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Abstract. Composite materials are frequently used due to light weight and high stiffness. 
However, the use of composite materials is limited due to several micro-mechanical damage 
mechanisms, which are currently not well understood. Therefore, Acoustic Emission (AE) is 
frequently suggested for in-situ diagnosis of composite materials in Structural Health 
Monitoring. Elastic stress waves in the ultrasound regime are recorded using highly sensitive 
measurement equipment. Based on suitable analysis and interpretation of the waveform data, 
different micro-mechanical damage mechanisms such as delamination or fiber breakage can be 
distinguished. Frequently, data-driven approaches are suggested for classification of AE data. In 
literature, attenuation of AE due to wave propagation is currently the main limiting factor in AE-
based diagnosis. In particular, AE is strongly attenuated in composite materials due to dispersion 
as dominant attenuation mechanism. Furthermore, depending on the source location, which is 
usually not known a-priori, different propagation paths are obtained in practice. Therefore, the 
effect of wave propagation on AE is important and can not be neglected to achieve reliable 
classification. However, the effect of different propagation paths on the classification 
performance is often not considered explicitly. Due to dependence of wave propagation behavior 
on waveform characteristics (e.g. frequency), it can be expected that the impact of wave 
propagation on AE classification performance depends also on the related source mechanism. 
Therefore, it is worth to study how classification performance of different source mechanisms is 
effected by wave propagation. In this paper, the dependence of the classification performance on 
different propagation distances is experimentally investigated in detail. To achieve highly 
reproducible AE measurements, different artificial AE sources are induced using surface 
mounted piezo elements. The corresponding waveforms are measured at two different locations. 
For classification, a convolutional neural network-based classification scheme is established. The 
pre-trained AlexNet architecture is fine-tuned using measurements obtained using different 
excitation signals. The classification performance is evaluated with particular focus on the 
impact of wave propagation. The variations in propagation distance have a strong impact on the 
classification performance. As main conclusion for AE-based SHM it can be stated that 
variations in the propagation path should be considered. Furthermore, the underlying source 
mechanisms should be taken into consideration for reliable performance estimation. 
Introduction 
Acoustic Emission (AE) refers to ultrasound stress waves, which are released from localized 
sources in a loaded material. Using suitable measurement equipment, AE waveforms can be 
recorded in-situ and used for diagnosis [1]. Regarding Structural Health Monitoring (SHM) of 
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composites, the use of Acoustic Emission (AE) is frequently suggested to distinguish between 
different micro-mechanical damage mechanisms such as delamination, matrix crack, debonding, 
and fiber breakage [1]. Typically, thin structures such as coupon specimens and plates are used 
as specimen geometry. Due to the geometry, ultrasound stress waves propagate in two 
fundamental modes. Using advanced signal processing and interpretation, different damage 
mechanisms can be distinguished. For instance, digital filtering was suggested for mode 
separation in [2] and [3]. According to Martinez-Jequier et al. [3] delamination could be 
identified using modal analysis of AE, whereas additional consideration of the frequency 
spectrum was necessary to distinguish between the remaining damage mechanisms. 

Due to the complexity of AE interpretation, data-driven approaches are frequently suggested 
for AE-based diagnosis of composite materials. These include e.g. different clustering techniques 
[4], Support Vector Machine [1], and neural networks [5]. A comparison of modal AE analysis 
and neural networks is presented by McCrory et al. [5]. In principle, the results of both methods 
are in in good agreement. However, it was stated as an advantage of data-driven approaches that 
AE data can be classified into more than two classes [5]. Furthermore, the use of frequency and 
time-frequency domain transformations is of particular importance for classification of AE. It is 
well known that – compared to classical AE parameters, which are extracted in time domain – 
peak frequencies are less sensitive to different experimental conditions. For instance, 
Beheshtizadeh et al. [6] concluded that wavelet transform is superior for the analysis of AE 
signals because highly detailed representation is obtained especially regarding weak signal 
components. 

In literature, attenuation of AE due to wave propagation was identified as main limitation of 
AE-based SHM. Different approaches were suggested to compensate the effect of wave 
propagation, e.g. correction of AE parameters by calibration experiments [7]. However, 
according to Maillet et al. [8], high frequency components are attenuated stronger and lower 
values of the frequency centroid are obtained at increasing propagation distance. Furthermore, 
Asamene et al. [9] pointed out that mode- and frequency-dependent attenuation may have an 
effect on AE signatures. Moreover, Kharrat et al. [10] reported additional distortion of AE 
waveforms due to damage accumulation within the material. Also, an effect of external load on 
the attenuation of AE in a composite plate could be demonstrated in [11]. However, while data-
driven approaches are frequently suggested in context of AE, the impact of changes in the 
propagation path is often not considered explicitly. 

