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Abstract

Advances in composite technology led to the substitution of conventional, metallic construction material by composites.

However, the more widespread application of composites is currently restricted by complex fracture mechanisms, which

are not well understood. One approach to overcome this challenge are Structural Health Monitoring (SHM) systems

which provide several information on the current system state as well as state-of-health in real-time. In this context,

reliability assessment of SHM systems is currently an open issue. The reliability of conventional non-destructive testing

(NDT) systems is evaluated, measured, and partly standardized using widely accepted methods such as the Probability

of Detection (POD) rate. Frequently, the a90|95 value, which is determined from POD curves, is used as a performance

measure indicating the minimum damage size that is detected with a probability of 90 % and 95 % confidence. In

contrast to NDT, SHM involves additional data analysis steps, i.e. statistical pattern recognition, where the classification

results are also subject to uncertainty. Because similar methods are not available, the reliability of SHM systems is

usually not quantified. To investigate influences on the classification performance, experiments were conducted. In

particular, the effect of variable loading conditions and the evolution of damage over time are considered. To this end,

AE measurements were performed while specimens of composite material were subjected to different cyclic loading

patterns. Here, AE refers to elastic stress waves in the ultrasound regime, which emerge from the structure on damage

initiation and propagation. Furthermore, a frequency-based damage classification scheme for AE measurements is

proposed. Time-frequency domain features are extracted from the measurement signals using Short-Time Fourier

Transform (STFT). Classification is performed using Support Vector Machine (SVM). Both choices serve as typical

examples to discuss the effects which apply equally to other approaches. Experimental results presented in this paper

regarding fault diagnosis and discrimination of delamination, matrix crack, debonding, and fiber breakage in CFRP

material indicate strong dependences of the classification performance on loading conditions. Due to variability in the

results, a direct and reliable relationship could not be established under identical test conditions. Concluding from the

experimental results the question raises, which classification approaches, testing conditions, measurement devices,

and filters are able to provide reliable statements about the actual damage state.
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Introduction

The recent rise of composites is owed to their benefi-

cial properties, such as fatigue strength, impact resistance,

and lightweight, resulting from their sophisticated structure.

Today, the more widespread use of composites is restricted

for several reasons. Compared to metallic materials, com-

posites lack the pronounced ductile behavior.1 Further-

more, composites form a complex system defined by the

constituent materials properties, geometry, and distribution,
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whereas metals are generally assumed to exhibit homoge-

neous mechanical properties.2 Therefore, complex micro-

mechanical fracture mechanisms are observed.1 Structural

Health Monitoring (SHM) systems are proposed to overcome

these challenges and to ensure equal safety and reliabilityof

composite structures.3 This includes that the SHM system

applied has to ensure reliable measurements and conclusions

regarding the actual system state.

A definition of SHM is given by Farrar and Worden as “the

process of implementing a damage identification strategy for

aerospace, civil, and mechanical engineering”.4 In general,

the goal of such a strategy is to establish a surveillance

system that is capable of continuously monitoring a technical

system or structure. This enables advanced maintenance

strategies, i.e. condition-based maintenance, which leads

to an increase in reliability of technical systems.5 In this

context, methods for Nondestructive Evaluation (NDE) are

employed. In particular, Acoustic Emission (AE) technique,

which is a passive, wave-propagation-based NDE method,

gained attention for in-situ monitoring recently. In general,

AE refers to the phenomenon of elastic waves generated in

the ultra-sound regime due to the sudden release of energy.

These elastic waves emerge from distinct sources within

a structure at frequencies between 10 kHz and 1 MHz.6

In particular, this occurs on initiation and propagation of

damage or due to external impact loads. Consequently, AE

monitoring should be applied while the structure is loaded.

Sources of AE are manifold. In composites, only distinct

types of damage are observed as the result of underlying

micro-mechanical fracture mechanisms. In particular, these

are delamination, matrix crack, fiber breakage, and

debonding.7 Whereas debonding merely describes the loss

of adhesion between fiber and matrix material, delamination

denotes the separation of layers in laminated materials.3 The

resulting AE waveforms are characteristic to the particular

source mechanism and, hence, AE measurements can be

utilized to identify the corresponding fracture mechanism,

which has already been shown in several case studies.3;8–11

For this purpose, modal analysis as well as time and

frequency domain based approaches are distinguished.

