effective and precise under the given assumptions.  
As a conclusion it can be stated that models are available, that can be used effectively in control 
systems without the need to go through the complexity of the constitutive law of SMA wire. The 
procedure is practically easy to implement, and the mathematical models function is easy to deal with, 
which simplifies the development of related control algorithms.  
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