Embedded Systems
WS 08,09

Maritta Heisel
Maritta.Heisel(AT)uni-duisburg-essen.de

Denis.Hatebur(AT)uni-duisburg-essen.de
University Duisburg-Essen — Faculty of Engineering

Department of Computer Science
Workgroup Software Engineering

1/341

file:Maritta.Heisel(AT)uni-duisburg-essen.de

Content of lecture

ES

Introduction LeCture
m Characteristics of embedded systems

m Development process for embedded systems

m Notations to be used in the development process
|

If we have time: safety and security aspects of embedded
systems, fault tolerance

Practical part of the course

m Development of a simple embedded system according to
the development process

2 /341

Organizational issues of the course

ES

Introduction

m Lecture: Tuesday 12-14, room BA 143

m Exercises and practical training: Tuesday, 14-16, room BA
143
beginning: Oct. 21, 2008

m Course material will be published under
http://swe.uni-duisburg-essen.de/

3/341

Organizational issues of the lab |

ES

Heisel

m Set up groups of at least 3 and at most 5 students.

Introduction

m Announce your group until 2008-10-19= 1 email per
group with names and matr.-numbers
(denis.hatebur@uni-due.de)!

m Work on tasks and submit the group solution and all
previous solutions in one .pdf-file until following Sunday
23:59. The email must include names and matr.-no of all
members. The .pdf-file should include only the number of
the group.

m If more than two solutions are submitted too late, the
whole group will not pass the lab.

m All tasks must be processed.

4/341

Organizational issues of the lab Il

ES

Introduction

To pass you have to attend all labs and submit all
solutions in time (max. 2 exceptions).

m Everyone has to present the group solution at least (!)
once.

m It must be indicated in the mail who performed the tasks
and who performed the validation.

m All solutions will be published on the web.

5/341

Literature |

ES

Heisel

m Alan Burns and Andy Wellings: Real-Time Systems and
Programming Languages.
Pearson Education, 2001.

Introduction

m Denis Hatebur: A Pattern- and Component-Based Process
for Embedded Systems Development.
University Duisburg—Essen, 2006,
http://swe.uni-duisburg-essen.de/intern/dpes.pdf

m David E. Simon: An Embedded Software Primer.
Addison-Wesley 2004.

m Ahmad lbrahim: Fuzzy Logic for Embedded Systems
Applications (Embedded Technology), 2003

6 /341

Literature Il

ES

Manfred Broy and Wolfgang Pree: Ein Wegweiser fiir
Forschung und Lehre im Software-Engineering
Introduction eingebetteter Systeme,

Informatik Spektrum, 18/2003, Volume 18.

m Michael Jackson: Problem Frames. Analyzing and
structuring software development problems.
Addison Wesley, 2001.

m Michael Jackson. Problems and requirements. In
Proceedings of the IEEE Second International Symposium
on Requirements Engineering. ACM Press, 1995.

Heisel

m Michael Jackson and Pamela Zave. Deriving specifications
from requirements: an example. In Proceedings 17th Int.
Conf. on Software Engineering, Seattle, USA, S. 15-24.
ACM Press, 1995.

7 /341

Literature IlI

= Pamela Zave and Michael Jackson. Four dark corners of
Heisel requirements engineering. ACM Transactions on Software
Introduction Engineering and Methodology, 6(1):1-30, January 1997.
Available at
http://www.research.att.com/~pamela/ori.html#fre
m UML Superstructure Specification, v2.0 (709 Pages, 5.4
MB)
http://www.omg.org/docs/formal /05-07-04.pdf
m Laurent Doldi: UML 2.0 Illlustrated.
TMSO, 2003.
http://www.tmso-systems.com
m M. Jeckle, C. Rupp, J. Hahn, B. Zengler, S. Queins: UML
2 glasklar.
Hanser, 2004.

8/341

Some definitions of embedded systems

ES

Heisel

m Embedded systems are computer-based systems being part
Introduction of products other than a computer (Broy and Pree, after
Simon)

m Embedded systems are information technology systems
embedded in an electro-mechanical environment.
(Borusan and Weber)

m ...applications whose prime function is not that of
information processing, but which nevertheless require
information processing in order to carry out their prime
function. (Ahmad lbrahim)

About 99% of the worldwide production of microprocessors is
used in embedded systems (Burns and Wellings).

9/341

Typical tasks of embedded systems (Burns and
Wellings)

ES

Heisel

Process Control The computer interacts with its environment

tosuction using sensors and actuators.

It controls the operation of the sensors and actuators to
ensure that correct plant operations are performed at
appropriate times.

Where necessary, analogue to digital (and vice versa)
converters must be inserted between the controlled process
and the computer.

Manufacturing The physical system consists of a variety of
mechanical devices — such as machine tools, manipulators
and conveyor belts — all of which need to be controlled and
coordinated by the computer.

10 /341

Application domains of embedded systems

ES

Heisel

e automotive
aviation and space technology
medical technology

traffic guidance technology
industrial automation
telecommunications

business

entertainment

household

11/341

Examples for embedded systems

ES

Introduction

anti-lock braking system (ABS)
smartcard

washing machine

traffic light

temperature control unit

elevator control unit

12 /341

ES

Introduction

Characteristics of embedded systems |

specialized for a particular purpose
limited amount of resources (memory, power)
high number of copies

combination of hardware and software

often security or safety critical

connected via bus systems to other information technology
systems

larger embedded systems are often configurable

faults in embedded software are expensive

13 /341

Characteristics of embedded systems |l

ES

Introduction

Embedded Software ...

m is usually reactive or continuous

m works on hardware with limited resources
m often has to fulfill safety or security requirements
m often fulfills timing requirements

m performs several tasks on one hardware

14 /341

Embedded vs. real-time systems

ES

Heisel Often used synonymously.
e In contrast, we consider real-time systems to be a special kind
of embedded systems:

A real-time system is any information processing
activity of a system which has to respond to
externally generated input stimuli within a finite and
specified delay. (Burns and Wellings)

Real-time does not mean to be very fast. But if a real-time
system does not react within the specified delay, this is
considered to be a system fault.

Hard real-time system: delay in reaction may cause danger to
life of people or assets.

15 /341

Overview of development process (DePES)

16 /341

Overview of development process (DePES) |

o

1.
2.
3.
4.

