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Abstract

Advances in composite technology led to the substitution of conventional, metallic construction material by composites.
However, the more widespread application of composites is currently restricted by complex fracture mechanisms, which
are not well understood. One approach to overcome this challenge are Structural Health Monitoring (SHM) systems
which provide several information on the current system state as well as state-of-health in real-time. In this context,
reliability assessment of SHM systems is currently an open issue. The reliability of conventional non-destructive testing
(NDT) systems is evaluated, measured, and partly standardized using widely accepted methods such as the Probability
of Detection (POD) rate. Frequently, the ag|95 value, which is determined from POD curves, is used as a performance
measure indicating the minimum damage size that is detected with a probability of 90 % and 95 % confidence. In
contrast to NDT, SHM involves additional data analysis steps, i.e. statistical pattern recognition, where the classification
results are also subject to uncertainty. Because similar methods are not available, the reliability of SHM systems is
usually not quantified. To investigate influences on the classification performance, experiments were conducted. In
particular, the effect of variable loading conditions and the evolution of damage over time are considered. To this end,
AE measurements were performed while specimens of composite material were subjected to different cyclic loading
patterns. Here, AE refers to elastic stress waves in the ultrasound regime, which emerge from the structure on damage
initiation and propagation. Furthermore, a frequency-based damage classification scheme for AE measurements is
proposed. Time-frequency domain features are extracted from the measurement signals using Short-Time Fourier
Transform (STFT). Classification is performed using Support Vector Machine (SVM). Both choices serve as typical
examples to discuss the effects which apply equally to other approaches. Experimental results presented in this paper
regarding fault diagnosis and discrimination of delamination, matrix crack, debonding, and fiber breakage in CFRP
material indicate strong dependences of the classification performance on loading conditions. Due to variability in the
results, a direct and reliable relationship could not be established under identical test conditions. Concluding from the
experimental results the question raises, which classification approaches, testing conditions, measurement devices,
and filters are able to provide reliable statements about the actual damage state.
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Acoustic Emission (AE), Support Vector Machine (SVM), Composite, Probability of Detection (POD), Reliability,
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whereas metals are generally assumed to exhibit homoge- higher frequencies and exhibits faster propagation
neous mechanical propertiésTherefore, complex micro- velocities than flexural waves:'® Furthermore, this wave
mechanical fracture mechanisms are obsefv&ttuctural mode is symmetric and non-dispersive. In contrast, flexural
Health Monitoring (SHM) systems are proposed to overcomeves are antisymmetric, propagate at lower velocities
these challenges and to ensure equal safety and reliadfilityand are highly dispersive. In general agreement, several
composite structure$.This includes that the SHM systemauthors reported in-plane motion to be associated with fiber
applied has to ensure reliable measurements and conctusioreakagé® and matrix crack:'* These damage mechanisms
regarding the actual system state. promote high frequency extensional waves. In contrast,

A definition of SHM is given by Farrar and Worden as “théglelamination is governed by out-of-plane motion and thus
process of implementing a damage identification strategy feromotes the flexural waves in the material generating low-
aerospace, civil, and mechanical engineerifigri. general, frequency signal§**

the goal of_such a strategy_ls to establl_sh fa survellla.nceFor the purpose of automated damage classification,
system thatis capable of continuously monltorlngatec;hmcseveral statistical properties of the AE signals — referred

system or structure. This enables advanced maintenan¢e, o toatures or descriptors — that can be calculated

strategies, i.e. condition-based maintenance, whmhsleqpom both time and frequency domain, are frequently used.

to an increase in reliability of technical systemsn this Typically, time domain features are used for the analysis of
context, methods for Nondestructive Evaluation (NDE) ATRE measurements15 However. time domain features are

em.ployed. In pa_rtlcular, Acoustic ErTussmn (AE) teChn'qmasnongly dependent on the experimental conditions, wiserea
Wh_'Ch 'S a pgsswe, Yvav_e-propggajuon-based NDE methqg, frequency content is not affected. Particularly, the AE
gained attention for in-situ monltorlng.recently. In geater amplitude is subject to variable attenuation depending on
AE refers to the phenomenon of elastic waves generated,in, propagation path Thus, the frequency spectrum of

the ultra-sound regime due to the sudden release of energy. signals is considered a more reliable descriptor of AE
These elastic waves emerge from distinct sources Witl’ggurcesg

a structure at frequencies between 10 kHz and 1 MHz.
In particular, this occurs on initiation and propagation of To identify characteristic frequencies of distinct AE soair

damage or due to external impact loads. Consequently, AEchanisms, peak frequency analysis was applied by several
L . . _ 01617 16 4 antifi
monitoring should be applied while the structure is loadedesearchers! De Groot et al” identified damage-
Sources of AE are manifold. In composites, only Olistin&pecmc signatures of 4 different micro-mechanical damage

types of damage are observed as the result of underlyfﬁ]g?des namely matri?< crack [90 kHz, 100 kHz], debf)nding
micro-mechanical fracture mechanisms. In particularselehe[240 kHz, 310 kHz], fiber breakage-[300 kHz], and fiber