Regarding modal properties of the AE waveforms,

corresponding fracture mechanisms can be identified based

on physical interpretation of the source motion. In thin plates,

these waveforms propagate as guided waves, which can be

described by means of Lamb wave theory.11 Accordingly,

two distinct wave modes – flexural and extensional waves –

exist. These are promoted by either in-plane or out-of-plane

source motion, respectively.12 According to Prosser and

Gutkin et al., the extensional wave mode is usually observed

at higher frequencies and exhibits faster propagation

velocities than flexural waves.12;13 Furthermore, this wave

mode is symmetric and non-dispersive. In contrast, flexural

waves are antisymmetric, propagate at lower velocities

and are highly dispersive. In general agreement, several

authors reported in-plane motion to be associated with fiber

breakage3;9 and matrix crack.9;11 These damage mechanisms

promote high frequency extensional waves. In contrast,

delamination is governed by out-of-plane motion and thus

promotes the flexural waves in the material generating low-

frequency signals.3;9;11

For the purpose of automated damage classification,

several statistical properties of the AE signals – referred

to as features or descriptors – that can be calculated

from both time and frequency domain, are frequently used.

Typically, time domain features are used for the analysis of

AE measurements.13–15 However, time domain features are

strongly dependent on the experimental conditions, whereas

the frequency content is not affected. Particularly, the AE

amplitude is subject to variable attenuation depending on

the propagation path.11 Thus, the frequency spectrum of

AE signals is considered a more reliable descriptor of AE

sources.9

To identify characteristic frequencies of distinct AE source

mechanisms, peak frequency analysis was applied by several

researchers.10;16;17 De Groot et al.16 identified damage-

specific signatures of 4 different micro-mechanical damage

modes namely matrix crack [90 kHz, 100 kHz], debonding

[240 kHz, 310 kHz], fiber breakage [> 300 kHz], and fiber

pull-out [180 kHz, 240 kHz] in CFRP material in terms

of peak frequencies. Similarly, Hamdi et al. identified

matrix crack [30 kHz, 90 kHz], debonding [30 kHz, 170

kHz], and fiber breakage [300 kHz, 420 kHz] as distinct

classes of micro-mechanical damage in composites using

Hilbert Huang Transform (HHT).10 To identify characteristic

peak frequencies and to track damage accumulation under

different experimental conditions Bussiba et al. used STFT.

Based on their experimental results, three characteristic

frequencies were identified, which correspond to the damage

mechanisms matrix crack (140kHz), debonding (300kHz),

and fiber-breakage (405kHz).17 Moreover, mechanical

thresholds for the onset of AE activity were determined,

indicating that no damage occurs below these threshold

values.17

Damage characterization task is most frequently consid-

ered as classification problem. Pattern recognition algorithms

are a suitable method to address this type of problem.18

Here, statistical learning theory is employed to determinethe
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mapping between class labels and input values. In the super-

vised case, a representative set of training data is used to

generate the statistical model. Most frequently used classifier

algorithms are K-Nearest Neighbor (KNN), Artificial Neural

Network (ANN), and Support Vector Machine (SVM). Das

et al. stated, that SVMs are a suitable method to identify

damage modes in composites.19 Here, joint time-frequency

transformation was performed prior to the classification to

extract damage specific features.

A generic SHM system is composed of a measurement

chain, where principles of NDT are employed, and a

signal processing chain. According to the statistical pattern

recognition paradigm, damages are detected by means

of classification.4 To realize SHM systems in practice,

a suitable and therefore well defined reliability of the

classification must be achieved. This includes high detection

rates as well as low false-alarm rates, so that the system can

be accepted. Furthermore, the surveillance system should be

robust against external disturbances.

The reliability of conventional NDT methods is frequently

assessed using Probability of Detection (POD) as a

probabilistic approach, which provides a measure of the

reliability of an NDT method.20 The POD curve describes

the likelihood that a certain flaw is detected as a function of

flaw characteristica such as size or depth. These POD curves

can be computed directly from experimental data, where two

approaches are distinguished. In case of binary response of

the inspection system hit/miss analysis is employed, whereas

â vs.a approach can be used if continuous outputâ of the

inspection system is available.20 Commonly thea90|95 value

is determined from the POD curve as performance measure

of the inspection system.21

The performance evaluation of a classifier is usually based

on a set of testing data with known class labels. Here,

the classifier output and true class labels are compared by

means of a confusion matrix. From the confusion matrix,

different scores, such as accuracy, sensitivity, and specificity

are extracted to assess the performance of classification

algorithms.22 Here, sensitivity denotes the detection rate,

whereas false alarm rate is the complement of the specificity

of a classifier. In general, improved detection rates can

only be achieved at the cost of increasing false alarm rates.

