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ABSTRACT 
This contribution introduces a Transfer Learning (TL) approach 

for the diagnostic task to distinguish the ingredients of a typical 

production machine element: metalworking fluid (MWF). 

Metalworking fluids are oil or water-based fluids used during 

machining and shaping of metals to provide lubrication and 

cooling. Additives in MWF affect their performance in different 

metalworking processes. Performance evaluation of MWF is of 

relevance for product development as well as for condition 

monitoring. In this contribution, for the first time, Transfer 

Learning is adapted for MWF distinction. Firstly, two 

experiments are designed to get Acoustic Emission (AE) signals 

from thread forming processes using variant MWF. In the first 

experiment, eleven kinds of water-based MWF are applied and 

AE signals are saved into dataset A, while in the second 

experiment, other five MWF are used in the process of thread 

forming and AE signals are stored in dataset B. A convolutional 

neural network (CNN)-based data mining approach including 

data segmentation, Short-Time Fourier Transform (STFT) and 

data normalization algorithms is developed from dataset A. 

Performance of the proposed approach in dataset A is good. 

Afterwards, parameters in data processing and hyperparameters 

in CNN of the approach are transferred into dataset B. Results 

of dataset B show that Transfer Learning allows suitable MWF 

distinction.  

Keywords: Acoustic Emission, Neural Network, Transfer 

Learning, Algorithms, Data mining 

 

1. INTRODUCTION 
Metalworking fluid (MWF) plays a significant role in 

manufacturing processes allowing to cool and lubricate the 

contact zone between tool and workpiece to prevent tool wear 

and to ensure manufacturing of required geometries and surface 

qualities. The type of MWF and its additives mainly affect tool 

wear and workpiece surface roughness or make higher 

machining speeds possible to decrease manufacturing time and 

increase the output [1]. In [1] additionally the limits of the 

application of existing standards (here: ASTM) are shown. 

According to the German Institute for Standardization (DIN) 

standard 51385, MWF are classified as oil-based and water-

based following their formulation liquid. Furthermore, water-

based MWF are subdivided into emulsions and solutions. 

Specific properties are achieved by adding specific substances 

(additives) such as fatty acid esters, phosphates esters, 

polysulfides, or glycols [2]. Metalworking fluid can be 

categorized as cutting fluid, grinding oil, forming oil etc. by the 

manufacturing process. Usually, the performance of MWF in 

metalworking processes is evaluated with respect to lubrication, 

cooling properties, corrosion inhibition, flushing and deforming 

properties, long term stability, skin and environmental 

compatibility by testing chemical compatibilities with different 

materials, conducting corrosion tests, and performing several 

lubrication tests e.g. tapping torque test (TTT). To recommend 

the best suitable MWF for each machining process, lubricant 

manufacturers use empirical data of similar applications as well 

as results from standard laboratory tests [1].  

Acoustic Emission (AE) is a passive method that measures 

transient stress waves generated by the rapid release of energy 

from localized sources [3]. The elastic energy propagates a stress 

wave (i.e. an AE event) in the structure and is detected by sensors 

attached to or embedded in the structure being monitored. Such 

an event can be linked to the onset of new damage or to the 

progression of existing anomalies [4]. Besides it’s wide 

application in materials and structures as a nondestructive testing 

technique, AE signals are also used in this context. Wei et al. [5] 

classified AE signals from different MWF in time domain with 

convolutional neural networks (CNN). Wirtz et al. [6] analyzed 

AE signals from different MWF with continuous wavelet 

transform (CWT) and k-mean approach. In this contribution, a 

new approach is applied for the given task. Besides CWT, Short-
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Time Fourier Transform (STFT) which generates frequency 

components of local time intervals of fixed duration might be 

suitable approaches for AE signals time-frequency analysis.  

Thread forming is a successive action of the tap lobes, each 

lobe causes three-dimensions plastic flow which leads to strain 

hardening of work material [7]. Compared with other 

metalworking processes, no chips are produced in thread 

forming processes. As a result, impact of chips on AE signals are 

reduced in thread forming process. From this point of view, 

thread forming is a metalworking process generating more 

accurate AE signals in standard laboratory tests.  