are delamination, matrix crack, fiber breakage, ar{ﬂJ”'OUt [180 kHz, 240 kHz] in CFRP material in terms
debonding’ Whereas debonding merely describes the Iogé peak frequencies. Similarly, Hamdi et al. identified
of adhesion between fiber and matrix material, delaminatigt]latrix crack [30 kHz, 90 kHz], debonding [30 kHz, 170
denotes the separation of layers in laminated matetigilse kHz], and fiber breakage [300 kHz, 420 kHz] as distinct

resulting AE waveforms are characteristic to the partilculﬁlf'isseS of micro-mechanical doamz_ige I composites using
source mechanism and, hence, AE measurements CanHHBertHuangTransform(HHT)‘. To identify characteristic

utilized to identify the corresponding fracture mechanisn‘?e""k frequencies and to track damage accumulation under
which has already been shown in several case stidiés different experimental conditions Bussiba et al. used STFT

For this purpose, modal analysis as well as time ar%ased on their experimental results, three characteristic
frequencies were identified, which correspond to the damage

Regarding modal properties of the AE WaveformsrT]EChamsmS matrix crack (140kHz), debonding (300kHz),

corresponding fracture mechanisms can be identified basaenéj fiber-breakage (405kHZ]. Mo_rt?over, mecham(.:al
L . . . thresholds for the onset of AE activity were determined,
on physical interpretation of the source motion. Inthingda ~
. . indicating that no damage occurs below these threshold

these waveforms propagate as guided waves, which can b(la 17

. : % .
described by means of Lamb wave theétyAccordingly, alues
two distinct wave modes — flexural and extensional waves —Damage characterization task is most frequently consid-
exist. These are promoted by either in-plane or out-of@laered as classification problem. Pattern recognition algms

source motion, respectively. According to Prosser andare a suitable method to address this type of probigém.

frequency domain based approaches are distinguished.

Gutkin et al., the extensional wave mode is usually observelgre, statistical learning theory is employed to deterrttiee
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mapping between class labels and input values. In the supguantification of model performance with respect to a
vised case, a representative set of training data is usedspecific set of testing data.

generate the statistical model. Most frequently used ifiasss
algorithms are K-Nearest Neighbor (KNN), Artificial Neural
Network (ANN), and Support Vector Machine (SVM). Das
et al. stated, that SVMs are a suitable method to identi?‘f"ab”ity of SHM systems is usually not quantfied. In
damage modes in compositésHere, joint time-frequency order to determine the POD curve of a NDE inspection

transformation was performed prior to the classification tlgchnlque, fixed decision threshold of the sensor response
extract damage specific features a is determined using model (calibration) specimens under

controlled laboratory condition®. Due to the in-service
A generic SHM system is composed of a measuremegf|ication of SHM, damages evolve over time and exclusion

chain, where principles of NDT are employed, and g gisturbancesis generally not possiBfeConsequently, the
signal processing chain. According to the statisticalgratt gop50r output is compared to a baseline signal for damage
recognition paradigm, damages are detected by megRection, where deviations cannot be readily attributed t
of classification? To realize SHM systems in practice,da“.nage due to in-situ effects and hence, require apprepriat
a suitable and therefore well defined reliability of th“r‘nterpretationzﬁ Influencing factors of NDE systems are
classification must be achieved. This includes high detectity, instance reported as testing equipment and procedures,
rates as well as low false-alarm rates, so that the system ¢gfterial and geometry of test specimens, and properties of
be accepted. Furthermore, the surveillance system sheuldfe particular defect In contrast to this, SHM systems are
robust against external disturbances. reportedly affected by loading conditioR%temperaturé?®

The reliability of conventional NDT methods is frequently@nd sensor degradatiéh For instance, Gagar et al. reported
assessed using Probability of Detection (POD) as S§¥ond dependence of AE activity on the particular loading
probabilistic approach, which provides a measure of ti@nditions using aluminum specimens under cyclic loading
reliability of an NDT methoc?® The POD curve describespattemsz-7 Furthermore, Schubert Kabban et al. mentioned,
the likelihood that a certain flaw is detected as a function §tat the assumption of independent observations is not
flaw characteristia such as size or depth. These POD curvdgasible in case of SHM systems, because measurements are
can be computed directly from experimental data, where wigrformed at high acquisition rates to determine the ctirren
approaches are distinguished. In case of binary responsé@te-of-health in real-time leading to several dependent
the inspection system hit/miss analysis is employed, vatger@bservations:

a vs.a approach can be used if continuous outpudf the
inspection system is availabf€ Commonly theng g5 value
is determined from the POD curve as performance meaSLtJﬁ
of the inspection systerfi.

