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Abstract— Object detection can be performed on different
modalities like camera or lidar systems. Image-based ap-
proaches are highly sensitive to variations of illumination. On
the other hand, lidar-based approaches fail on detecting small
objects or objects at higher distances. The research in this
field leads to a variety of different approaches with different
advantages and drawbacks. Fusion-based approaches aim to
utilize the advantages of the available modalities and specialized
approaches. Usually, the performance of object detection ap-
proaches is measured over a set of situations. The performance
measures are typically provided as average values over a test
dataset. Local variations are not considered for comparison
and not utilized. For a better understanding, this contribution
analyzes performance variations based on different situation
parameters to understand the complementary potential and
improve the application of redundant and situated object
detection systems.

I. INTRODUCTION

Nowadays learning-based methods are gaining significant
attention and are utilized in safety-critical tasks, affecting
decision making due to the obtained information. While
most of these approaches work well in certain situations,
overreliance can still cause a significant amount of damage.
Due to the approaching usage of learning-based methods in
real applications, there is an increasing number of accidents
based on wrong decisions during autonomous or assisted
operation. A popular example is an autonomous vehicle
confusing a truck with a bright sky resulting in a collision
[1]. Understanding abilities and uncertainties could lead to
better decision-making and therefore to a reduction of risk
during the operation. However, in practice, the quantifica-
tion of reliability of a particular prediction is given by a
detection score, estimated by the trained model. While a
higher score indicates higher confidence it does not reflect
the actual uncertainty of the prediction. It remains difficult
to decide whether to accept or reject a prediction due to
the lack of situational knowledge and a reliable indicator of
quality. Due to the performance potential and the resulting
research interest, a high variation of promising approaches
is available. It can be assumed that a combination of diverse
approaches can compensate for each other’s drawbacks and
lead to better and more robust predictions, improving the
reliability of predictions and final decisions. This contributin
is structured as follows. In Section II a brief review on
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Fig. 1. Example of matched predictions of multiple detection systems.
Different instances shown. Annotations for each instance as follows.
Top left: detection score mean and variance;
Top right: true or false positiv, ground truth in green;
Bottom left: detection score of matched predictions, sequence corresponds
to prediction case1 in Table III

object detection, object detection fusion, and situational
dependencies for the detection task is provided. In Section
III, used approaches and dataset are introduced. Experimental
results are disscussed in Section IV.

II. RELATED WORK

A. 2D image- and 3D lidar-based detection

Image-based object detection has received high research
interest over the last years and shows significant repre-
sentation ability, especially for the classification task. It is
well known that image-based approaches are sensitive to
light conditions and textural information being provided.
While achieving reasonable results under good conditions,
the performance reduces significantly for varying brightness,
noise, or a poor texture like repeating patterns or uniform
surfaces. Furthermore estimating 3D positions based on im-
ages remains a challenging task. State-of-the-art approaches
can be divided into two main categories, one-stage, and two-
stage. One stage systems [2] [3] learn the detection task
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directly from the full image and can be trained in an end-
to-end fashion. This leads to a simple architecture and low
inference time but shows lower performance compared to
two-stage approaches. Two-stage approaches rely on region
proposals that can either be precomputed [4] or provided by
a region proposal network [5]. The region proposal network
can either operate on a feature map, obtained from the image
or on additional sensor data as demonstrated in [6]. Lidar-
based object detection shows high performance for 3D object
detection due to the obtained depth information provided
by the sensor system. While lidar data provide precise but
sparse depth, textural information is not available. The degree
of available information is reduced depending on distance,
object size, or shape. Therefore the detectability of an object
is limited due to the obtained information. In [7] semantic
segmentation is applied on raw point clouds. Based on the
segmentation object detection is performed using connected
components. More recent approaches transform the point
cloud into voxel or pillar representations leading to a dense
structure. Features are extracted voxel- or pillar wise and
forwarded to a region proposal network and final detection
stage [8][9][10][11].