The principle relationship between detection and false alarm

rate is described by ROC curve,23 which compares the

detection and false alarm rate of a classifier. In the context

of classification algorithms, the POD is understood as the

true positive rate, which is also known as the sensitivity

of a classifier.22;24 However, these measures only provide

quantification of model performance with respect to a

specific set of testing data.

Due to conceptual differences between SHM and NDE,

reliability of SHM systems is usually not quantified. In

order to determine the POD curve of a NDE inspection

technique, fixed decision threshold of the sensor response

â is determined using model (calibration) specimens under

controlled laboratory conditions.25 Due to the in-service

application of SHM, damages evolve over time and exclusion

of disturbances is generally not possible.26 Consequently, the

sensor output is compared to a baseline signal for damage

detection, where deviations cannot be readily attributed to

damage due to in-situ effects and hence, require appropriate

interpretation.25 Influencing factors of NDE systems are

for instance reported as testing equipment and procedures,

material and geometry of test specimens, and properties of

the particular defect.20 In contrast to this, SHM systems are

reportedly affected by loading conditions,26 temperature,25

and sensor degradation.25 For instance, Gagar et al. reported

strong dependence of AE activity on the particular loading

conditions using aluminum specimens under cyclic loading

patterns.27 Furthermore, Schubert Kabban et al. mentioned,

that the assumption of independent observations is not

feasible in case of SHM systems, because measurements are

performed at high acquisition rates to determine the current

state-of-health in real-time leading to several dependent

observations.21

In this work, experiments were conducted to investigate

the impact of variable loading conditions on the reliability

of SHM systems. Due to practical relevance, diagnosis

of a composite structure was chosen to showcase SHM

implementation. A mechanical test rig was used to simulate

a load bearing structure of composite material while AE

measurements are performed. Furthermore, a statistical

pattern recognition approach using STFT-based feature

extraction and SVM-based classification of the measurement

results is proposed as example. Finally, the performance of

the classification results is evaluated with respect to damage

evolution and variable loading conditions using probability

estimation. In the following sections, the experimental

procedure is introduced, the measuring chain as well as

the employed signal processing techniques are described.

Hereafter experimental results of the proposed procedure

are presented and discussed with respect to reliability

considerations of SHM applications. Finally, the main

conclusions from the experimental results are summarized.
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Experiments

In the context of this work, experiments were performed

to investigate the effect of loading conditions and damage

evolution on the reliability of automatic damage classifica-

tion. To this end, a test rig is used to subject specimens

of composite material to cyclic loading patterns while AE

measurements are performed for diagnostic purposes. In this

section, the mechanical test rig, data acquisition hardware,

and methods used for signal processing are briefly described.

Mechanical test rig

In order to simulate a in-service, load-bearing structure,

a mechanical test rig was developed, which is used to

subject specimens of composite material to cyclic loading

patterns. The major components of the test-rig are presented

in figure 1. The frame construction of the test rig consists

5 84
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4. Slider

5. Frame construction
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8. Crank
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Figure 1. Components of the mechanical test rig, SRS U DuE

of aluminum profiles, having a vise attached to fixate

the specimen during testing. Furthermore, a slider-crank

mechanism, which converts the rotational motion of the

motor into linear displacement, is used to apply bending load

by deflecting the specimens tip. For actuation of the test

rig, a servo-controlled BLDC motor manufactured by Maxon

motors is mounted on the aluminum frame. The BLDC

motor is driven by a servo-amplifier of the type Maxon 4-Q-

EC, providing control of the motor current. Setpoint values

for the motor current are read from analog input in the

range of0− 5 V. Moreover, a laser proximity sensor of the

type ODSL9 by Leuze is used for contactless displacement

measurement. The sensor provides a maximum resolution

of 0.1 mm in the maximum measuring range of50− 650

mm of distance. Here, the measuring range was configured

to an interval of65 mm. The motion control algorithm is

implemented using LabView and a National Instruments

USB I/O board of the type NI USB 6229, featuring 32 analog

input and 4 analog output ports of 16 bit resolution. To

drive the actuator, output values are computed by the control

algorithm according to the actual displacement of the tip,

which is captured by the laser proximity sensor.