Describe system in use
Describe system to be built
Decompose problem

Derive a machine behavior specification for each
subproblem

Design global system architecture

Derive specifications for all components of the global
system architecture

Design an architecture for all programmable components
of the global system architecture that will be implemented
in software

17 /341

Overview of development process (DePES) Il

10.
11.
12.

. Specify the behavior of all components of all software

architectures, using sequence diagrams

. Specify the software components of all software

architectures as state machines

Implement software components and test environment
Integrate and test software components

Integrate and test hardware and software

18 /341

Phase 1: Describe system in use

informal description of the task

natural language

text diagram must be described.

output: context diagram of system in use Jackson without machine
domain
shortcomings natural language
domain knowledge D (F A A) natural language, (HTA,
state machines)
glossary with definitions and designa- | natural language
tions
list of possible development alternatives | natural language
validation] all domains and phenomena in the con-

the context diagram must contain all
domains necessary to describe the short-
comings.

shortcomings must be stated using ele-
ments of the domain knowledge descrip-
tion.

the glossary contains the notions used
in D.

each entry in the list of possible develop-
ment alternatives must consider at least
one of the shortcomings.

19/341

Phase 2: Describe system to be built

on the context diagram of system in use
to derive the context diagram of system to
be built

input: all results of Phase 1 Jackson/ natural lan-
guage
output: system mission statement natural language
selected development alternatives natural language
context diagram of system to be built ext. Jackson
changed domain knowledge D (F A A) natural language, (HTA,
state machines)
initial set of requirements Rj,; natural language
requirements R to be implemented natural language
validation] only the limited set of operators is applied

system mission statement must address
the shortcomings or refer to domain knowl-
edge of the system in use

domains and phenomena in the context di-
agram and in R and D must be consistent

R must be a subset of Rj;:

changes in the domain knowledge must be
justified by the requirements

D A R are non-contradictory

20 /341

Phase 3: Decompose problem

requirements R to be imple- | natural lan-
mented of Phase 2 guage
domain knowledge D of | natural lan-
Phase 2 guage

context diagram of Phase 2

ext. Jackson

gram of Phase 2

output: set of problem diagrams with | Jackson with
associated set of requirements | dot-notation
expression of the subproblem | grammar
relationships

validation] consistent with context dia-

requirements R of Phase 2
must be treated in at least one
subproblem

21 /341

Phase 4: Derive a machine behavior specification

for each subproblem P;

requirements R from Phase 2

natural language

domain knowledge D from Phase 2

natural language

problem diagram for P; from Phase 3

Jackson with dot-
notation

output: specification Sp, of machine to construct natural language
sequences of interactions with annotated states | sequence diagrams
for the domains in the environment, expressing | with annotated
Rp, and Dp, states
sequences of interactions on initialization sequence diagram
with annotated
states
validation] D A Sp, are non-contradictory

DA SP[= Rp,

all requirements must be captured

in the sequence diagrams refined phenomena of
the problem diagrams are used as signals

direction of signals must be consistent with con-
trol of shared phenomena

signals must connect domains as connected in
problem diagram

the relationships of Phase 3 must be consistent
with the states

22 /341

Phase 5: Design global system architecture |

context diagram from Phase 2

ext. Jackson

problem diagrams from Phase 3

Jackson with dot-
notation

sequences of interactions between machine
and environment of all subproblems from
Phase 4

sequence diagrams

expression of the subproblem relationships | grammar
from Phase 3
output: | system architecture composite struc-
ture diagram
perhaps subcomponents (recursively) composite struc-

ture diagrams

purpose of each component

natural language

specification of external interfaces

interface classes

specification of interfaces between the com-
ponents

interface classes

technical description of hardware interfaces | natural language,
figures
expression of the subproblem relationships | grammars

for all components

/341

Phase 5: Design global system architecture |l

validation: all machine interfaces of the problem dia-
grams must be captured

the signals in the sequence diagrams must
be the same as the signals in the external
interfaces

to each programmable component at least
one problem diagram must be associated
each problem diagram must be associated
to at least one component

all domains in the problem diagrams being
part of the machine must be associated to
a component

each machine domain in the context dia-
gram must occur in the architecture
purpose must be consistent with the asso-
ciated requirements

the grammar for each component must de-
scribe a subset of the grammar in Phase 3

24 /341

Phase 6: Derive specifications for all components

of the global system architecture

For each subproblem:

input: architecture from Phase 5 composite structure
diagrams
interface specifications from Phase 5 interface classes
subcomponents (if defined) from Phase 5 composite structure
diagrams
sequences of interactions from Phase 4 sequence diagrams

with annotated states
or existing technical
documentation
output: interface behavior of all components (test spec- | sequence diagrams
ification) with annotated states
validation] sequence diagrams together must describe the
same interface behavior as in Phase 4

all signals in the interface classes of Phase 5
must be used in at least one sequence diagram
direction of signals must be consistent with the
required and provided interfaces of Phase 5
signals must connect components as connected
in the system architecture of Phase 5

it must be possible to map the new states to the
states of Phase 4

25/341

Phase 7: Design a software architecture for all

components of the global system architecture

global system architecture from Phase 5

composite structure dia-

gram
problem diagrams from Phase 3 Jackson with dot-
notation
interface specifications from Phase 5 interfaces classes
relationships between subproblems specified in Phase 5 | grammars

possibly reusable components from other projects

(Phase 9)

active or passive classes
with interface classes

machine behavior specifications from Phase 4

sequence diagrams with
annotated states

output: layered software architecture for each subproblem composite structure dia-
grams
merged layered software architecture (with subcompo- | composite structure dia-
nents) grams
purpose of each software component natural language
specification of interfaces between software components | interface classes
validation] if no instantiation of architectural patterns: consistent

with problem diagram

signals of Phase 4 sequence diagrams are interfaces of
the application layer

direction of all signals consistent to each other and input

external interfaces must be consistent with the interfaces
of the system architecture developed in Phase 5