B. Object detection and decision fusion

Fusion aims to combine existing advantages by utilizing
complementary aspects of available information. Fusion can
be grouped either as fusion of raw measurements (early
fusion), fusion of feature maps (middle fusion), or fusion
of predicted candidates (late fusion). Fusion of predicted
candidates can be denoted as decision fusion. Early fusion
can be performed by projections or augmentation of the
available sensor data. For example, a lidar point cloud is
projected into a front view depth map and used as an
overlay for camera images [12]. The other way round camera
images can be used to augment a point cloud by adding
pixel color as additional information [13]. Middle fusion
can be performed in various ways, examples are following.
Nabati et al. [6] proposed the generation of region proposals
based on radar points and evaluate the generated proposals
with an image-based detection system like Fast R-CNN
[5]. In [14] features are generated separately for images
and point clouds. Proposals are generated in 3D through
the lidar network. Features from lidar and image domain
are presented to a fusion network performing scoring and
bounding box regression using proposals and ROI features.
Proposals from radar or image domain are suggested for
practical application. Late fusion aims for the fusion on high
level features or preliminary predictions. Qi et al. [15] used
a pre-trained model to predict 2D region proposals on image
data. Each proposal transformed into a frustum, limiting
the search space for a lidar-based detection pipeline. While
reporting improvement, this method requires detections in
both domains, camera, and lidar. Pang et al. [16] fused 2D
and 3D predictions by a lightweight fusion network. Fusion
was performed based on the predicted score, intersection in
the 2D image plane, and distance in 3D. The fusion result
was a new score map. It can be assumed that the used model

TABLE I
CROSS VALIDATION SCHEME - NUMBER OF SCENES ASSIGNED TO THE

INDIVIDUAL FOLD

Train
Rain Night Rain and Night Default

LOOCV 1 125 56 8 491
LOOCV 2 82 59 14 525
LOOCV 3 149 78 11 442
LOOCV 4 108 56 15 501
LOOCV 5 132 83 16 449

Val
Rain Night Rain and Night Default

LOOCV 1 24 27 8 111
LOOCV 2 67 24 2 77
LOOCV 3 0 5 5 160
LOOCV 4 41 27 1 101
LOOCV 5 17 0 0 153

17,5 % 9,8 % 1,9 % 70,8 %

can learn distance dependencies. Further influences are not
represented.

C. Situational variation in object detection

Real-world applications are facing a diverse set of situ-
ations. Situations are defined by environmental influences
introducing uncertainties. These environmental influences
are represented in the sensor data as well as the obtained
predictions of single or multiple detection systems. Influ-
ences like weather, illumination of the scene, or similar,
can affect the whole detection range. Quantification can
be done independent of predictions. Influences represented
in the prediction like distance, confidence or associated
ROI features affect a particular prediction. Quantification
dependents on predictions. In [12] complementary sensors
are analyzed regarding advantages and weaknesses and com-
pared with an early fusion approach. The results are shown
over different artificial darkness levels and distance rings.
Clear dependencies can be observed and are quantified as
average precision values. In [11] decreasing performance
of anchor-based approaches during dynamic situations like
turning maneuvers, is reported. In the case of redundant
systems, multiple predictions for potential objects can be
available. Additional information can be obtained based on
agreement or conflicts in the available predictions. In [2]
the authors demonstrated that the combination of diverse
detection approaches can lead to improved overall perfor-
mance. Besides the dependencies induced by distance and
darkness, indicators for the detection performance can be
more diverse. Weather conditions like rain, snow, or fog
can affect the system due to induced noise. Autonomous
systems need to be aware of different situations and varying
uncertainties. The expected uncertainties are depending on
situational variations.

III. METHODS AND DATASET

In the following, the used detection systems and datasets
are defined. Furthermore, the applied metrics for the perfor-
mance evaluation are introduced.