Due to conceptual differences between SHM and NDE,

In this work, experiments were conducted to investigate
& impact of variable loading conditions on the reliajilit
of SHM systems. Due to practical relevance, diagnosis
The performance evaluation of a classifier is usually basefl a composite structure was chosen to showcase SHM
on a set of testing data with known class labels. Heremplementation. A mechanical test rig was used to simulate
the classifier output and true class labels are compareddyoad bearing structure of composite material while AE
means of a confusion matrix. From the confusion matrixpeasurements are performed. Furthermore, a statistical
different scores, such as accuracy, sensitivity, and 8piggi pattern recognition approach using STFT-based feature
are extracted to assess the performance of classificatexiraction and SVM-based classification of the measurement
algorithms?? Here, sensitivity denotes the detection rategsults is proposed as example. Finally, the performance of
whereas false alarm rate is the complement of the specificibe classification results is evaluated with respect to dgma
of a classifier. In general, improved detection rates cavolution and variable loading conditions using prob#pili
only be achieved at the cost of increasing false alarm ratestimation. In the following sections, the experimental
The principle relationship between detection and falsevalaprocedure is introduced, the measuring chain as well as
rate is described by ROC curvé,which compares the the employed signal processing techniques are described.
detection and false alarm rate of a classifier. In the contebtereafter experimental results of the proposed procedure
of classification algorithms, the POD is understood as tla@e presented and discussed with respect to reliability
true positive rate, which is also known as the sensitivityonsiderations of SHM applications. Finally, the main
of a classifie???* However, these measures only provideonclusions from the experimental results are summarized.
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Experiments input and 4 analog output ports of 16 bit resolution. To

In the context of this work, experiments were performegirive the actuator, output values are computed by the clontro

to investigate the effect of loading conditions and damagéd®rithm according to the actual displacement of the tip,

evolution on the reliability of automatic damage classificéNhiCh is captured by the laser proximity sensor.

tion. To this end, a test rig is used to subject specimens o

of composite material to cyclic loading patterns while AIJ:':)ata acquisition

measurements are performed for diagnostic purposessn thie AE technique relies on the measurement of surface

section, the mechanical test rig, data acquisition hardwawaves, such as Rayleigh and Lamb wav&sTherefore,

and methods used for signal processing are briefly describehall surface displacements need to be detected to record
AE. Consequently, signals obtained from AE measurements

Mechanical test rig are characterized by high frequency content and low

In order to simulate a in-service, load-bearing structurg,mp"tUdeS' Hence, high sensitivity of the measuring syste

?gd high acquisition rates are cructélFor instance, Al-

. . . . . ~Jumaili et al. used a sample rate of 5MHz for AE
subject specimens of composite material to cyclic loading
onitoring 2°

patterns. The major components of the test-rig are pretsken?% ) ) . o )
A generic measuring chain for AE applications consists

in figure 1. The frame construction of the test rig consists N o
of sensors, amplifiers, and data acquisition hardWare.

To record surface waves generated by AE, a surface-
mounted, piezoelectric acceleration sensor is employed,
because these are robust and well-established technalogy i
the field of AE. It consists of a disk-shaped piezoceramic

element of 0.55 mm thickness and @10 mm in diameter
featuring a resonant frequency of 3.6 MHz. As bonding

agent, cyanoacrylic glue was used to attach the sensor
1. Specimen to the specimen. This couplant was reported to provide
?15?53““ good reproducibility compared with other coupladts.

4. Slider . . . L.
5. Frame construction Furthermore, the stiff bonding improves transmission

6 Proximity sensor properties of in-plane wave modes and provides permanent
§ Crank bonding of the sensor to the structifeTo capture the
Figure 1. Components of the mechanical test rig, SRS UDuE  low-power sensor response produced by the piezoelectric
element, the sensor is connected to a pre-amplification
of aluminum profiles, having a vise attached to fixatdevice which drives the A/D conversion hardware. For

the specimen during testing. Furthermore, a slider-cradita acquisition a Field-Programmable-Gate-Array (FPGA)

a mechanical test rig was developed, which is used

mechanism, which converts the rotational motion of thigoard offering 16 bit resolution at a maximum sample
motor into linear displacement, is used to apply bending loaate of 25 MHz is used. A sample rate of 4 MHz was
by deflecting the specimens tip. For actuation of the teshosen as suitable trade-off between resolution and teghni
rig, a servo-controlled BLDC motor manufactured by Maxorequirements. The waveforms were acquired continuously.
motors is mounted on the aluminum frame. The BLDC Examples of acquired waveforms are presented in figures
motor is driven by a servo-amplifier of the type Maxon 4-Q2 and 3, respectively. Here, the time-series data as well as
EC, providing control of the motor current. Setpoint value®int time-frequency domain representation using corttirau

for the motor current are read from analog input in theavelet decomposition are presented. The event shown in
range of0 — 5 V. Moreover, a laser proximity sensor of thefigure 2 is considered as representative of delamination.
type ODSL9 by Leuze is used for contactless displacemértie source motion of this fracture mechanism is mainly
measurement. The sensor provides a maximum resolutiraracterized by out-of-plane displacement. According to
of 0.1 mm in the maximum measuring range @ — 650 literature, AE events of high amplitude exhibiting a
mm of distance. Here, the measuring range was configumaminant flexural wave mode are presumably associated
to an interval of65 mm. The motion control algorithm is with delamination>%*! Furthermore, these waveforms are
implemented using LabView and a National Instrumentsighly dispersive and show long duratiotfsin general
USB I/0 board of the type NI USB 6229, featuring 32 analoggreement, the frequency content of delamination is redort
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N

available from the time domain representation of a
signal3* Therefore, feature extraction is performed and
damage-specific signatures are identified for diagnostic