26 /341

Phase 8: Specify the behavior of all components of

all software architectures, using sequence diagrams

For each subproblem:

the same interface behavior as in Phase 6

input: software architectures from Phase 7 composite structure
diagrams
interface specifications from Phase 7 interface classes
system behavior from Phase 4 sequence diagrams
with annotated states
interface behavior of all programmable compo- | sequence diagrams
nents from Phase 6 with annotated states
output: interface behavior of all software components | sequence diagrams
(test specification) with annotated states
validation] all sequence diagrams together must describe

all signals in the interfaces classes of Phase 7
must be used in at least one sequence diagram

direction of signals must be consistent with the
required and provided interfaces of Phase 7

signals must connect components as connected
in the software architecture of Phase 7

it must be possible to map any new states to the
states of Phase 6

27 /341

Phase 9: Specify the software components of all

software architectures as state machines

interface behavior from Phase 8

sequence diagrams

with annotated
states
relationships between subproblems speci- | grammars

fied in Phase 5

Phase 8

output: component overview description with refer- | class diagram with
ences to interface classes ports, sockets and
lollipops
data types and operations class diagrams
defined using pre- and postconditions formulas or natu-
ral language
state machines state machine dia-
grams
invariants formulas or natu-
ral language
validation; consistent with interface behavior from

completeness of state machines (implies
error-cases for user-interaction)

a class must be active if it contains an ac-
tive class or a timer

28 /341

Phase 10: Implement software components and
test environment

software component behavior from

Phase 8

sequence diagrams
with annotated states

specification of merged components of
Phase 9

different notations

output: | test software for software components | programming lan-
guage or test lan-
guage
implemented software components programming lan-
guage
validation] run tests test results

29/

341

Phase 11: Integrate and test software components

global software architecture from
Phase 7

composite structure dia-

grams

software behavior from Phase 6

sequence diagrams with an-
notated states

implemented software
nents from Phase 10

compo-

programming language

output: implemented software programming language
test software for integrated soft- | programming language or
ware test language

validation] run tests test results

30/

341

Phase 12: Integrate and test hardware and software

system architecture from Phase 5

composite structure dia-

gram

system from

Phase 4

specifications

sequence diagrams with an-
notated states

expression of the subproblem re-
lationships from Phase 3

grammar

implemented software from | programming language
Phase 11
output: integrated system machine
acceptance test cases test system and/or test
plans
validation{ run tests test results

31/

341

Phase 1: Describe system in use

Describe system in use

Describe system to be built
Decompose problem
Derive machine behavior specification for each subproblem

Introduction

Design global system architecture

ook wnh =

Derive specifications for all components of the global
system architecture

7. Design a software architecture for all components of the
global system architecture that should be implemented in
software

8. Specify the behavior of all components of all software
architectures, using sequence diagrams

32/341

Introduction

Phase 1: Describe system in use

informal description of the task

natural language

text diagram must be described.

output: context diagram of system in use Jackson without machine
domain
shortcomings natural language
domain knowledge D (F A A) natural language, (HTA,
state machines)
glossary with definitions and designa- | natural language
tions
list of possible development alternatives | natural language
validation] all domains and phenomena in the con-

the context diagram must contain all
domains necessary to describe the short-
comings.

shortcomings must be stated using ele-
ments of the domain knowledge descrip-
tion.

the glossary contains the notions used
in D.

each entry in the list of possible develop-
ment alternatives must consider at least
one of the shortcomings.

33/341

Notations and concepts

Terminology
. Context diagrams
Notations Requirements

Domain knowledge

Glossary

Specification

34 /341

Terminology: System, machine and environment |

m A system consists of a machine and its environment.

m System is a recursive term: A system can consist of other
systems.

Terminology

m The machine is the system to be built.

m Each machine acts in an environment

35/341

Terminology: System, machine and environment ||

Goal: Design of a system with specified characteristics
Example: An elevator should enable persons in a building to
get from one floor to another.

Components of the system:

Terminology

m environment: part of “real world” relevant for the problem
Example: floors, persons, cage, doors, engine,
buttons, sensors, ...

m machine: controlling software and suitable hardware

Properties of the environment are fixed. We have to build the
machine, so that it realizes the desired properties of the system.

36 /341

Terminology: Phenomena |

State and behavior of the environment can be described by
phenomena. Examples:

m Elevator
Person presses button, expects, that the elevator arrives.

m Bank
Client gives withdrawal instruction, expects a withdrawal.

Terminology

Machine can interact with the environment by
m observing certain phenomena (input) (— sensors)

m causing certain phenomena (output) (— actuators)

37 /341

Terminology: Phenomena Il

Phenomena

m are actions/events/operations that occur in the
environment
m are important for expressing statements

Terminology

m can be observed or controlled by the environment or the
machine, respectively

Examples:
m waiting in front of the elevator
m pressing the button inside the elevator

m elevator door closes

38 /341

Terminology: Control of phenomena

1. Controlled by the environment, not observable by the
machine
Example: waiting in front of the elevator

2. Controlled by the environment, observable by the machine
Example: pressing the button inside the elevator

Terminology

3. Controlled by the machine, observable by the environment
Example: elevator door closes

The category “controlled by the machine, not observable by the
environment” is not considered in this phase, since internal
phenomena of the machine do not belong to the requirements.

39 /341

Context diagrams

Distinction between environment and machine

m Representation of the connections between environment
and machine
dingrams m Structuring the environment into a machine and (usually
several) problem domains
m Connections between domains
m Represent the world, when the machine is in operation

40 /341

Context diagrams — Notation

Domains = Rectangles
Interfaces = Lines
Types of domains:
Context
diagrams
given domain designed domain machine domain

Interfaces between domains = shared phenomena
e.g., driving a nail with a hammer

41 /341

Context diagram example: patient monitoring
system

A patient monitoring program is required for the intensive-care

unit of a hospital. Each patient is monitored by an analog

device which measures factors such as pulse, temperature,

blood pressure, and skin resistance.

Context The program reads these factors on a periodic basis (specified
for each patient) and stores the factors in a database. For each

patient, safe ranges for each factor are also specified by medical

staff.

If a factor falls outside a patient’s safe range, or if an analog

device fails, then the nurses’ station is notified.

42 /341

Related (provisional) Context Diagram

Periods & Nurses’
Ranges station
Gontext Monitor Factors
iagrams
machine database
Medical
staff Analog ICU
devices patients

43 /341

Context Diagram of a Problem

m forms the basis for structuring and analyzing the problem
m shows all domains that need to be taken into consideration

Context m everything that does not appear in the context diagram, is
not considered

= careful selection of domains necessary!