Data acquisition

The AE technique relies on the measurement of surface

waves, such as Rayleigh and Lamb waves.28 Therefore,

small surface displacements need to be detected to record

AE. Consequently, signals obtained from AE measurements

are characterized by high frequency content and low

amplitudes. Hence, high sensitivity of the measuring system

and high acquisition rates are crucial.12 For instance, Al-

Jumaili et al. used a sample rate of 5 MHz for AE

monitoring.29

A generic measuring chain for AE applications consists

of sensors, amplifiers, and data acquisition hardware.6

To record surface waves generated by AE, a surface-

mounted, piezoelectric acceleration sensor is employed,

because these are robust and well-established technology in

the field of AE. It consists of a disk-shaped piezoceramic

element of 0.55 mm thickness and Ø10 mm in diameter

featuring a resonant frequency of 3.6 MHz. As bonding

agent, cyanoacrylic glue was used to attach the sensor

to the specimen. This couplant was reported to provide

good reproducibility compared with other couplants.30

Furthermore, the stiff bonding improves transmission

properties of in-plane wave modes and provides permanent

bonding of the sensor to the structure.31 To capture the

low-power sensor response produced by the piezoelectric

element, the sensor is connected to a pre-amplification

device which drives the A/D conversion hardware. For

data acquisition a Field-Programmable-Gate-Array (FPGA)

board offering 16 bit resolution at a maximum sample

rate of 25 MHz is used. A sample rate of 4 MHz was

chosen as suitable trade-off between resolution and technical

requirements. The waveforms were acquired continuously.

Examples of acquired waveforms are presented in figures

2 and3, respectively. Here, the time-series data as well as

joint time-frequency domain representation using continuous

wavelet decomposition are presented. The event shown in

figure 2 is considered as representative of delamination.

The source motion of this fracture mechanism is mainly

characterized by out-of-plane displacement. According to

literature, AE events of high amplitude exhibiting a

dominant flexural wave mode are presumably associated

with delamination.3;9;11 Furthermore, these waveforms are

highly dispersive and show long durations.12 In general

agreement, the frequency content of delamination is reported
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Figure 2. Time and time-frequency representation of
delamination events

in the lower frequency band of the ultrasonic regime at

frequencies of [50 kHz, 150 kHz] according to Gutkin et

al.,13 whereas Hamdi et al. reported lower frequencies of

delamination events in the range of [30 kHz, 90 kHz].10 In

contrast to this, the AE waveform presented in figure3 is

attributed to the class of fiber breakage. This type of damage

occurs, if the maximum strain of the fiber is exceeded due

to excessive deformation of the matrix material. Here, the

rapid redistribution of stress due to the reinforcement failure

primarily activates in-plane source motion. Therefore, high

frequency extensional modes featuring short rise time and

duration are associated with fiber breakage.3;9 According

to literature, the peak frequency is localized at frequencies

above 300 kHz. Maximum frequency range of fiber-breakage

was reported by Bohse et al. at frequencies in the range

of [350 kHz, 700 kHz],32 whereas the lowest interval was

reported as [300 kHz, 400 kHz] by Suzuki et al.33
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Figure 3. Time and time-frequency representation of fiber
breakage events

Time-frequency analysis

The physical meaning, and hence interpretability of

a measurement signal is closely linked to the actual

representation. Usually, damage information is not readily

available from the time domain representation of a

signal.34 Therefore, feature extraction is performed and

damage-specific signatures are identified for diagnostic

purposes. Furthermore, it can provide compression of the

acquired data. Signal transforms, such as Short-Time Fourier

Transform (STFT), Wavelet Transform (WT), and Hilbert

Huang Transform (HHT) are mathematical methods which

can be used to study AE signals in the frequency domain.10

In the context of this work, frequency domain features

of transient AE bursts are determined by means of STFT,

which provides acceptable data compression rates due to

windowing. However, this method is limited by the trade-off

between time and frequency resolution, which is related to

the uncertainty principle. Here, the lower bound of time and

frequency resolution is given as

∆τ ·∆w ≥
1

2
,

where∆τ and∆w denote time- and frequency resolution,

respectively.36 Increased window sizes lead to improvement

in frequency resolution and decrease in time resolution,

respectively. Furthermore, considering a particular window

size, the time-frequency resolution is fixed.