0.5

Normalized amplitude
o

purposes. Furthermore, it can provide compression of the

I
0.3 0.35 0.4 0.45 0.5

Time ] acquired data. Signal transforms, such as Short-Time &ouri
Transform (STFT), Wavelet Transform (WT), and Hilbert
Huang Transform (HHT) are mathematical methods which

L
0.05 0.1 0.15 0.2

can be used to study AE signals in the frequency doriain.

In the context of this work, frequency domain features
of transient AE bursts are determined by means of STFT,

0.15 0.2 03 0.35 0.4

0.25
Time [ms]

Figure 2. Time and time-frequency representation of which provides acceptable data compression rates due to
delamination events windowing. However, this method is limited by the trade-off
between time and frequency resolution, which is related to
in the lower frequency band of the ultrasonic regime dlhe uncertainty principle. Here, the lower bound of time and
frequencies of [50 kHz, 150 kHz] according to Gutkin efrequency resolution is given as
al.,'®> whereas Hamdi et al. reported lower frequencies of

delamination events in the range of [30 kHz, 90 kHZ]n AT Aw >
contrast to this, the AE waveform presented in fig8ris

attributed to the class of fiber breakage. This type of damaj@ere A7 and Aw denote time- and frequency resolution,
occurs, if the maximum strain of the fiber is exceeded ddgSPectively:® Increased window sizes lead to improvement
to excessive deformation of the matrix material. Here, t8 frequency resolution and decrease in time resolution,

rapid redistribution of stress due to the reinforcemeriafai "€SPeCtively. Furthermore, considering a particular wind
size, the time-frequency resolution is fixed.

DN | =

primarily activates in-plane source motion. Thereforghhi
frequency extensional modes featuring short rise time and
duration are associated with fiber breakd§eAccording .

to literature, the peak frequency is localized at frequ«*ssr;lciPaﬁern recognition

above 300 kHz. Maximum frequency range of fiber-breakagée Support Vector Machine (SVM) is a supervised
was reported by Bohse et al. at frequencies in the rangi@ssification algorithm, which has emerged from the
of [350 kHz, 700 kHz]¥? whereas the lowest interval wasoriginal research of Vapnik in the late 1970s. Due to its

reported as [300 kHz, 400 kHz] by Suzuki et*al. high accuracy and good generalization performai@yM
. is widely used in various pattern recognition tasks such
ERN as image classificatioff data mining3® and classification
é 9 of faults in rotating machiner§’ The SVM follows the
go supervised machine-learning approach, so that labeled

training data must be provided to the algorithm. The
goal of the training algorithm is to determine an optimal
decision function in terms of a separating hyperplane which
geometrically separates different classes according ¢o th
training data. These data points, which are located clasest
the separating hyperplane — referred to as support vectors —
are of significant importance, because they “contain all the
Figure 3. Time and time-frequency representation of fiber information to design the classifief’. To obtain a solution
breakage events L . .

for training data, where different classes are not linearly
separable, kernel functions are employed to perform atdinea
transformation of the feature spateFrom a practical point
of view, Hsu et al. advise using a Radial Basis Function
The physical meaning, and hence interpretability RBF) kernel as a first choice. The stated reason is that there
a measurement signal is closely linked to the actuate fewer numerical difficulties to be faced compared toothe
representation. Usually, damage information is not rgadikernel functions*?

0.15 0.2 0.3 0.35 0.4 0.45

0.25
Time [ms]

Time-frequency analysis
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Results in accordance with the findings of several authtfs

Furthermore, matrix crack is attributed to peak frequencie
In this work, experiments were conducted to investigaly 95 kHz, which is in line with multiple reports

the performance of the proposed classification scheme apsiy literature’:1%1645 Moreover, debonding is presumably
related dependencies with respect to the load applied. d8sociated to frequencies of approximately 245 kHz, wisich i
this end, AE measurements were conducted on multiQle accordance with literatur&lo13.16 Finally, the maximum
specimens while they were subjected to cyclic loading pgtequency of 300 kHz is assigned to fiber breakage, which
terns. Here, the loading of the structure promotes micr@y |ocated at the lower end of frequencies being reportedly
mechanical fracture of the material as a result of damag@ated to fiber breakag@1645 From each of the classes (i)
propagation and, hence, activates characteristic AE 80Uffg|amination, (i) matrix crack, (iii) debonding, and (fber
mechanisms. Statistical pattern recognition is employ%qieakage’ 60 representative samples of AE were selected
to determine the underlying fracture mechanisms frogyrefully to construct a dataset for SVM training. During
the acquired AE waveforms. However, AE is an in-sit&\/m model generation, this dataset was randomly split into
inspection technique, that is, damage detection will onfyaining and testing data. The training dataset was contpose
be possible on initiation or propagation and is therefogt of 40 samples each, while the remaining samples were
non-deterministi¢> Moreover, considering structures unde(;sed for classifier testing. Here, a RBF kernel was used, as
load, additional variability of the classification resutt®y nroposed by Hsu et al. where optimal classifier parameters
be related to the evolution individual defects. Furthereor and~ were determined with respect to accuracy by means