In this paper, the dependence of the classification performance on propagation distance is 
investigated in detail. Particular focus is given to the difference between symmetric and 
asymmetric wave modes. To achieve highly reproducible AE measurements, different artificial 
AE sources are induced using surface mounted piezo elements. The remainder of this paper is 
structured as follows. In Section 2, the experimental setup and the classification scheme using 
AlexNet architecture are explained in detail. In section 3, experimental results are presented. 
This includes detailed discussion of the induced AE and the effect of wave propagation on the 
classification performance for each of the wave modes. Finally, the main conclusions are 
summarized. 
Methods and materials 
The experimental setup is illustrated schematically in Fig. 1. As specimen geometry, a thin plate 
is chosen, which is a typical specimen geometry for testing of composite materials. The 
specimen is manufactured from CFRP material and has dimensions of 800 x 800 x 1 mm3. In 
principle, two fundamental modes propagate in this geometry, which are the symmetric (S0) and 
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asymmetric (A0) mode. Wide specimen dimensions are chosen to reduce the effect of edge 
reflections. As AE transducers, Piezoelectric Wafer Active Sensors (PWAS) are bonded to the 
top and bottom surface of the plate. To obtain reproducible waveforms with defined modal 
content at the sensors, AE transducers are sometimes used in active mode [10]. Here, AE is 
induced using two active PWAS, as suggested by Su and Ye [12]. The active PWAS T1 and T1b, 
which are oriented face-to-face through the material, are driven by a frequency generator. Here, 
windowed sine bursts with 6 cycles at a frequency of 100 kHz are used. By choosing in-phase or 
out-of-phase excitation of the active PWAS, the dominant mode of propagation can be controlled 
precisely. 

As sensors, PWAS T2 and T3 which are located in a distance of 100 mm and 200 mm from 
the excitation, are used. Additionally, two PWAS T2b and T3b are bonded face-to-face at the 
opposite surface of the plate to verify the modal content of measured waveforms. A similar 
sensor arrangement was used for instance by Martinez-Jequier et al. in [3] to assess the modal 
content of AE waveforms. The AE waveforms are recorded continuously at a sample rate of 4 
MHz. Each excitation burst is triggered by an external signal, which is also recorded for post-
processing. 

 
Fig. 1. Illustration of the experimental setup (Chair of Dynamics and Control, U DuE, 

Germany). 
Recently, deep learning, which emerged from the field of image classification and computer 

vision, received significant attention in SHM literature [13]. High classification performance can 
be achieved with sophisticated neural networks. However, due to the large number of parameters 
in deep neural networks, training is computationally intensive and a large amount of data is 
necessary. Therefore, transfer learning is frequently suggested if the amount of training data is 
limited. One approach to transfer learning is fine-tuning of pre-trained networks [13]. While 
most of the parameters of trained neural networks – or parts of trained neural networks – are 
used as initial values, only specific parts of the network are modified. Here, fine-tuning refers to 
additional training of the modified network with a new dataset. The advantages of using pre-
trained networks are that fine-tuning is usually faster, requires less data, and can be realized 
using a regular desktop computer. 
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The AlexNet is a Convolutional Neural Network architecture, which was proposed by 
Krizhevsky et al. [14]. Today, AlexNet is frequently used for transfer learning. For instance, 
Dorafshan et al. [15] compared the performance of edge detectors, which is an image processing-
based approach, and AlexNet for image-based crack detection in concrete. According to the 
results, improved performance can be achieved using AlexNet architecture. Furthermore, best 
performance was achieved using fine-tuning as compared to full training of the network. 
Furthermore, Hemmer et al. [16] suggested a transfer learning approach for classification of 
faults in rolling element bearings based on vibration and acoustic emission measurements and 
concluded that fine-tuning of AlexNet scales well to multiclass problems. 

The original AlexNet architecture comprises five convolutional layers (conv1 - conv5) and 
three fully connected layers (fc6 - fc8). For transfer learning, the architecture is usually modified 
so that it is suitable for the new classification problem. Hemmer et al. [16] replaced the final 
classification layer to fit the desired number of classes. Lu et al. [17] replaced the last three 
layers. Additionally, the learning rate can be adapted to focus parameter updates mainly on the 
modified layers during training, as suggested in [16]. In this paper, the final layer of the 
architecture is adapted for classification into 4 classes. The modified architecture of the AlexNet 
is illustrated in Fig. 2. Furthermore, the learning rate of the fully connected laser is increased by 
a factor of 20 to reduce the impact of training on the parameters of the convolutional layers. 
During fine-tuning, stochastic gradient descent with momentum algorithm was used with the 
following settings: initial learning rate: 1e-4, mini batch size: 10, validation frequency: 20. 

 
Fig. 2. Simplified illustration of modified AlexNet architecture. 

Experimental results 
In this section, different classes of artificially induced AE signals are presented. Each AE 
waveform is measured at two different locations. Furthermore, preprocessing of the waveform 
data is explained. Finally, classification performance is evaluated in detail. Particular focus is 
placed on how the classification performance is effected by changes in the propagation path. 