Transfer Learning (TL) is a machine learning method to 

adapt models developed for a task for reusage as the starting 

point for a model on a second task [8]. In addition that Transfer 

Learning can train deep neural networks with comparatively 

little data, it is also an optimization allowing rapid progress and 

improved performance to model the second task. Models which 

are transferred to the second task could be pre-trained 

outstanding models or models developed by users themselves. 

Many research institutions release models developed on large 

and challenging datasets like VGG-16, ResNet50, Inceptionv3, 

and EfficientNet etc. It is an effective way by selecting proper 

pre-trained models or part of models and adapt or refine them to 

the target task. Source data which has some relationship with the 

target dataset should be selected. Then, a suitable model for the 

source dataset should be developed. Afterwards, the new model 

could be tuned and reused for the target dataset. 

As a class of artificial neural networks, CNN is prevalent in 

various tasks as a type of deep learning for processing data with 

grid patterns, such as images. The CNN architectures are 

inspired and designed to automatically and adaptively learn 

spatial hierarchies of features from low- to high-level pattern [9]. 

Typical layers in CNN are convolution, pooling, and fully 

connected layers. In addition to typical layers, nonlinear 

activation functions, batch normalization techniques, dropout 

layers, and softmax layers are involved in CNN to reduce 

calculation time and avoid overfitting. 

In this contribution, TL is applied on MWFs’ Acoustic 

Emission signals classification for the first time. Two datasets 

(dataset A and dataset B) which contain AE signals obtained 

from thread forming processes with diverse MWFs are 

classified. Details about the dataset are given in Section 3. In the 

procedure of classifying dataset A, a CNN-based model is 

designed. Results show that it performs well. After that, this 

model is reused for distinguishing data in dataset B. Good results 

in dataset B show that TL is a potential approach for MWF 

distinction. 

The structure of this contribution is organized as follows: A 

brief introduction of TL is presented in Section 2. In Section 3, 

the test rig and two datasets will be introduced. Model developed 

from dataset A and knowledge transferred to dataset B will be 

introduced in detail in Section 4. Results and discussion are 

described in Section 5. Finally, conclusions are given in Section 

6. 

 

2. TRANSFER LEARNING 
Data mining and deep learning (DL) has been successfully 

studied and researched in the field where patterns from training 

data can be extracted to predict future outcomes. Compared with 

traditional machine learning, in DL features are automatically 

deduced and optimally tuned for desired outcomes. In other 

words, features are not required to be a-priori extracted. Deep 

learning requires very large amount of data and high 

computational costs to perform better than other techniques [10]. 

Furthermore, there is no standard theory in selecting right deep 

learning tools [11]. Therefore, generating a related deep learning 

model for a target domain trained from a related source domain 

is a cost-effective way [12]. 

Transfer Learning is a machine learning technique where a 

model trained on source domain is repurposed on target domain. 

According to [13], some notations and definitions used in TL are 

introduced. The definition of ‘domain’ and ‘task’ is defined in 

the following. According to [4], a domain 𝒟  consists of two 

components: a feature space 𝒳  and a marginal probability 

distribution 𝑃(𝑋),  where      𝑥1, … ,  𝓍𝑛   ∈  𝒳 . Given a 

specific domain, 𝒟 = {𝒳, 𝑃(𝑋)} , a task consists of two 

components: a label space 𝑦  and an objective predictive 
function 𝑓(. )  (denoted by 𝒯 = {𝑦, 𝑓(. )} ), which is not 

observed but can be learned from training data, which consists 

of pairs  𝑥𝑖 , 𝑦𝑖}, where 𝑥𝑖  ∈ 𝒳 and 𝑦𝑖  ∈ 𝑦.  the  unnttonn 
𝑓(. ) tan be nsed tn predott the tnrrespnndong label 𝑓(𝑥) nu 
a new onstante 𝑥. Given a source domain 𝒟𝑠 and learning task 

𝒯𝑆, a target domain 𝒟𝑇 and learning task 𝒯𝑇, transfer learning 

aims to improve the learning of the target predictive function 

𝑓𝑇(.) in 𝒟𝑇 using the knowledge in 𝒟𝑠 and 𝒯𝑆, where 𝒟𝑠 ≠ 

𝒟𝑇, or 𝒯𝑆 ≠ 𝒯𝑇 [14]. 