Pattern recognition

The Support Vector Machine (SVM) is a supervised

classification algorithm, which has emerged from the

original research of Vapnik in the late 1970s. Due to its

high accuracy and good generalization performance,37 SVM

is widely used in various pattern recognition tasks such

as image classification,38 data mining,39 and classification

of faults in rotating machinery.40 The SVM follows the

supervised machine-learning approach, so that labeled

training data must be provided to the algorithm. The

goal of the training algorithm is to determine an optimal

decision function in terms of a separating hyperplane which

geometrically separates different classes according to the

training data. These data points, which are located closestto

the separating hyperplane – referred to as support vectors –

are of significant importance, because they “contain all the

information to design the classifier”.41 To obtain a solution

for training data, where different classes are not linearly

separable, kernel functions are employed to perform a linear

transformation of the feature space.37 From a practical point

of view, Hsu et al. advise using a Radial Basis Function

(RBF) kernel as a first choice. The stated reason is that there

are fewer numerical difficulties to be faced compared to other

kernel functions.42
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Results

In this work, experiments were conducted to investigate

the performance of the proposed classification scheme and

related dependencies with respect to the load applied. To

this end, AE measurements were conducted on multiple

specimens while they were subjected to cyclic loading pat-

terns. Here, the loading of the structure promotes micro-

mechanical fracture of the material as a result of damage

propagation and, hence, activates characteristic AE source

mechanisms. Statistical pattern recognition is employed

to determine the underlying fracture mechanisms from

the acquired AE waveforms. However, AE is an in-situ

inspection technique, that is, damage detection will only

be possible on initiation or propagation and is therefore

non-deterministic.43 Moreover, considering structures under

load, additional variability of the classification resultsmay

be related to the evolution individual defects. Furthermore,

loading conditions reportedly affect the activation of AE

source mechanisms in aluminum specimens, which has

already been found by Gagar et al.27 Therefore, measure-

ments are performed at different points in time, while

keeping the excitation motion constant to study the spread

of classification performance over time due to statistical

scattering and damage evolution. Moreover, measurements

are performed using variable loading conditions as well

as to investigate the impact of loading conditions on the

classification performance.

Classification of the acquired waveforms was performed

using LIBSVM library.44 Here, probability estimates were

computed by the SVM in addition to the predicted class

labels, as described by Chang and Lin.44 The probability

estimation is a measure for the likelihood that a specific

instance is actually a member of the predicted class.

Hence, probability estimates can be considered to assess

the reliability of the classification results. To generate a

suitable SVM model, example datasets are used, which

are obtained during several fracture tests. For the purpose

of model generation and evaluation, a labeled dataset

containing true class labels are constructed based on the

results from several fracture tests. In particular, three-points

bending as well as indentation flexure tests were employed.

Reportedly, each of the damage modes can be identified in

connection with three points bending,10 whereas indentation

flexure test promote primarily delamination.29 From these

experiments, several characteristic peak frequencies could

be identified. The lowest characteristic frequency was

assigned to delamination exhibiting peak frequencies in

the spectrogram at approximately 45 kHz, which is

in accordance with the findings of several authors.10;13

Furthermore, matrix crack is attributed to peak frequencies

of 95 kHz, which is in line with multiple reports

from literature.7;10;16;45 Moreover, debonding is presumably

associated to frequencies of approximately 245 kHz, which is

in accordance with literature.7;10;13;16 Finally, the maximum

frequency of 300 kHz is assigned to fiber breakage, which

is located at the lower end of frequencies being reportedly

related to fiber breakage.10;16;45 From each of the classes (i)

delamination, (ii) matrix crack, (iii) debonding, and (iv)fiber

breakage, 60 representative samples of AE were selected

carefully to construct a dataset for SVM training. During

SVM model generation, this dataset was randomly split into

training and testing data. The training dataset was composed

out of 40 samples each, while the remaining samples were

used for classifier testing. Here, a RBF kernel was used, as

proposed by Hsu et al. where optimal classifier parameters

C andγ were determined with respect to accuracy by means

of grid-search.42 Performance measures are summarized in

table1.

Table 1. SVM model performance

Class Accuracy Specificity Sensitivity

Delamination 0.990 1.000 0.9500
Matrix crack 0.950 1.000 0.750
Debonding 0.980 1.000 0.900
Fiber breakage 0.990 0.988 1.000

In general, good classification performance is achieved

according to the testing data. Here, each class achieves

high accuracies indicating only few classification errors.

With respect to accuracy, best performance is achieved

in conjunction with delamination and fiber breakage.

Furthermore, high values for sensitivity and specificity

indicate high detection rates and low false alarm rates,

respectively. Considering specificity, which denotes the

complement of false alarm rate, no false detection occurred

on the training data, except for fiber breakage. Here,

improved detection rate is achieved at the cost of reduced

specificity. Minimum detection rate of 0.75 is achieved in

connection with matrix crack.