To verify the procedure, which was used to induce AE in the plate specimen with defined 
dominant mode, the modal content of resulting AE measured by the sensors is assessed. To this 
end, measurements of the two sensors T2 and T2b, which are located face-to-face at the top and 
bottom surfaces of the plate, are used. Symmetric and asymmetric modes can be separated by 
adding and subtracting the responses of the sensors at the top and bottom surfaces of the plate, 
respectively, as suggested in e.g. [3]. From the responses presented in Fig. 3, dominant S0 and 
A0 mode are observed depending on (a) symmetric (in-phase) and (b) asymmetric excitation 
(out-of-phase). To investigate the effect of wave propagation on the classification performance, a 
dataset was recorded comprising AE waveforms with dominant S0 and A0 modes of different 
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intensity. By choosing different excitation signals, AE waveforms with different modal content 
were induced. For classification, the waveform data were transformed into frequency domain 
using continuous wavelet transform. As input to the classifier, images of 227x227x3 are used. 
Examples of each class are presented in Fig. 4. 

Subsequently, AlexNet is used for classification of different AE waveforms. To demonstrate 
that in principle it is possible to distinguish between waveforms, which are related to different 
excitations, training and test data are chosen from the same sensor. In each case, a total of 400 
samples are used during training and 200 samples during test. 

 
(a) 

 
(b) 

Fig. 3. Artificially induced AE with dominant symmetric (a) and asymmetric (b) mode. 
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Fig. 4. Scalograms of AE waveforms at sensor T2 (left) and sensor T3 (right). 

In Fig. 5, the confusion matrices showing test results for the data from the sensors T2 and T3 
are presented. In general, good performance of the classifier is achieved and different AE, which 
are related to symmetrical and asymmetrical excitation, can be distinguished reliably. 

 
                           (a)                                                                      (b) 

Fig. 5. Confusion matrices for (a) sensor T2 and (b) sensor T3. 
Finally, the effect of changes in the propagation distance on the performance of the classifier 

is investigated. To this end, two different cases are considered: (i) the initial propagation distance 
is increased after training and (ii) the initial propagation distance is decreased after training. 
Here, data from different sensors were used during training and test. In each case, a total of 400 
samples are used for training of the AlexNet. For test, 200 samples are chosen from the other 
sensor. The corresponding confusion matrices are shown in Fig. 6. It is obvious that the 
classification performance degrades due to the change in the propagation distance between 
training and test. However, it is notable that symmetric and asymmetric wave modes are effected 
differently. In Fig. 6 (a), most of the classification errors are related to asymmetric excitation 
whereas classification of AE related to symmetric excitations is more difficult in Fig. 6 (b). 
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                         (a)                                                                        (b) 

Fig. 6. Confusion matrices for (a) Training: T2, Test: T3 and (b) Training: T2, Test: T3. 
Similarly, the effect of changes in the propagation distances on the classification performance 

for both excitations can be observed using cross validation. In Fig. 7, results of 5-fold cross 
validation are presented. Here, recall is reported to assess the performance for each class. In 
accordance with the previous results, better performance can be achieved for asymmetric 
excitations if the propagation distance is increased between training and test. If the propagation 
distance is reduced between training and test, the performance of the classifier is better for 
symmetric excitations. Therefore, it can be concluded that the effect of different propagation 
distances on the classification performance depends also on the underlying source mechanism. 

 
Fig. 7. Cross validation results. 

In this example, AE signals with dominant symmetric and asymmetric wave mode were 
chosen, which are in practice related to e.g. fiber breakage and delamination, respectively [2]. It 
could be shown that in principle, the classification performance at different propagation 
distances depends on the corresponding wave mode. However, the effect of wave propagation on 
the classification performance may be different depending on frequency of AE signatures and 
dispersion characteristics of the material. 
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Summary and conclusion 
In this paper, a detailed investigation regarding the impact of variations in the propagation 
distance of AE in composite material on the classification performance is presented. A thin plate 
is chosen, which is a typical specimen geometry. Artificial AE sources are induced using PWAS 
transducers, which allows to precisely control the modal content of the AE signals. For 
classification, a transfer learning approach – i.e. fine-tuning of pre-trained AlexNet architecture – 
is used. Particular focus is given to the performance of the classifier for AE waveforms with 
different dominant modes. 

The variations in propagation distance have a strong impact on the classification performance. 
In particular, two different cases in which the propagation distance is i) increased and ii) reduced 
between training and test. Here, the effect on the classification performance also depends on the 
dominant wave mode of AE. Therefore, as main conclusion for AE-based SHM it can be stated 
that variations in the propagation path can not be neglected, also if frequency domain features are 
used. The robustness of a classifier to variations of the propagation path depends on the 
dominant mode of the AE waveforms. The underlying source mechanisms should be taken into 
consideration for reliable performance estimation. 
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