Based on different situations between source and target 

domains and tasks, TL can be categorized in three subsettings: 

inductive TL, transductive TL, and unsupervised TL [13]. The 

inductive Transfer Learning setting, the target task is different 

from the source task, when the source and target domains are the 

same (see Table 1). In the transductive TL setting, the source and 

target tasks are the same, while the source and target domains are 

different. In the unsupervised TL setting, similar to inductive TL 

setting, the target task is different from but related to the source 

task [15]. However, the unsupervised TL focuses on solving 

unsupervised learning tasks in the target domain, such as 

clustering, dimensionality reduction, and density estimation. 

TABLE 1. THREE SUBSETTINGS FOR TRANSFER 

LEARNING 

Learning settings Source and 

target domains 

Source and 

target tasks 

Transfer 

learning 

Inductive  Identical  Different but 

related 

Unsupervised Different but 

related 

Different but 

related 

Transductive  Different but 

related 

Identical  

    Based on ‘what to transfer’, approaches to TL in the above 

three different settings can be summarized into four cases: 



 3 © 2022 by ASME 

instance-transfer, feature-representation-transfer, parameter-

transfer, and relational-knowledge-transfer.  

 

3. EXPERIMENTS AND DATASETS 
To obtain AE signals from different MWF in the process of 

thread forming, two laboratory experiments are conducted. 

These experiments are results from collaboration between the 

Chair of Dynamics and Control, University of Duisburg-Essen 

and Rhenus Lub GmbH & Co KG Mönchengladbach. 

Furthermore, measurements and data pre-processing are related 

to this cooperation. 

The experimental test rig is shown in Figure 1. It consists of 

a tribometer of type Tauro®120 (Taurox e. K., Germany), a test 

platform made of C45E (1.1191), a thread forming tool of the 

type Emuge M6-6H  InnoForm1-Z HSSE-TiN-T1, different 

test and reference fluids, and a cleaning station with brushes and 

air blow system to remove chips and fluid residues. To avoid the 

influence of debris and chips on AE signals during these 

experiments, before testing, the test platform and the new tap are 

cleaned in an ultrasonic bath, dried in an oven at 50 °C, and 

cooled down to room temperature afterwards. Among different 

fluids, the tap is manually cleaned with a cleaning solvent. After 

each thread forming process, the tap is automatically cleaned in 

a cleaning station.  

 

 
FIGURE 1. TEST RIG 

 

A custom FPGA-based AE measurement system is used for 

the recording of the AE signals. At the front of the test platform 

(Figure 1), a disc-shaped broadband piezoelectric transducer is 

attached. The transducer is mounted using cyanoacrylic glue, has 

a diameter of 10 mm, a thickness of 0.55 mm, and a 

corresponding resonant frequency of 3.6 MHz. The AE 

measurements are acquired continuously at a sampling rate of 4 

MHz. 

For the first experiment, the test platform has 368 (5.6H7 

mm) pre-drilled holes of 28 mm in depth, arranged in 23 columns 

and 16 rows (from the back to front, the holes in the first column 

is named hole 1 to hole 16, the holes number in the second 

column are 17 to 32, the third column holes are named 33 to 48, 

etc.). For convenience, each thread forming process is named as 

one measurement and measurements with one MWF is named as 

one series. The active tool length is 8 mm with a cutting lead of 

approximately 2-3 mm and a thread pitch of 1 mm. In this 

experiment, 11 emulsion-based (reference and 10 other fluid) 

fluids are filled in pre-drilled holes. Before each test fluid, the 

reference fluid is applied to set same initial test conditions for 

each fluid. This means that the first column pre-drilled holes are 

filled with reference fluid, the second column pre-drilled holes 

are filled with fluid 1, the third column holes are with reference 

fluid again, the fourth column holes are filled with fluid 2, …etc. 