44 /341

Example: different possibilities for the database
domain

m Factor database as given domain
= it already exists, does not have to be designed

m If it were part of the task:

Context Monitor Factors

diagrams machine database

Only sensible, if the database is also used by other
systems.

m Otherwise: Database as part of the machine that is to be
constructed, no separate domain in the context diagram

45 /341

Context
diagrams

Context Diagram — Complete Notation

Periods &

Ranges

Write down shared phenomena at the connecting lines

Monitor
machine

Medical
staff

a: Period, Range, PatientName, Factor

Nurses’ b: EnterPeriod, EnterRange,
station EnterPatientName, EnterFactor
c: Notify
d: Factors
e: RegisterValue
Factors f: FactorEvidence
database
Analog ICU
devices patients

46/

341

Extended Context Diagrams

Systems with more than one machine are necessary, when the
machines are physically distributed (e.g., Client-Server
Systems). Therefore, Jackson’s context diagrams are extended
to allow more than one machine domain.

Context
diagrams

User edit Client requests Network
A requests,
config
change_
Administrator settings Client config Server
B

47 /341

Context Diagram — Connection Domains |

Patients and the machine are not directly connected, but
indirectly through a causality chain:

C)
diagroms Monitor Analog ICU
machine devices Patients
|
Register value Sound pulse Heart beat

48 /341

Context Diagram — Connection Domains ||

Shared phenomena in context diagrams are abstractions of real
phenomena, e.g. by

m omitting properties that are not relevant for the purpose
at hand at that moment
e.g., the event Notify surely has arguments

m treat complex episode of interaction as an instantaneous
Context
diagrams event

Care must be taken in the latter abstraction, as the following
example taken from retail shows:

Accounts a Retail
Department customers
a: Bill, Pay

49 /341

Context
diagrams

Context Diagram — Connection Domains Il|

If issuing an invoice and payment are carried out via postal
mail, then the above mentioned context diagram would
represent a (too great) abstraction of what actually happens :

Accounts b Post ¢ Retalil

Department Office customers

b: SendBill, ReceivePayment

c: SendPayment, ReceiveBill

The phenomena Bill and Pay are in fact no shared phenomena
of AccountsDepartment and RetailCustomers, since the mail
acts as intermediary, which causes delays and uncertainties.

= We need the Post Office as a connection domain.

50 /341

Context Diagram — Connection Domains IV

Connection domains are necessary, if

m they are explicitly mentioned in the requirements, such as
analog devices in the patient monitoring system

e m may cause delays, that cannot be ignored, as shown in the
retail example

m the transmission via the connection domain is unreliable,
e.g., failure of an analog device.

51 /341

Setting up Context Diagrams

Problem: circularity:

m It can only be decided on the context, if an overview of
the problem is available.

Context

diagrams m A problem is only properly known, if its embedding in
environment is known.

— lterative analysis of problem context and requirements

52 /341

R, D & S — Requirements and specification |

m Known:
(1) Fixed characteristics of the environment (domain
knowledge)

(2) Desired characteristics of the system (requirements)

m Clear: Machine must close the “gap” between (1) and (2)

m Searched: specification of the machine
“How should the machine act, so that the system fulfills
the requirements?”

Requirements describe the environment, the
way it should be, after the machine is inte-
grated.

53 /341

R, D & S — Functional vs. non-functional
requirements

m Functional requirements: state how the system should act

m Non-functional requirements: concern quality
characteristics such as efficiency or user-friendliness

correctness
77

fulfillment of functional requirements
fulfillment of non-functional requirements

~
o~

Decisions on fulfillment of non-functional requirements need
the definition of separate criteria!
In the following: only functional requirements

54 /341

R & D — Types of statements

Indicative Statements describe the environment irrespective of
how the machine is built.
Other notion: domain knowledge.
Example: a door cannot be open and closed at the same
time.

Optative statements describe the environment, in the way we
would expect it after the machine is integrated.
Example: After the button was pressed, the elevator stops
at the corresponding floor.

Note: Statements are characterized by being
true or false.

Requirements are thus optative statements.
55 /341

D — Types of domain knowledge

Facts describe conditions that are always fulfilled.
Example: When the motor turns right, the elevator moves
to a higher floor
(This fact is needed to transform the requirement “Move
to another floor” into a specification with phenomena
visible to the machine (turn motor right).)

Assumptions describe conditions that are needed, so that the
requirements are satisfiable.

Example: When the elevator reaches my floor, | enter
(This assumption is needed for fulfilling the requirement
that the elevator carries all waiting persons to their
destination.)

56 /341

D — Types of domain knowledge: Facts

m When it rains, the sensor gets wet.

m A wet sensor has an impedance below 100 2, and a dry
sensor has an impedance above 200 €.

m When a airplane is on the ground and it is not stopped the
wheels are turning. (7)

m When a car passes the sensor a pulse is generated.

57 /341

D — Types of domain knowledge: Assumptions

m In case of fire the user presses the emergency button.

m The cars passing the sensor have a height of more than
one meter.

m The button is pressed for more than 0.5 seconds.

58 /341

R & S — Specifications

m are descriptions that are sufficient for building the machine
m are implementable requirements

m correctness condition:

If the machine fulfills the specification, the sys-
tem fulfills the requirements.
SAD=R

59 /341

R & S — Specifications vs. requirements

Requirements are NOT implementable, if they

m constrain actions that are controlled by the environment
Example: The elevator is not be overloaded.

m refer to actions that are not observable by the machine
Example: The elevator should go to a floor where people
are waiting.

m express conditions that can only be decided in the future
Example: As soon as a user has dialed the last digit, he
receives the dial tone, the busy signal, or the
announcement “number not assigned”.

60 /341

Glossary — Designations

m System descriptions require designations as basic
vocabulary

m Each designation has
(1) a name
(2) a (detailed) explanation
Example.: A student is somebody who is enrolled at a
university.

m With designations, we can form statements, e.g.