During the cyclic loading experiments, coupon shaped

specimens of the dimension75 mm× 175 mm× 1.8 mm

were used. The specimens were manufactured from carbon

fiber/epoxy composite material consisting of three layers

of [90◦/0◦/90◦] unidirectional layup patterns and two

woven carbon/epoxy prepregs. Furthermore, similar initial

damage was introduced to each specimen by means of

three points bending, because a strain-threshold must be

exerted to initiate AE activity in bending tests.17 Using
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carbon fiber/polymer composites, a significant fraction of

the breaking load needs to be applied to give rise to micro-

mechanical fracture due to the high bending elasticity of the

material. According to Hamstad,46 only low AE activity is

detected at 90% of breaking load if undamaged composite

material is subjected to cyclic bending load. Therefore,

specimens containing initial damage were used in cyclic

bending experiments.

Constant excitation

To investigate the spread of the classification results over

time, the excitation motion was kept constant and several

measurements were performed at different points in time.

Each series of measurements covers 20 min of time, while

data acquisition was initiated every 5 min for a duration of

2 s. Accordingly, 5 datasets were recorded per test series.

The results of two measurement series subjecting a single

specimen to two different excitation motions of (a) [8mm,

4 Hz] and (b) [18 mm, 5 Hz], are presented. Three classes

(delamination, matrix crack, and debonding) are considered.

To assess the reliability of the classification results, mean

values of the probability estimation shown in figure4 are

considered.
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Figure 4. Mean values of the probability estimation over time
(a)

Here, the specimen was subjected to excitation motion (a),

which is characterized by small amplitudes and intermediate

frequency of the loading pattern. In this case, the best

results are achieved in connection with delamination events.

In most of the cases, the highest probability estimates

are achieved between 80 % and 90 %. Also, maximum

probability estimate of 90% is achieved on this class after 15

minutes of the experiment. Moreover, delamination provides

the minimum spread among the mean probability estimation

which amounts to 4%. In contrast, the lowest probability

estimation of 51 % can be observed in connection with

matrix crack after 5 minutes. Furthermore, the maximum

spread of the probability estimates of up to 38 % is observed

in connection with matrix crack. Despite identical testing

conditions, damages can not be detected within each of the

measurements. In particular, matrix crack and debonding are

not detected within the first dataset. Moreover, debonding

is not detected within the measurement performed after 10

minutes of the experiment. Presumably, this is attributed

to the non-deterministic nature of the inspection method.

From the absence of positive decision of the classifier it is

concluded, that the particular source-mechanisms was not

activated during the measurement.
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Figure 5. Mean values of the probability estimation over time
(b)

Different results were obtained using controlled excitation

motion (b), which provides increased load intensity. The

results are presented in figure5. Here, delamination provides

the best classification performance, which is in accordance

with the results obtained with excitation motion (a). In

line with the results of excitation motion (a) maximum

and minimum probability estimation of 89 % and 64 %

are observed in connection with delamination and matrix

crack, respectively after 10 minutes of operation. However,

compared, to the results of excitation (a), the overall

classification performance could be improved by using

increased intensity of the loading pattern. In contrast to the

results obtained in connection with loading pattern (a), all the

damage modes could be detected within each measurement.

Moreover, increased excitation amplitude and frequency lead

to more homogeneous results, which is indicated by reduced

spread of the probability estimation. The maximum and

minimum spread of only 15 % and 1 % could be observed

connection with the classes of debonding and delamination,

respectively.

The main conclusion to be drawn from these experiments

is that for a given specimen, the results obtained remain

constant, so that during operation and test time, no additional

fault (crack) development is observed. This is important,

because it excludes related effects for the further experiment

series to be reported in the sequel. Nevertheless, scattering

of the classification performance is observed among different

points in time. Furthermore, comparing the maximum spread
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of the probability estimate achieved using excitation motion

(a) and (b), reduction from 38 % to 15 % is observed

indicating the dependence of classification reliability on

loading conditions. Therefore, detailed investigation ofthe

effect of loading conditions on the classification performance

are presented.

Variable excitations

To investigate the effect of the loading conditions on the

classification performance, specimens of composite material

were subjected to different cyclic loading patterns. To this

end, AE measurements were performed while subjecting

each of the specimens to any pair of the frequencies [2 Hz

3 Hz 4 Hz 5 Hz 6 Hz] and amplitudes [6 mm 9 mm 12

mm 15 mm 18 mm]. Hence, 25 datasets were acquired per

specimen. During each measurement, data was acquired for

1.25 s. Furthermore, each series of measurements follows the

identical sequence. The first measurement was carried out

using the lowest excitation amplitude and frequency of [6

mm 2 Hz]. Hereafter, the frequency of the excitation motion

was increased stepwise up to 6 Hz prior to increasing the

excitation amplitude.