A. Detection approaches and Dataset

This work utilizes detection systems implemented by [17].
Overall four detection systems based on lidar are involved.
Used detection systems achitectures are pointpillar [10] and
centerpoint [11] , using different pillar and voxel sizes. The
test and training data is obtained from the nuScenes dataset
[18]. The default split for the training and validation interval
is discarded. A five fold cross validation scheme is applied
as seen in Table I. Each detection approach is trained for all
cross folds, resulting in five models. Each model predicts
on eachs individual test fold. Therefore test results are
obtained for the full dataset. For the validation data is divided
into different situations. Weather situations are divided into
four categories based on the provided scene description.
Prediction cases are obtained afer matching predictions of
multiple detection systems to a set of instances, compare
Section III-B. This results in (0, ...2n−1) cases where n is the
number of detection systems and 0 represents not detected
ground truth annotations. Predictions are divided into low
and high distance level using median distance of available
ground truth annotations as threshold.

B. Association of predictions

In order to compare the predictions of multiple approaches
association is required. At a particular timestep multiple
predictions are available representing multiple objects. Pre-
dictions of different detection systems are matched to a set
of instances based on minimum center distance, as seen in
Fig. 1. Similar to [16] geometric and semantic consistency
are assumed. Therefore only predictions with same class and
within geometric boundaries can be matched. Since the pre-
dictions are obtained after non-maximum uppression (NMS)
only one prediction per detection system is assiciated with
one instance. Predictions are assigned if a distance threshold
of 2 m is not exceeded. Predictions with highest detecion
score are matched first. If no association can be established
a new instance is added to the existing population. An initial
population of instances can be empty or based on prior
information f. e. tracked object instances.

C. Applied metric

Results are obtained on instance level. A predicted in-
stance is considered as true positive (tp) if at least one
associated prediction is within the distance threshold. Results
are provided for classes ’car’ and ’pedestrians’. Average
precision is calculated differentiating different situations as
seen in Table II, Table III and Fig. 2. Precision over recall is
calculated over accumulated range of predictions indicated
by the detection score threshold. True-positive-rate over
detection score is based on a window function with fixed
size and no overlap. True-positive-rate can be interpreted
as emperical probability P(t p) =

t p
t p+ f p

∈ [0..1] given the

detection score. Fusion results are obtained by evaluation
of instances. The detection score of a particular instance is
calculated by mean, min, or max values of the individual
scores, without any prior knowledge.

IV. EXPERIMENTAL RESULTS
A. Distance dependency

To demonstrate distance dependencies, results are ana-
lyzed for different distance ranges as disscussed in Section
III-A. It is expected that the performance decreases with
increasing distance due to reduced point density. In Fig. 2
the precision recall curve as well as precison-detection-score
relation for one detection system and one class is shown.
A deecreased average precision at higher distance can be
observed. Precision related to the detection score show still
the same shape. Therefore it can be assumed that distance-
based uncertainty is represented in the detection score. The
detection approach is more confident at lower distance.

Fig. 2. Performance of PointPillar on class car at different distances.
True-positive-rate is calculated with sample size of 50. Distance threshold
is defined by median distance of available ground truth annotations.
Left: Precision-recall curve and associatet detection score threshold (D.
score thr.).
Right: Precision over detection score and relativ densitiy over all given
predictions.

B. Weather dependency
Performance dependencies are analyzed over four defined

cases. Results are shown in Table II. Highest variation can



Fig. 3. Precision over detection score and relativ densitiy. Results shown
for PointPillar on class car. True-positive-rate is calculated with sample size
of 50.
Top left: All predictions of pointpillar.
Top right: Predictions detected by only PointPillar.
Bottom left: Predictions detected by PointPillar and CenterPoint Pillar 02.
Bottom right: Predictions detected by all detection systems.

be observed for rain and night (R & N). A possible reason
is the small sample size for this case. The remaining cases
show small variations but no significant dependency. It can be
concluded that the used detection systems are robust against
the testet weather effects. Never the less more specific cases
like heavy rain, snow, etc. could be analyzed in future work.