Vs : student e 3/ : lecture o enrolled(s,)

(assuming that designations of lecture and enrolled are
available)

61 /341

Glossary — Definitions

m expand the available vocabulary, but not its expressiveness

m can be absurd or useless, but not false

A defined notion can always be replaced by its definition.
Example:

student(s) = 31 : lecture o enrolled(s, I)

62 /341

Summary

Summary of the terminology

You should have learned the following notions:

machine
environment
designation
definition

indicative statement

optative statement

assumption
fact

shared phenomenon (action /
event / operation)

requirement

specification

63 /341

Procedure

Phase 1: Describe system in use

informal description of the task

natural language

text diagram must be described.

output: context diagram of system in use Jackson without machine
domain
shortcomings natural language
domain knowledge D (F A A) natural language, (HTA,
state machines)
glossary with definitions and designa- | natural language
tions
list of possible development alternatives | natural language
validation] all domains and phenomena in the con-

the context diagram must contain all
domains necessary to describe the short-
comings.

shortcomings must be stated using ele-
ments of the domain knowledge descrip-
tion.

the glossary contains the notions used
in D.

each entry in the list of possible develop-
ment alternatives must consider at least
one of the shortcomings.

64 /341

Executing Phase 1 |

All items of the output can be developed in parallel. The following
points should be considered after we have an initial context diagram
and some initial shortcomings:

m A shortcoming usually refers to some domains that must be
introduced.

m Each domain requires a description of its domain knowledge.

m Each domain controls or observes some phenomena that must
Procedure be decribed in the context diagram and may need a description
in the glossary.

m For a shortcoming a new development alternative can be
identified.

m A new development alternative may also address other
shortcomings.

65 /341

Executing Phase 1 |l

m An assumption may show us that there are additional
shortcomings.

Procedure

66 /341

Procedure

Remarks |

Only the actual state is described.
Possible solutions are discussed.
Problem: Which domains should be described.

Solution: Those domains, that are relevant for describing
the shortcomings.

For users in the environment a Hierarchical Task Analysis
(HTA) can be performed, see
www.hfidtc.com/pdf/reports/HTA%20Literature%20Review.pdf .

Other systems in the environment can be described by
state machines (the notation is introduced in Phase 9).

Do not forget to include the existing solution in the list of
alternatives (even if it addresses no shortcoming).

67 /341

Example 1: traffic light control

68 /341

Informal description of the task

We should build a system
that prevent accidents on
the crossing. It should
also help the fire brigade

A (on the left) to pass the
crossing and arrange for a
B fair and adapted flow of

traffic between the main
road (horizontal) and the
secondary road (vertical).

69 /341

Context diagram of system in use

: waiting area
crossing
of secondary road
%2\%’ vehicle_waiting
enter,
leave
road users old ‘?"‘.’ broken
on lanes traffic light
control
Example - TLC so6. red) Okn’ off]
see_green roken see_re!
see_yellow see_green
lights see_yellow

fire brigade

70 /341

Shortcomings

SC2:

SC3:
SC4:

. The old traffic light control is broken and cannot be

repaired and improved.

Vehicles of the fire brigade are disturbed by cars on the
secondary road when the secondary road is not allowed to
pass. This causes delays in case of fire.

The amount of traffic has increased on both roads.

Too many accidents happened without working traffic
lights.

71 /341

Example - TLC

Domain knowledge: Facts |

F5 :
F6 :
F7 -

F8 :
Fo :

. Traffic rule: stop if red (see_red).
F2:
F3:
F4

Traffic rule: cross if green. (see_green)
Traffic rule: leave crossing as fast as possible.

Fair means (for this crossing) that vehicles on the main
road are allowed to pass the crossing for more than twice
the time vehicles of the secondary road are allowed.

Traffic rule: if yellow (see_yellow): stop if possible.
Vehicles cannot stop immediately.

A broken light bulb can be detected by measurement of
the electric current (no current = no light).

There are tunnels for pedestrians.

Induction loops can be used for monitoring the waiting
area of secondary road.

72 /341

Domain knowledge: Facts Il

F11:

F12 :

F13:

. The lights operate with a power supply of 24 V.

The fire brigade is allowed to ignore the red light (but
must be careful).

If the red phase is more than 30 s, some car drivers
ignore the red light.

The old traffic light control is broken and cannot be
repaired. Before, the vehicles on the main road were
allowed to pass until a vehicle on the secondary road was
detected. Cars in the secondary road were allowed to
pass for 5 seconds.

73 /341

Domain knowledge: Assumptions

. All vehicles follow the traffic rules.

A2 : Pedestrians use the pedestrian tunnels.

Example - TLC

74 /341

Example - TLC

Glossary for crossing

lane / waiting area of main road: A
lane / waiting area of secondary road: B
traffic lights: device containing colored
light bulbs to signal “stop” or “go”

fire brigade: F

crossing: critical section: C

vehicle waiting: sensor detecting if a
vehicle is in the waiting area of the
secondary road

accident: 2 or more vehicles at the same
time at the same place

75 /341

List of development alternatives

. Remove old traffic lights and use signs (addresses
shortcoming SC1)

ALT2: Replace old traffic lights by a roundabout/rotary
(addresses shortcomings SC1, SC3, and SC4)

ALT3: Replace the broken traffic lights control by a new traffic
lights control (addresses shortcomings SC1, SC2, SC3
and SC4)

ALT4: Leave everything as it is

76 /341

Validation |

All domains domains and phenomena in the context diagram
are described:

crossing: F4

road users on lanes: F1, F2, F3, F5, F6, F12,
Al

waiting area of secondary road: F9

old and broken traffic light control: F13
lights: F10, F7

fire brigade: F11

The pedestrians are not considered in the context diagram,
since pedestrian tunnels exists and are used (F8, A2). The

77 /341

Validation |l

context diagram contains all domains necessary to describe the
shortcomings and the shortcomings are stated using elements
of the domain knowledge description.

SC1: old and broken traffic light control

SC2: fire brigade, waiting area of secondary road, road users on
lanes

SC3: old and broken traffic light control
Sempia- It SC4: old and broken traffic light control

The glossary shoud contain the notions used in D. The given
TLC glossary is just an example and not complete. Each entry
in the list of possible solutions considers at least one of the
shortcomings. This is directly stated on the corresponding slide.

78 /341

Example 2: sun blind control

Example - SBC

79 /341

Informal description of the task

A building is equipped with sun blinds made up of metallic fins
which are attached to the outer side of the window. The sun
blinds are controlled manually. Unfortunately, the sunblinds can
be destroyed by heavy wind if they are not pulled up. The
system should be improved to achieve a comfortable working
e G ambiance by not disturbing the users by sunshine.