In short, holes in the odd-numbered column are filled with 

reference fluid and holes in the even-numbered column are filled 

with the other 10 liquids (series 1, 3, 5, … are reference 

measurements while series 2, 4, 6, … are test measurements). As 

AE data from the last two columns are contaminated, so they are 

not considered in the calculation. Fluid and their additives that 

are applied in this experiment are listed in Table 2. Acoustic 

Emission signals taken from this experiment are stored in dataset 

A. 

TABLE 2. METALWORKING FLUID APPLIED IN THE 

FIRST E PERIMENT 

MWF Additives  Additive substance  

Reference -  

Fluid 1 Sodium sulfonate 4800 ppm 

Fluid 2 Polysulfid, AS: Sulfur 1600 ppm 

Fluid 3 Polysulfid, AS: Sulfur 2400 ppm 

Fluid 4 Lauryl ethylene oxide 

phosphate 

160 ppm 

Fluid 5 Oleyl ethylene oxide 

phosphate 

160 ppm 

Fluid 6 Stearyl propylene oxide 

phosphate 

86 ppm 

Fluid 7 2-ethylhexylcocoate 8000 ppm 

Fluid 8 Synthetic polymeric ester 8000 ppm 

Fluid 9 Diethylene glycol 8000 ppm 

Fluid 10 Polypropylene glycol 8000 ppm 

    In the second experiment, 112 threads of 28 mm in depth 

are formed at a speed of 1000 rpm using 5 different MWF. In this 

experiment, both water-based (fluid 1 and fluid 2) and oil-based 

(fluid 3 and fluid 4) MWF are applied. The reference fluid is 

different from the reference fluid in the first experiment. Basis 

and additives of these 5 fluids are listed in Table 3. 

TABLE 3. METALWORKING FLUID IN THE SECOND 

E PERIMENT 

MWF Basis Water Oil Ester  Phosphorus 

Reference Water 95 % 0 % 1.25 

% 

50 ppm 

Fluid 1 Water 95 % 1.4 

% 

0 % 3163 ppm 

Fluid 2 Water 95 % 1.4 

% 

0 % 48 ppm 

Fluid 3 Oil 0 % 85 % 6.5 % 80 ppm 

Fluid 4 Oil 0 % 85 % 6.5 % 1600 ppm 

    Different from the first experiment, in the second 

experiment, pre-drilled holes with the same fluid are located in 
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different columns. The detailed holes filled with these 5 fluid are 

shown in Table 4. Acoustic Emission signals in the second 

experiment are named dataset B. 

 

TABLE 4. MEASUREMENTS IN SECOND E PERIMENT 

Series  MWFs Pre-drilled holes  

1 Reference 1-32 

2 Fluid 1 33-40 

3 Fluid 2 41-48 

4 Fluid 3 49-56 

5 Fluid 4 57-64 

6 Reference 65-72 

7 Fluid 4 73-80 

8 Fluid 3 81-88 

9 Fluid 2 89-96 

10 Fluid 1 97-104 

11 Reference 105-112 

Dataset A contains more data than dataset B. Besides, all 

AE data in dataset A are from water-based MWF while oil-based 

and water-based MWF are in dataset B. Furthermore, the series 

of measurements for each MWF in dataset B is more complicated 

than in dataset A, so data processing in dataset B is more 

complex than in dataset A. With respect to the above 

considerations, dataset A is chosen as source domain while 

dataset B is the target domain. 

4. PROPOSED APPROACH  
4.1 Data processing 

Except for the reference fluid, 16 measurements are realized 

for other MWF in both experiments, which means 16 samples 

for training in each class. However, the prerequisite for neural 

networks is to have sufficient samples. In case that there is not 

enough data, CNN model cannot be trained to avoid inaccurate 

results. In addition, the process of thread forming could be 

divided into air, forward, and reverse parts as shown in Figure 2. 