The classification results of each series of measurement

performed on specimens S-I – S-III are summarized in

table2. Similar to the previous experiments, mean values of

the probability estimation are computed from each dataset.

From these results contour plots are rendered to illustrate

the dependence of probability estimation on the excitation

motion. Here, the probability estimation is plotted on a color

scale while the x- and y-axis denote the amplitude and

frequency of the excitation motion, respectively. Damage

detection with a high probability estimate is denoted by a red

shade. In case that no damage was detected, the probability

estimation was set to 0, which corresponds to a dark blue

shade.

Best results are achieved in connection with delamination.

Except for specimen S-I, this damage mode is detected

at any of the excitations providing high probability

estimation. In many cases, high probability estimation

above 90 % is achieved. In contrast, similar results are

achieved for specific excitations in case of matrix crack,

debonding, and fiber breakage. Furthermore, it is observed

that improved probability estimation of delamination is

achieved with the smallest amplitude of 6 mm in case

of specimen S-II. However, in connection with specimen

S-I delamination remained undetected at excitations of this

particular amplitude and frequencies of 5 Hz and 6 Hz.

Regarding matrix crack events, a strong dependency

between the loading pattern and damage detection as well as

the corresponding estimated probability of the classification

result is observed. Considering specimen S-II, maximum

probability estimation is achieved using excitation motion of

[6 mm, 4 Hz] showing minimum amplitude. In contrast to

this, matrix crack was not detected at maximum excitation

amplitude in case of the particular excitation motion of

[18 mm 4 Hz] considering specimen S-III. Here, matrix

crack could be detected at excitation amplitudes of 12 mm,

whereas at this amplitude it was not detected throughout

the measurements performed on S-II. Moreover, results

of S-I are contradicting these observations. Here, matrix

crack could only be detected in conjunction with particular

excitation motion of [12 mm 5 Hz].

Regarding debonding, similar results were obtained. Here,

damage was also detected only at specific excitation modes.

In particular, debonding could be detected at excitation

amplitudes of 12 mm with all the specimens. Whereas

damage detection can be realized successfully if excitations

of 3 Hz and 5 Hz are applied in case of S-II, the postive

classification of debonding could only be confirmed in

connection with 5 Hz excitation frequency in case of S-III. In

contrast to this debonding was primarily detected at smaller

frequencies of 2 Hz and 3 Hz considering S-I. Best results are

obtained in connection with S-II at the particular excitation

motion of [15 mm 3 Hz].

Analyzing the results observed on the class of fiber

breakage, damage is only sparsely detected among the

loading patterns in case of specimens S-I and S-II. Here,

fiber breakage is detected exclusively at amplitudes above

12 mm and below 4 Hz. In contrast to this, fiber breakage was

frequently detected in case of S-III at excitation amplitudes

above 6 mm. Furthermore, using each of the specimens, fiber

breakage is detected at [3 Hz 18 mm]. Moreover maximum

probability estimation of fiber breakage of 0.95 is achieved

at [9 mm 2 Hz] and [12 mm 5 Hz].

According to the experimental results presented in this

section, strong dependences of (i) damage detection and (ii)

the reliability of the classification result on the excitation

motion become evident. Whereas delamination appears to

be less sensitive to variable excitations, the classification

results of matrix crack, debonding, and fiber breakage

strongly vary with the excitation motion. Due to a high

degree of variability among specimens and classes, a direct

relationship between excitation motion and classification

reliability could not be established. Nevertheless, cumulative

trends are apparent. Considering the results on matrix crack

of the specimens S-I – S-III, improved detectability of

damage on increasing frequencies is indicated. Here, damage

is detected most frequently in the range of 5 – 6 Hz of
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Table 2. Probability estimation with respect to excitation motion
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excitation frequency. Particularly in case of S-III, this trend

appears most pronounced. In case of S-II, improved results

are obtained in combination with excitation of [18 mm 6

Hz], whereas regarding S-I matrix crack is only detected

at excitation frequency of 5 Hz. Regarding debonding,

again a unclear situation appears. Here, detection can be

successfully realized at excitation frequencies of 5 Hz with

all the specimens. However, debonding is more frequently

detected at excitation frequencies of 2 Hz and 3 Hz.

Similarly, good reliability of the classification with respect

to fiber breakage is primarily achieved at lower frequencies.

Considering S-I and S-II, fiber breakage is only detected

at excitation frequencies of 2 Hz and 3 Hz in conjunction

with large amplitudes. In contrast to this, the classification

reliability of fiber breakage appears to be less sensitive to

the excitation motion in case of S-III, where best results

are also achieved in the range of low excitation frequencies.