C. Prediction cases and score fusion

Due to the initial matching predictions can be evaluated
using information of other redundant systems. It can be
assumed that instances with common detections are more
likly to be correct. Furthermore the recall can be maximized
since a single detection is sufficient to be considered in the
evaluation. Predictions are divided into 2n cases. Average
precision is calculated for each case individually. Results are
given for the particular detection system as well as for fused
predictions. Results are shown in Table III. It can be observed
that the achived performance increases if multiple detection
systems detected an instance. Instances predicted by all
four systems achive an average precision of 97.2 % while
covering 85.7 % of all availabe annotations. The probability
of a prediction beeing true positive changes significantly if
other systems confirm the prediction. In Figure 3 it can be
observed that depending on the detection case a different
precision has to be expected. This can be utilized to isolate
low probability predictions during inference. Evaluation of
fused predictions shows improved AP of 2.9 % for class car

and 4.36 % class pedestrian and demonstrates the potential
of redundant detection systems.

V. CONCLUSION AND FUTURE WORK

In this contribution multiple lidar-based detecion ap-
proaches are analyzed with respect to situational dependen-
cies and complementary performance potential. Results are
obtained using cross fold validation and prediction matching.
Variation in weather and light conditions show only insignif-
icant variation in the performance and no clear dependency
for the used dataset. Decrasing precision can be observed at
higher distance level, however, this is already compensated
by a lower confidence and is based on decreasing information
density of the used data. The differentiation of the prediction
cases enables the use of multiple detection systems and
additional information. In this contribution, this is utilized by
a fused detection score. Other fusion approaches and the use
of additional information could lead to further improvements
and should be be considered in future work.
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TABLE II
AVERAGE PRECISION OF DIFFERENT DETECTION SYSTEMS UNDER DIFFERENT WEATHER SITUATIONS. BEST IN BOLD.

Car Pedestrian

Rain Night R & N Default All Rain Night R & N Default All

PointPillar 85.05% 85.32% 88.59% 86.83% 86.45% 74.00% 72.22% 72.27% 75.22% 74.85%

CenterPoint Voxel 01 86.10% 87.60% 90.74% 87.63% 86.87% 80.61% 77.42% 72.62% 80.40% 80.01%

CenterPoint Voxel 0075 84.55% 86.86% 88.44% 86.21% 86.04% 80.53% 80.45% 74.89% 82.13% 81.56%

CenterPoint Pillar 02 81.26% 85.23% 88.61% 85.23% 84.23% 73.57% 72.03% 71.20% 73.20% 72.93%

Fused by min - - - - 89.45% - - - - 84.37%

Fused by mean - - - - 89.45% - - - - 84.37%

Fused by max - - - - 89.76% - - - - 83.07%

TABLE III
AVERAGE PRECISION OF DIFFERENT DETECTION SYSTEMS FOR DIFFERENT PREDICTION CASES. BEST IN BOLD.

Car Pedestrian

AP ? AP ?

case1 npos rel2 mean3 #1000 #0100 #0010 #0001 npos rel2 mean3 #1000 #0100 #0010 #0001

#0000 2.50% - - - - - 1.80% - - 0.00% - -
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#0111 0.30% 51.00% - 49.60% 47.70% 36.30% 1.60% 56.10% - 52.70% 52.60% 25.40%

#1000 2.90% 3.30% 3.30% - - - 1.80% 1.60% 1.60% - - -

#1001 0.90% 11.50% 11.40% - - 8.20% 0.90% 5.90% 5.10% - - 3.10%
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#1110 2.60% 65.10% 55.70% 58.30% 56.10% - 4.50% 62.20% 52.50% 49.20% 56.40% -

#1111 85.70% 97.20% 96.20% 96.80% 96.80% 96.20% 81.30% 94.60% 92.70% 92.50% 93.10% 90.40%
1Prediction case: [’PointPillar’, ’CenterPoint Voxel 01’, ’CenterPoint Voxel 0075’, ’CenterPoint Pillar 02’]
2Percentage of ground truth annotations covered by prediction case
3Instance is evaluated after fusing associated predictions by mean detection score
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