In the air part, no useful AE data as tap has no contact with 

platform, therefore, data in this part should be removed as 

preprocessing step.  

 
FIGURE 2. ORIGINAL AE SIGNAL 

The procedure of data processing can be divided into data 

selection, segmentation, transformation, and normalization. To 

make sample numbers equivalent in each class, the first series 

data of reference fluid in both experiments is chosen. Afterwards, 

the forward part of each measurement is picked out from the 

whole measurement data. Each measurement forward part data 

is divided into proper segments according to tap speed. By 

adjusting parameters in STFT, segments are transformed from 

time domain to time-frequency domain and generating 

spectrograms. In Figure 3, one segment spectrogram is shown. 

Finally, to get rid of a number of anomalies making analysis of 

the data more complicated and reducing database space, 

spectrograms are normalized by Z-Score and Min-Max 

techniques. To get better results, parameters in each step are 

optimized by exhaustive sweep algorithm. 

 

 
FIGURE 3. SPECTROGRAM OF ONE SEGMENT 

 

4.2 CNN model based on dataset A 

For spectrogram-based distinction a deep learning approach 

based on CNN is used. Hyperparameters determining the 

network structure and variables determining how the network is 

trained have significant effects on classification.  

The structure of the proposed model considered for training 

is a basic CNN with six convolutional layers denoted as Basic6. 

The first layer of the Basic6 model is the image input which have 

been normalized by Min-Max, so every input is normalized in 

the range [0-1]. Feature extraction is done by six convolution 

(con) layers which are individually followed by batch 

normalization (norm), ReLU (relu) activation function, and max 

pooling (pool) layers. To prevent the model from overfitting, 

three dropout layers are used between convolutional layer 2 to 5. 

The classification is realized by a fully connected (fc) layer 

which has as many neurons as class numbers and softmax layer. 

Final results are presented by the classification output layer. All 

layers of the Basic6 network are shown in Figure 4. 
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        FIGURE 4. CNN STRUCTURE FOR DATASET A               

 

Hyperparameters tuning on training algorithm is time-

consuming. Many hyperparameters have to be tuned like 

optimizer, mini batch size, initial learn rate, max epochs etc. To 

define proper hyperparameters, exhaustive sweep and Bayesian 

optimization techniques are applied for the proposed CNN 

model. Firstly, an exhaustive sweep algorithm is used to sweep 

all possible combinations of hyperparameters values. In this step, 

a rough review of good parameter ranges is obtained. 

Afterwards, Bayesian optimization is applied to minimize the 

distance of the evaluation metric from its optimal value by 

changing the initial hyperparameters values in a given ranked 

sequence. After hyperparameters optimization, the best value of 

every hyperparameter and best combination among them are 

settled down.  
4.3 Transfer Learning to dataset B 
   Like data processing in dataset A, AE data in dataset B are 

also selected, segmented, transformed, and normalized. The 

threading process of one thread consists of 27 tap spins that can 

be divided into segments due to one tap round. Tap speed in the 

first experiment is 1061 rpm while tap speed in the second 

experiment is 1000 rpm. Considering sampling rate for both 

experiments is 4 MHz, each round contains 226200 data in the 

first experiment while each round contains 240000 data in the 

second experiment. When selected part (forward) of each 

measurement are partitioned into segments, segment’s length is 

designed based on data number in each round. As result segment 

length in the second experiment is different from the first 

experiment. To keep the main properties of each segment, 

overlap among adjacent segments is needed. In dataset A and B, 

the overlap among adjacent segments is similar but not identical. 

Other parameters related to the processes of data segmentation, 

STFT, and normalization are equal. From this point of view, in 

the data processing step, parameters in each step are transferred 

from dataset A to dataset B. 