80 /341

Context diagram of system in use

sun blind
with fins

c

sun user wind

b: heavy wind, no heavy wind

c: lower sun blind, pull up sun blind, stop sun blind, sun blind
is lowered, sun blind is pulled up, rotate fins with positive
degree, rotate fins with negative degree

Example - SBC

d: destroy sun blind

e: sunshine, no sunshine

81 /341

Example - SBC

Shortcomings

SC2:

SC3:

SC4:

. Users forget to pull up the sunblind when there is no

sunshine what may have an influence on the well-being
and health of users.

Users forget to pull up the sunblind when there is heavy
wind or even do no recognize that there is heavy wind.

Users have to stop their work to lower the sunblind if
there is sunshine with high intensity and the users cannot
read their monitor content.

Sometimes users destroy the sunblind accidentally by
pulling heavily at the wires.

82 /341

Example - SBC

F3:

Fa:

F5:

Fo:

F7:

. Interface between user and sun blind are the control wires.
F2:

The intensity of sunshine on a sunny day ranges from 32
000 lux to 100 000 lux. More than 32 000 lux makes it
hard to read content of a standard monitor.

The fins are turnable from 80° to 0° and to -80°. If a user
tries to rotate more (with normal power), nothing happens.
Heavy wind has a speed of more than 80 kilometers per
hour. No heavy wind has a speed of less than 80 kilometer
per hour.

The sun blind is destroyed by heavy wind.

The sun blind is destroyed if the user pulls too heavily at
the wires (especially if the sunblind is lowered or pulled up).
The fins have an interface that can be directly connected
to a microcontroller.

83 /341

Example - SBC

Assumptions

A3:
A4
Ab:
Ab:

AT:

Assumptions, description of user:

Al:
A2:

Users usually lower the sunblind when the sun is shining.
Users pull up the sunblind when the sun is not directly
shining

Users pull up the sunblind when there is heavy wind.
Users adjust the fins as convenient.

User recognize if the wind is blowing heavily (heavy wind).

Users pull up the sunblind when they want to look out of
the window.

Users lower the Sunblind when they do not want to be
seen.

84 /341

Glossary for sun blind (example)

Designations:

metallic fins: metallic plates rotating on a horizontal axis.
outer side: not inside the building.
windows: part of a building made of glass.

sun blind: is made up of metallic fins which are attached to
the outer side of the window.

sinshine: ...

Example - SBC

wind: ...
wire: . ..
microcontroller: ...

monitor: ...

85/341

Example - SBC

List of development alternatives

ALT2:

ALT3:

ALT4:

ALTS:

: Hire an employee who pulls up all sunblinds in case of

heavy wind. (addresses shortcoming SC1)

Replace sunblinds by drapes or other types of sunblinds.
(addresses shortcomings SC2 and SC4)

Replace the display units by monitors with higher
intensity and let the sunblind pulled up. (addresses
shortcomings SC1, SC2, SC3, and SC4)

Automatic sunblind control (addresses shortcomings
SC1, SC2, SC3, and SC4)

Leave everything as it is

86 /341

Validation |

All domains domains and phenomena in the context diagram
are described:

User: Al - A7, F1
Wind: F4, F5
Sunblind with fins: F1, F3, F5, F6, F7
BamelesSEE Sun: F2

87 /341

Validation |l

The context diagram contains all domains necessary to describe
the shortcomings and the shortcomings are stated using
elements of the domain knowledge description.

SC1: User, Sun, and Sunblind
SC2: User, Wind, and Sunblind

SC3: User, Sunblind (monitor intentionally left out, seen as
part of user domain)

SC4: User, Sunblind (wires intentionally left out, seen as part
Seampie - SEC of Sunblind domain)

The glossary contains exactly the notions used in D, but is not
complete. Each entry in the list of possible solutions considers
at least one of the shortcomings. This is directly stated on the
corresponding slide.

88 /341

Phase 2: Describe system to be built

Describe system in use

Describe system to be built
Decompose problem
Derive machine behavior specification for each subproblem

Design global system architecture

Introduction

ook wnh =

Derive specifications for all components of the global
system architecture

7. Design a software architecture for all components of the
global system architecture that should be implemented in
software

8. Specify the behavior of all components of all software
architectures, using sequence diagrams

89 /341

Introduction

Phase 2: Describe system to be built

on the context diagram of system in use
to derive the context diagram of system to
be built

input: all results of Phase 1 Jackson/ natural lan-
guage
output: system mission statement natural language
selected development alternatives natural language
context diagram of system to be built ext. Jackson
changed domain knowledge D (F A A) natural language, (HTA,
state machines)
initial set of requirements Rj,; natural language
requirements R to be implemented natural language
validation] only the limited set of operators is applied

system mission statement must address
the shortcomings or refer to domain knowl-
edge of the system in use

domains and phenomena in the context di-
agram and in R and D must be consistent

R must be a subset of Rj;:

changes in the domain knowledge must be
justified by the requirements

D A R are non-contradictory

90 /341

Executing Phase 2 |

m The system mission statements have to be defined. The
system mission statements can be derived from good
properties and from the shortcomings of the system in use.

m The development alternatives can be compared according

Procedure to their estimated costs and addressed shortcomings.

m The context diagram of the system to be built is created
by applying the following rules:

Introduce domain

Split domain

Remove domain with connected interfaces
Replace/change domain

Add or remove interfaces and phenomena for introduced,
changed or replaced domains and between split domains
Connect interfaces to other domains

91/341

Executing Phase 2 |l

m State the requirements in terms of domains and
phenomena of the context diagram.

m Give the condition for each requirement explicitly.
Requirements consist of a precondtion and a
postcondition. (when / if ... happens, do ...)

m State the domain knowledge for all introduced and
Procedure replaced domains.

m Verify and update existing domain knowledge.

For each system mission statement:

m Determine all requirements that are necessary to achieve
it.

m Determine if the necessary requirements (together with
the domain knowledge) are also sufficient to achieve the
mission statement. If not, more requirements are needed.

92 /341

Executing Phase 2 IlI

The requirements obtained in this way are the “need-to-have”
(mission-critical) requirements.

All other requirements are “nice-to-have” requirements or the
system mission must be adjusted. The “nice-to-have”
requirements should be prioritized, and a return-on-investment
analysis should be performed.

Result: Consolidated set of requirements to be achieved (all of
the mission-critical plus selection of the “nice-to-have”
requirements).

Procedure

93 /341

Remarks |

m Only the desired state is described.
Procedure

m One of the possible solutions is chosen.