loading conditions reportedly affect the activation of Akt grid-searct? Performance measures are summarized in
source mechanisms in aluminum specimens, which hgge1.
already been found by Gagar et?lTherefore, measure-
. . L . Table 1. SVM model performance

ments are performed at different points in time, while
keeping the excitation motion constant to study the spreaoCIaSS
of classification performance over time due to statistical D€lamination 0.990 1.000 0.9500
scattering and damage evolution. Moreover, measuremen Matrix C.raCk 0.950 1.000 0.750

! , , : Bebonding 0.980 1.000 0.900
are performed using variable loading conditions as well giper preakage 0.990 0.988 1.000
as to investigate the impact of loading conditions on the

classification performance.

Accuracy Specificity — Sensitivity

In general, good classification performance is achieved
Classification of the acquired waveforms was performextcording to the testing data. Here, each class achieves
using LIBSVM library.** Here, probability estimates werehigh accuracies indicating only few classification errors.
computed by the SVM in addition to the predicted clasé/ith respect to accuracy, best performance is achieved
labels, as described by Chang and EinThe probability in conjunction with delamination and fiber breakage.
estimation is a measure for the likelihood that a speciffeurthermore, high values for sensitivity and specificity
instance is actually a member of the predicted classdicate high detection rates and low false alarm rates,
Hence, probability estimates can be considered to assesspectively. Considering specificity, which denotes the
the reliability of the classification results. To generate @mplement of false alarm rate, no false detection occurred
suitable SVM model, example datasets are used, whioh the training data, except for fiber breakage. Here,
are obtained during several fracture tests. For the purpaswroved detection rate is achieved at the cost of reduced
of model generation and evaluation, a labeled datasgtecificity. Minimum detection rate of 0.75 is achieved in
containing true class labels are constructed based on tomnection with matrix crack.
results from several fracture tests. In particular, thpeats During the cyclic loading experiments, coupon shaped
bending as well as indentation flexure tests were employegpecimens of the dimensiorb mm x 175 mm x 1.8 mm
Reportedly, each of the damage modes can be identifiedwere used. The specimens were manufactured from carbon
connection with three points bendiRgwhereas indentation fiber/epoxy composite material consisting of three layers
flexure test promote primarily delaminatidh.From these of [90°/0°/90°] unidirectional layup patterns and two
experiments, several characteristic peak frequenciekl cowoven carbon/epoxy prepregs. Furthermore, similar initia
be identified. The lowest characteristic frequency watamage was introduced to each specimen by means of
assigned to delamination exhibiting peak frequencies fhree points bending, because a strain-threshold must be
the spectrogram at approximately 45 kHz, which iexerted to initiate AE activity in bending tests.Using
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carbon fiber/polymer composites, a significant fraction aonditions, damages can not be detected within each of the
the breaking load needs to be applied to give rise to microreasurements. In particular, matrix crack and debondiag ar

mechanical fracture due to the high bending elasticity ef tinot detected within the first dataset. Moreover, debonding

material. According to Hamstatf, only low AE activity is is not detected within the measurement performed after 10
detected at 90% of breaking load if undamaged compositénutes of the experiment. Presumably, this is attributed

material is subjected to cyclic bending load. Thereforép the non-deterministic nature of the inspection method.

specimens containing initial damage were used in cyclkrom the absence of positive decision of the classifier it is

bending experiments. concluded, that the particular source-mechanisms was not

activated during the measurement.
Constant excitation

10
To investigate the spread of the classification results ov A A A

time, the excitation motion was kept constant and seve
measurements were performed at different points in tim £
Each series of measurements covers 20 min of time, wh;>
data acquisition was initiated every 5 min for a duration ¢

ate [%)]
6

[o2]
Q
I

40- 1

Probab

2 s. Accordingly, 5 datasets were recorded per test seri® 20- - Delaminatior)
-©-Matrix crack
The results of two measurement series subjecting a sini ‘ ‘ _ |=Debonding
. . o . 0 5 10 | 15 20
specimen to two different excitation motions of (a) [8Bmm Time [min]

4 Hz] and (b) [18 mm, 5 Hz], are presented. Three Classglﬁure 5. Mean values of the probability estimation over time
(delamination, matrix crack, and debonding) are consitlergb)