    Although different data in dataset A and B, the task for both 

datasets is MWF classification. Convolutional neural network 

model that are trained using dataset A for the classification task 

could be transferred into dataset B. Hyperparameters related to 

network structure are equal in both datasets. In dataset A, eleven 

MWF should be distinguished. So in the last layer, the class 

number should be eleven. In dataset B, five different MWF need 

to be differentiated, so the class number is five. Briefly, the class 

number needs to be changed. According to the subsettings of 

these two datasets, transductive TL is applied to them. 

Furthermore, as just the last classes number are different, other 

hyperparameters in CNN model are the same, so parameter-

transfer is also applied for the proposed approach.  

  

 

5. RESULTS AND DISCUSSION 
Different metrics can be used to evaluate training and test. 

In many recent contributions [5, 9, 16], accuracy as the metric 

denoting the ration between the total number of correct 

predictions and the total number of predictions for a dataset is 

applied. However, as performance measure, accuracy is 

inappropriate for imbalanced classification problems. Precision 

and recall are alternatives. Precision quantifies the number of 

positive class predictions that actually belong to the positive 

class while recall quantifies the number of positive class 

predictions made out of all positive examples in the dataset. F-

score provides a suitable step that balance both the concerns of 

precision and recall in one number [16]. In most classification 

problems, imbalanced class distribution exists, so F-score is a 

suitable alternative metric. For the proposed approach, both F-

score and accuracy are used for evaluation. 

4-fold cross validation is applied to evaluate trained models. 

Cross validation is a resampling procedure used to evaluate 

machine learning models. Generally, results from cross 

validation have a lower bias than other methods [17].  

Detailed results of both datasets are shown in Table 5. For 

dataset A, F-score for each fold ranges from 98.15 % to 98.92 % 

and the mean F-score is 98.61 %. The accuracy for dataset A is 

98.58 %. When the CNN model is transferred to dataset B, the 

mean F-score is 86.85 % and accuracy is 86.20 %. In 

contribution [5], AE signals of the same kinds of MWF are also 

classified by CNN trained by dataset B itself.  In [5], Acoustic 

Emission signal features are extracted in time domain. Here five 

kinds of MWF are firstly divided into three categories and then 

water-based and oil-based MWF are subdivided. The best 

classification accuracy is 79.87 % and the worse result is 67.54 

%. Compared with results in [5], the results from TL for dataset 

B are improved. 

 

 TABLE 5. RESULTS FOR BOTH DATASETS 

Data 

sets  

Results (%) 

F-score  Accuracy 

1 2 3 4 mean 

A 98.58 98.80 98.15 98.92 98.61 98.58 

B 70.30 91.30 94.51 91.30 86.85 86.20 

From results and calculation process, the following 

conclusions can be given. 

1) The preprocessing of AE signals has a significant 

impact on MWFs classification results improving the 

extracting process of signals features. 

2) The best classification result comes from segments 

containing 5 round data.  
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3) Comparing parameters and hyperparameters tuned 

manually in data processing and CNN, optimization 

techniques can be applied to save time. 

4) The structure and other hyperparameters of trained 

models from dataset A could be transferred to dataset B. 

Although results in dataset B are not as good as dataset A, 

but improved in relation to previously published best results [5], 

which demonstrates that knowledge and parameters in data 

processing as well as hyperparameter in convolutional neural 

networks could be transferred to dataset B. As a concluding 

result it can be stated that the proposed approach trained from 

water-based MWF distinction could be transferred to other kinds 

of MWF classification. 

 
6. SUMMARY AND CONCLUSION 

To differentiate MWFs, two thread forming experiments 

which apply different kinds of MWFs in pre-drilled holes are 

conducted. In the first experiment, eleven water-based MWFs 

are used while five water-based and oil-based MWFs are applied 

in the second experiment. By data selection, segmentation, 

transformation, and normalization, AE signals data are 

processed. Via CNN structuring and hyperparameters 

optimization, an approach is raised and eleven MWFs are well 

distinguished in the first experiment by the proposed approach. 

Afterwards, knowledge and parameters in data processing as 

well as hyperparameters in CNN are transferred to the AE signal 

distinction on the second experiment. The good classification 

results in the second experiment show that transfer learning can 

be successfully applied for MWF distinction. 
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