94 /341

Example 1: traffic light control

95 /341

System mission

The system should prevent accidents on the crossing.

SM2 : The system should help the fire brigade to pass the
crossing with priority.

SM3 : The system should arrange for a fair and adapted flow

of traffic between the main and the secondary road (and

maximize the flow of traffic).

Example - TLC

96 /341

Select development alternative

ALT1: Using signs will not improve the fair flow of traffic.

ALT2: A parcel of land must be bought to build a
roundabout/rotary big enough for the vehicles of the
fire brigade. The owner does not want to sell his parcel
of land for an acceptable price. Estimated costs:

m Parcel: EUR 5.000

Example - TLC m Build the roundabout: EUR 20.000

ALT3: For a new traffic lights control the old lights and
induction loops can be reused. Estimated costs:

m New control: EUR 5.000
m Maintanance: EUR 500 / year
ALT4: Costs of accidents are much higher

The roundabout charges off after 40 years

= new traffic lights control
97 /341

New context diagram for traffic lights

. waiting area
crossing
of secondary road
enter, . -
leave vehicle_waiting
enter,
leave L
road users traffic light
on lanes control
emergency_request
Example - TLC see red on, off
see_green broke see_red
see_yellow . see_green] .
lights see_yellow fire brigade

m the old and broken traffic light control is replaced (replace domain)

m the fire bridage can send an emergency request (add interfaces with
phenomena, change domain)

98 /341

Changed/added/removed domain knowledge

m Al and A2 are still true
m F1 — F12 are still applicable.

m F13 is removed (because domain is removed)

Example - TLC

The following assumption is added:

A3 : In case of emergency the emergency switch is activated
and deactivated emergency_request after crossing.

99 /341

Example - TLC

Initial requirements for traffic lights |

R2 :

R3 :

: When there is a car waiting (vehicle_waiting) on the

secondary road, the traffic lights should stop (see_red)
the flow of traffic on the main road for a period of time
and allow (see_green) the traffic flow on the secondary
road.

When the emergency switch is activated
(emergency_request), the flow of traffic on the main road
should be stopped (see_red) after a reasonable time and
the flow of traffic on the secondary road should be
allowed (see_green) after a reasonable time.

Vehicles on the main road should be allowed to pass the
crossing for a longer period of time than from the
secondary road (if not emergency-casel).

100 /341

Initial requirements for traffic lights Il

: While vehicles on one road are allowed to pass
(see_green), the others should be stopped (see_red).

R5 : The lights should switch in the following order: red -
red+yellow - green - yellow - red. Other combinations
(except “all off”, yellow blinking, and green - yellow -
green in emergency case?) are not allowed (see_red,
see_yellow, see_green).

el R6 : In case of a broken light bulb the traffic lights should
blink in yellow (see_yellow) for the secondary road, after
all red lights have been switched on for a period of time
(see_red).

R7 : After switching to red (see_red), the traffic flow of both

roads should be stopped (see_red) for a period of time *3.

1Added later to eliminate contradictions
2Added later to eliminate contradictions

3A star (*) denotes: added later
101 /341

Consolidate traffic light requirements |

RAFANA— SM

m SM1: avoid accidents
Accidents will not occur if at most one road gets the “go”
signal and cars have time to leave the crossing when the
signal is changed to “stop”, provided drivers obey to the
rules.
m necessary: R4 (at most one road may pass), R5 (yellow
before red, red/yellow before green), R7 (both roads get
“stop” signal for some time)

Example - TLC

102 /341

Consolidate traffic light requirements Il

m sufficient:
(RANFINAL)AN(FOARSARTAF3AF5AAL) = SM1

(only one road may pass, stop if red, vehicles follow rules)
(vehicles cannot stop immediately, correct order of
signalling, period with red for all, leave critical section as
fast as possible, stop on yellow if possible, vehicles follow
rules)

Example - TLC

m SM2: priority for fire brigade
This mission statement is achieved by the emergency
button.

m necessary: R2 (emergency button yields “go” signal for
secondary road)

103 /341

Consolidate traffic light requirements Il|

m sufficient: R2A F1AF2AA3A Al — SM2
(emergency button stops main road, stop if red, drive if
green, button is pressed on emergency, vehicles follow
rules)

m SM3: fair traffic flow
Requests from the secondary road must be taken into
account, but main road should be allowed to pass twice as
long as secondary road.
m necessary: R1, R3
m sufficient: R1AR3AFANA3 = SM3
(secondary road request leads to “go”, longer period for
main road, definition of fairness, emergency button is
released)

Example - TLC

104 /341

Consolidate traffic light requirements [V

Summary:
R’ = {R1,R2, R3, R4, R5, R7} (mission critical requirements)
Rinit \ R = {R6}

but R6 required for safety

= All requirements will be implemented, R = Rjp;z.

Example - TLC

105 /341

Validation |

m The applied operators for the context diagram are given
directly below the diagram.
m The system mission statement addresses the shortcomings
or refer to domain knowledge of the system in use:
S m SM1 (prevent accidents) addresses shortcomings SC4
m SM2 (help the fire brigade) addresses shortcoming SC2
m SM3 (fair and adapted flow of traffic) addresses
shortcomings SC3
m The phenomena and the domains of the context diagram
are printed emphasized in the requirements and in the

domain knowledge.

106 / 341

Validation |l

m All given and designed domains are referenced in the
requirements and the domain knowledge:
m The crossing is referenced in F4 and F6.
m The waiting area of main road is referenced in R3.

m The waiting area of secondary road is referenced in R1 and
Example - TLC F9
m The road users on lanes is referenced in
R1,R2,R3,R4, R7,F1,F2,F3,F5,F6, Al.
m The fire brigade with its emergency button is referenced in
R2, R3, A3.
m The lights are referenced in R5, R6, F7.

107 / 341

Validation Il

m Usually, in all requirements and domain knowledge only
elements of the context diagram are referenced.
Pedestrians are referenced in F8 and A2. A domain
pedestrian is not included in the context diagram since

Example - TLC there are no shared phenomena with the machine or other

domains being relevant for the problem.

m In D A R no contradictions were found.

108 /341

Example 2: sun blind control

109 /341

System mission

q =]
= |
== e |
(= | '
== =]
| e F—
I |
i 1 1
Example - SBC I~ {
- —
= P g
-_———r

SM1: Achieve a comfortable working ambiance by not beeing
disturbed by sunshine.