To assess the reliability of the classification results, mea

values of the probability estimation shown in figwteare Different results were obtained using controlled exaitati
considered. motion (b), which provides increased load intensity. The
results are presented in figuseHere, delamination provides

106 T T
N a A the best classification performance, which is in accordance

8o 1 with the results obtained with excitation motion (a). In
line with the results of excitation motion (a) maximum
and minimum probability estimation of 89 % and 64 %
are observed in connection with delamination and matrix
--Delaminatioy  crack, respectively after 10 minutes of operation. However

-6-Matrix crack s
-=Debonding compared, to the results of excitation (a), the overall

Timel?min] 2 classification performance could be improved by using

increased intensity of the loading pattern. In contrashto t

o)}
?
I

Probability estimate [%)]
oy
2
.

N}
@

R
ol
=L
(92}

Figure 4. Mean values of the probability estimation over time ] i ) ) i
(@ results obtained in connection with loading pattern (d}hal

damage modes could be detected within each measurement.

Here, the specimen was subjected to excitation motion (&)preover, increased excitation amplitude and frequeray le
which is characterized by small amplitudes and intermedidb more homogeneous results, which is indicated by reduced
frequency of the loading pattern. In this case, the bespread of the probability estimation. The maximum and
results are achieved in connection with delamination esxenminimum spread of only 15 % and 1 % could be observed
In most of the cases, the highest probability estimatesnnection with the classes of debonding and delamination,
are achieved between 80 % and 90 %. Also, maximuraspectively.
probability estimate of 90% is achieved on this class affer 1 The main conclusion to be drawn from these experiments
minutes of the experiment. Moreover, delamination prosidés that for a given specimen, the results obtained remain
the minimum spread among the mean probability estimaticonstant, so that during operation and test time, no acditio
which amounts to 4%. In contrast, the lowest probabilitfault (crack) development is observed. This is important,
estimation of 51 % can be observed in connection withecause it excludes related effects for the further exparim
matrix crack after 5 minutes. Furthermore, the maximuseries to be reported in the sequel. Nevertheless, scatteri
spread of the probability estimates of up to 38 % is observeiithe classification performance is observed among differe
in connection with matrix crack. Despite identical testingoints in time. Furthermore, comparing the maximum spread
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of the probability estimate achieved using excitation mti the corresponding estimated probability of the classificat
(@) and (b), reduction from 38 % to 15% is observerksult is observed. Considering specimen S-1l, maximum
indicating the dependence of classification reliability oprobability estimation is achieved using excitation motad
loading conditions. Therefore, detailed investigatiortied [6 mm, 4 Hz] showing minimum amplitude. In contrast to
effect of loading conditions on the classification perfonte this, matrix crack was not detected at maximum excitation

are presented. amplitude in case of the particular excitation motion of
[18 mm 4 Hz] considering specimen S-lll. Here, matrix
Variable excitations crack could be detected at excitation amplitudes of 12 mm,

To investigate the effect of the loading conditions on th&hereas at this amplitude it was not detected throughout
classification performance, specimens of composite nateff’€ measurements performed on S-Il. Moreover, results
were subjected to different cyclic loading patterns. Te thpf S-I are contradicting these observations. Here, matrix
end, AE measurements were performed while subjectiﬁ@aCk could only be detected in conjunction with particular
each of the specimens to any pair of the frequencies [2 [§citation motion of [12 mm 5 Hz].

3 Hz 4 Hz 5 Hz 6 Hz] and amplitudes [6 mm 9 mm 12 Regarding debonding, similar results were obtained. Here,
mm 15 mm 18 mm). Hence, 25 datasets were acquired I[gtg-)fmage was also detected only at specific excitation modes.
specimen. During each measurement, data was acquiredl‘tbrparticular, debonding could be detected at excitation
1.25 s. Furthermore, each series of measurements follows #f8Plitudes of 12 mm with all the specimens. Whereas
identical sequence. The first measurement was carried afmage detection can be realized successfully if exaitstio
using the lowest excitation amplitude and frequency of [8f 3 Hz and 5 Hz are applied in case of S-II, the postive
mm 2 Hz]. Hereafter, the frequency of the excitation motioflassification of debonding could only be confirmed in
was increased stepwise up to 6 Hz prior to increasing tgannection with 5 Hz excitation frequency in case of S-Hl. |

excitation amplitude. contrast to this debonding was primarily detected at smalle
The classification results of each series of measurem&gguencies of 2 Hz and 3 Hz considering S-I. Best results are

table2. Similar to the previous experiments, mean values §totion of [15 mm 3 Hz].

the probability estimation are computed from each datasetAnalyzing the results observed on the class of fiber
From these results contour plots are rendered to illustrdteeakage, damage is only sparsely detected among the
the dependence of probability estimation on the excitatiddading patterns in case of specimens S-l1 and S-II. Here,
motion. Here, the probability estimation is plotted on aocol fiber breakage is detected exclusively at amplitudes above
scale while the x- and y-axis denote the amplitude ardl®@ mm and below 4 Hz. In contrast to this, fiber breakage was
frequency of the excitation motion, respectively. Damadéequently detected in case of S-IIl at excitation amplésid
detection with a high probability estimate is denoted byda réabove 6 mm. Furthermore, using each of the specimens, fiber
shade. In case that no damage was detected, the probablil§akage is detected at [3 Hz 18 mm]. Moreover maximum
estimation was set to 0, which corresponds to a dark blpeobability estimation of fiber breakage of 0.95 is achieved
shade. at[9 mm 2 Hz] and [12 mm 5 Hz].