Similar findings are reported by the results of Gagar,27

where influences on the activation of AE source-mechanisms

are investigated using different aluminum specimens under

cyclic loading conditions. Here, large scattering of the

AE waveform features under identical test conditions is

observed. Furthermore, these results indicate cumulative

trends in AE source activation with respect to loading

conditions.

Discussion

Viewing the results considering the reliability of SHM

systems, the question rises, which method can be used

to evaluate the reliability of SHM systems. In the past,

several ideas have been reported which address different

aspects to adopt POD philosophy to SHM applications. For

instance, in contrast to conventional NDT the results of

SHM systems are statistically not independent due to high

acquisition rates.21 In this context, Schubert Kabban et al.

proposed a new methodology to adopt POD procedures to

provide compatibility with dependent measurement data,

which is obtained from SHM systems.21 Furthermore,

multiple approaches developed to assess the reliability of

SHM systems are summarized by Mandache et al.25 In

particular, time-based POD is proposed to address the effect

of damage evolution.25 It is suggested to find a formulation

of the POD, which enables stating the probability of
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detecting specific defect growth within a given time interval.

Multi-dimensional POD is proposed to take the effect of

several in-situ effects, i.e. loading conditions, on SHM

reliability into account.25 This includes the computation of

POD with respect to each influencing factor to determine

the actual reliability of the SHM system in particular

situations. However, the approach requires availability

of quantitative information on each influencing factor.

Furthermore, quantitative knowledge regarding the impact

of in-situ effects on the reliability is necessary. In order

to minimize the experimental effort required to determine

POD, model-assisted approaches can be used.20 Cobb et

al. proposed a model-assisted approach for determining

POD of crack detection in aluminum specimens using in-

situ ultrasonic inspection technique.26 Moreover, Eckstein et

al. proposed a methodology to quantify SHM performance

by using cumulative distribution functions to establish a

probabilistic relationship between the detected and real

damage size.47 From this representation, multiple metrics of

SHM performance, such as minimum detectable damage size

to define a lower bound of POD as accuracy of the inspection

method, and probability of false alarm are derived. However,

identification of the underlying distribution functions is

– particularly in context of in-situ inspection techniques,

where a posteriori verification of real damage size is usually

not possible – still an open issue.

From the aforementioned approaches to SHM reliability

assessment it is noticeable, that the common weak point

is characterized by missing detailed knowledge about the

impact of different factors on SHM related reliability

properties. In this context, especially the experimentally

shown results from the previous section states, that the

loading (which is unknown in practice) strongly effects the

detectability of defects as well as the distinguishabilityof

different damages. However, large scattering of the results

prevents the establishment of a direct relationship, which

strongly aggravates the online monitoring as well as the

verification of healthy states.

Summary and outlook

Composite materials provide several advantages in many

engineering applications. However, the more extensive

use is currently restricted because safety and reliability

requirements can not be met due to complex damage modes.

Therefore, the diagnosis of composite material was chosen as

a showcase of SHM due to its practical relevance. Reliability

assessment of supervised SHM systems is an open issue

which is to be solved before SHM comes into practice.

In this work, a damage classification scheme is used and

experimental results were discussed with respect to their

reliability. For this purpose, a mechanical test rig is usedto

subject specimens to various cyclic loading patterns. During

loading of the specimens AE measurements are performed.

Furthermore, STFT and SVM are employed for extraction

of time-frequency domain features from time-series data and

classification of the measurement results.

Two different types of experiments were performed to

investigate influences on the classification performance. At

first, constant excitations were used to assess the repro-

ducibility of the classification results. Here, considerable

spreading of the reliability at different points in time is

observed despite identical experimental conditions. Partly,

this is attributed to the non-deterministic nature of the AE

inspection technique, which is only capable to detect damage

in-situ. Impact of the excitation motion is indicated, as

improved reproducibility is observed in connection with

increased load intensity. Significant effects of damage evo-

lution could not be confirmed throughout these experiments.

Hereafter, experiments were performed using variable

excitation motions. From the experimental results it becomes

evident, that the performance of the classifier strongly

depends on the excitation motion. However, a direct

relationship could not be established due to large spreading

of the classification results among multiple specimens

of identical structure, partly leading to contradicting

observations. Based on the chosen example related to fault

detection and damage discrimination in CFRP material, the

large scattering of the classification reliability under identical

testing conditions is identified a major challenge in the

context of reliability assessment of SHM systems.
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