Best results are achieved in connection with delamination.According to the experimental results presented in this
Except for specimen S-I, this damage mode is detectsection, strong dependences of (i) damage detection gnd (i
at any of the excitations providing high probabilitythe reliability of the classification result on the exciteti
estimation. In many cases, high probability estimatiomotion become evident. Whereas delamination appears to
above 90 % is achieved. In contrast, similar results abe less sensitive to variable excitations, the classitioati
achieved for specific excitations in case of matrix crackesults of matrix crack, debonding, and fiber breakage
debonding, and fiber breakage. Furthermore, it is observadongly vary with the excitation motion. Due to a high
that improved probability estimation of delamination islegree of variability among specimens and classes, a direct
achieved with the smallest amplitude of 6 mm in caselationship between excitation motion and classification
of specimen S-Il. However, in connection with specimereliability could not be established. Nevertheless, clativg
S-I delamination remained undetected at excitations &f thirends are apparent. Considering the results on matrixcrac
particular amplitude and frequencies of 5 Hz and 6 Hz.  of the specimens S-I — S-llI, improved detectability of

Regarding matrix crack events, a strong dependendgmage on increasing frequenciesis indicated. Here, damag
between the loading pattern and damage detection as welisasletected most frequently in the range of 5 — 6 Hz of
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Table 2. Probability estimation with respect to excitation motion

Delamination Matrix crack Debonding Fiber breakage

Specimen S-|

=
[
=
=
=
=
=

— 088 _ 088 _ 08g _ 082
) £ gE £ ES £ Es £
> 068 & 068 & 068 & 069
c > < 4 > <4 > cC 4 >
E 045 2 045 3 045 2 043
g "8 g "8 g g g i
I o L3 S L 3 S I 3 ]

025 025 0.25 0.25

o
o
o
o

18 18 18

9 12 15 9 12 15 9 12 15
Amplitude [mm] Amplitude [mm] Amplitude [mm]

Specimen S-lI
1 1 6 1 1
_ 088 _ 088 _ 08% _ 082
¥ EFE E E° —— < E g E
> 063 & 063 & 063 & 069
g4 2§ 2 &4 Zz g4 2
=] = =1 = =1 = S =
g 0.4§ g 0.4§ EJ— 0.4§ EJ— 0.4§
L 3 o o L 3 o L 3 o
0.25 0.25 025 025
2 0 0 2 0 2 0
3 18 18 6 9 1 1 18 6 1

9 12 15
Amplitude [mm]

£

9 12 15 2 5
Amplitude [mm] Amplitude [mm]

u )

e < :
ﬂo
9 12 15 18

9 12 15
Amplitude [mm]

Specimen S-llI

[}
=

6

=

4
©
o
©

4]
4]

o
=)
o
=)

IS

I
~

o
N
Probability estimate

Frequency [HZ]

&)

Frequency [HZ]
N
o
N )
Probability estimate

3]

°
)

6
0.8%
g ws )
063
2 54
= >
04§ z
S LT 3]
025
2

N
o

%

o
o

9 12 15 18
Amplitude [mm]

| R |

o © o o o
N B (2] ©
Probability estimate
Frequency [Hz]

ml\) (93] s U1 (2]

6

9 12 15
Amplitude [mm] Amplitude [mm]

[N
2]

9 12 15 18
Amplitude [mm]

excitation frequency. Particularly in case of S-lIl, thisnd observed. Furthermore, these results indicate cumulative
appears most pronounced. In case of S-ll, improved resultsnds in AE source activation with respect to loading
are obtained in combination with excitation of [18 mm &onditions.

Hz], whereas regarding S-I matrix crack is only detected

at excitation frequency of 5 Hz. Regarding debonding,

again a unclear situation appears. Here, detection canDescussion

successfully realized at excitation frequencies of 5 thn\/iewing the results considering the reliability of SHM

all the specimens. However, debonding is more frequentl ) ) )
P g a sgstems, the question rises, which method can be used

detected at excitation frequencies of 2 Hz and 3 Hz: I
to evaluate the reliability of SHM systems. In the past,

Similarly, good reliability of the classification with resgt . . .
o fib {) g K . ) y " hieved at | ¢ . several ideas have been reported which address different
o fiber breakage is primarily achieved at lower frequencies . L
L g P y , q aspects to adopt POD philosophy to SHM applications. For
Considering S-1 and S-ll, fiber breakage is only detected . .
o ) . ) _Instance, in contrast to conventional NDT the results of
at excitation frequencies of 2 Hz and 3 Hz in conjunctio

n i . :
. : . .. . SHM systems are statistically not independent due to high
with large amplitudes. In contrast to this, the classifmati

N . . acquisition rateg?! In this context, Schubert Kabban et al.
reliability of fiber breakage appears to be less sensitive to

- . Proposed a new methodology to adopt POD procedures to
the excitation motion in case of S-lll, where best resulis

_ ) o _provide compatibility with dependent measurement data,
are also achieved in the range of low excitation frequencies

o which is obtained from SHM systent$. Furthermore,
Similar findings are reported by the results of Gagfar,

) . . multiple approaches developed to assess the reliability of
where influences on the activation of AE source-mechanisms , s
, i . . ) ) SHM systems are summarized by Mandache et®dh
are investigated using different aluminum specimens under . . .
_ _ = . particular, time-based POD is proposed to address theteffec
cyclic loading conditions. Here, large scattering of the P i )
) ) » of damage evolutiort® It is suggested to find a formulation
AE waveform features under identical test conditions is . . .
of the POD, which enables stating the probability of
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detecting specific defect growth within a given time intérvaln this work, a damage classification scheme is used and
Multi-dimensional POD is proposed to take the effect afxperimental results were discussed with respect to their
several in-situ effects, i.e. loading conditions, on SHNMNeliability. For this purpose, a mechanical test rig is uged
reliability into account® This includes the computation of subject specimens to various cyclic loading patterns. muri
POD with respect to each influencing factor to determirleading of the specimens AE measurements are performed.
the actual reliability of the SHM system in particulaf-urthermore, STFT and SVM are employed for extraction
situations. However, the approach requires availabilif time-frequency domain features from time-series dath an
of quantitative information on each influencing factorclassification of the measurement results.
Furthermore, quantitative knowledge regarding the impactTwo different types of experiments were performed to
of in-situ effects on the reliability is necessary. In ordeihvestigate influences on the classification performance. A
to minimize the experimental effort required to determinfirst, constant excitations were used to assess the repro-
POD, model-assisted approaches can be @$eZbbb et ducibility of the classification results. Here, considéeab
al. proposed a model-assisted approach for determiniggreading of the reliability at different points in time is
POD of crack detection in aluminum specimens using imbserved despite identical experimental conditions.lPart
situ ultrasonic inspection techniqgd&Moreover, Eckstein et this is attributed to the non-deterministic nature of the AE
al. proposed a methodology to quantify SHM performandaspection technique, which is only capable to detect damag
by using cumulative distribution functions to establish m-situ. Impact of the excitation motion is indicated, as
probabilistic relationship between the detected and regiproved reproducibility is observed in connection with
damage sizé! From this representation, multiple metrics ofncreased load intensity. Significant effects of damage evo
SHM performance, such as minimum detectable damage siaggon could not be confirmed throughout these experiments.
to define a lower bound of POD as accuracy of the inspectionHereafter, experiments were performed using variable
method, and probability of false alarm are derived. Howevedxcitation motions. From the experimental results it beesm
identification of the underlying distribution functions isevident, that the performance of the classifier strongly
— particularly in context of in-situ inspection techniquesjepends on the excitation motion. However, a direct
where a posteriori verification of real damage size is uguallelationship could not be established due to large sprgadin
not possible — still an open issue. of the classification results among multiple specimens
From the aforementioned approaches to SHM reliabiliyf identical structure, partly leading to contradicting
assessment it is noticeable, that the common weak podtiservations. Based on the chosen example related to fault
is characterized by missing detailed knowledge about thetection and damage discrimination in CFRP material, the
impact of different factors on SHM related reliabilitylarge scattering of the classification reliability undeatical
properties. In this context, especially the experimentaltesting conditions is identified a major challenge in the
shown results from the previous section states, that tbentext of reliability assessment of SHM systems.
loading (which is unknown in practice) strongly effects the
detectability of defects as well as the distinguishabitify Funding
different damages. However, large scattering of the result

prevents the establishment of a direct relationship, whigkﬁ"s research received no specific grant from any funding@g

. L the public, commercial, or not-for-profit sectors.
strongly aggravates the online monitoring as well as the

verification of healthy states.
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Summary and outlook

Composite materials provide several advantages in many
: ; oo .F%eferences

engineering applications. However, the more extensiv

use is currently restricted because safety and reliabilitg. Pérez MA, Gil L and Oller S. Impact damage identification

requirements can not be met due to complex damage modes.in composite laminates using vibration testingZomposite

Therefore, the diagnosis of composite material was chasena Structures2014; 108(1): 267-276.

a showcase of SHM due to its practical relevance. Relighbilit2. Agarwal BD, Broutman LJ and Chandrashekharafalysis

assessment of supervised SHM systems is an open issueand performance of fiber compositeslohn Wiley & Sons,

which is to be solved before SHM comes into practice. 2006.
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