SM2: Achieve a comfortable working ambiance according to
user wishes.

110 /341

Select development alternative

For the SunBlind problem, we only consider the development
alternatives addressing all shortcomings.

ALT3: Replace the display units by monitors with higher
intensity and let the sunblind pulled up. (estimated costs
for each PC 4000 EUR)

ALT4: Automatic sunblind control. (estimated costs for each
window 1000 EUR)

Ratio PCs and Windows: 1 PC : 2 Windows
= Automatic sunblind control

111 /341

New context diagram for sun blind |

sun blind
with fins

un e sun blind b
wind
Example - SBC control

user

112 /341

New context diagram for sun blind Il

: manually adjust fins with negative degree, manually adjust
fins with positive degree, manually open sun blind, manually
close sun blind, stop closing sun blind, stop opening sun
blind (introduced with machine domain)

b: heavy wind, no heavy wind now connected to machine, not
to user

i G c: lower sun blind, pull up sun blind, stop sun blind, sun blind
is lowered, sun blind is pulled up, rotate fins with positive
degree, rotate fins with negative degree now connected to
machine, not to user

d: destroy sun blind

e: sunshine, no sunshine now connected to machine, not to
user

113 /341

Initial requirements for sun blind |

R1 If there is sunshine for more than one minute but no heavy
wind, the sun blind will be lowered (lower sun blind).
(Negation of precondition of R3 is included to prevent
contradictions. R8 has priority!)

R2 If there is no sun shine for more than 5 minutes, the sun
blind will be pulled up (pull up sun blind). (R8 has
priority!)

R3 The sun blind should not be destroyed: If there is heavy
wind, the sun blind will be pulled up (pull up sun blind).

114 /341

Initial requirements for sun blind Il

R4 If there is no heavy wind and the user manually adjusts the
fins with positive degree the fins are rotated with positive
degree (rotate fins with positive degree).

If there is no heavy wind and the user manually adjusts the
fins with negative degree the fins are rotated with negative
degree (rotate fins with negative degree).

St - SEE R5 If the user manually opens the sun blind, the sun blind will
be pulled up (pull up sun blind).

R6 If the user manually closes the sun blind and there is no
heavy wind, the sun blind will be lowered (lower sun
blind). (Negation of precondition of R3 is included to
prevent contradictions.)

115 /341

Example - SBC

Initial requirements for sun blind Il

R7

R8

The sun blind should not be destroyed: When the sun
blind is in its lowest position (sun blind is lowered) or in it
highest position (sun blind is pulled up) the sun blind
should stop (stop sun blind).

If the user interacts with the sun blind (manually opens
the sun blind, manually closes the sun blind, manually
rotate fins with positive degree or manually rotate fins with
negative degree), then sun shine and no sun shine are
ignored for the next 4 hours.

116 /341

Revised domain knowledge |

Al, A2, A3, A5 are removed
A4, A6, A7 are still true

F2, F3, F4, F5, and F7 are still applicable.

F1 is changed to: The control wires are connected to the
motor of the machine to be built. When the motor turns
right, the sun blind is lowered (lower sun blind). When
the motor turns left, the sun blind is pulled up (pull up
sun blind). When the motor stops, the sun blind is
stopped (stop sun blind).

F6 is changed to: The wires are protected from the user.
The sun blind is destroyed if the Sun Blind Control does
not stop pulling or releasing the wires (within 0.2 s) when
the sunblind is pulled up or lowered.

117 /341

Consolidate sun blind control requirements

The system mission can be split into the following parts:

SMI: react to sun shine (R1, R2, F1, F2, F3, F4)

SM2: react to user needs (R4, R5, R6, R8, F3, F4, F5, Al, A2,
A3)

All contradictions are eliminated. (R3)

Requirements R1, R2, R4, R5, R6, R8 are “need to have”.

R3 and R7 (together with F4, F6, F7, A4) prevent sun blind

from taking damage, thus contributing to the system mission

SM1 and SM2.

= Rinit = R

118 /341

Validation |

m The applied operators for the context diagram are given
with the diagram.

m The system mission statement addresses the shortcomings

or refer to domain knowledge of the system in use:

m SM1 (react to sunshine to achieve a comfortable working
ambiance) address shortcomings SC1 and SC3.
m SM2 (react to user needs) is included to do not make

Example - SBC things worse, and addresses the assumption A3, A6, A7
but also the shortcoming SC4 since there is no direct user
interaction.

m The phenomena and the domains of the context diagram
are printed emphasized in the requirements and in the
domain knowledge.

m All given and designed domains are referenced in the
requirements and the domain knowledge.

119 /341

Phase 3: Decompose problem

Describe problem

Consolidate requirements
Decompose problem
Derive machine behavior specification for each subproblem

Design global system architecture

ook wnh =

Derive specifications for all components of the global
system architecture

Introduction

7. Design a software architecture for all components of the
global system architecture that should be implemented in
software

8. Specify the behavior of all components of all software
architectures, using sequence diagrams

120 /341

Introduction

Phase 3: Decompose problem

requirements R to be imple- | natural lan-
mented of Phase 2 guage
domain knowledge D of | natural lan-
Phase 2 guage

context diagram of Phase 2

ext. Jackson

gram of Phase 2

output: set of problem diagrams with | Jackson with
associated set of requirements | dot-notation
expression of the subproblem | grammar
relationships

validation] consistent with context dia-

requirements R of Phase 2
must be treated in at least one
subproblem

121 /341

Notations and concepts

Terminology
Problem diagrams, simple problems
Problem decomposition

Problem frames

Notations

Decomposition operations

Subproblem relationships

122 /341

Terminology: Context Diagrams vs. Problem
Diagrams vs. Problem Frames

m Context Diagram: “Where is the problem located?”

m Problem Diagram: “What is the problem?”

m contains requirements (that refer to / constrain the
problem domains)
Terminology m contains information on who controls shared phenomena

m Problem Frame: Pattern for a Problem Diagram
m describes classes of simple problems.

123 /341

Simple Problem Example: odometer display
problem

A microchip computer is required to control a digital electronic
speedometer and odometer in a car. One of the car's rear
wheels generates pulses as it rotates. The computer can detect
these pulses and must use them to set the current speed and

total number of miles traveled in the two visible counters on
s the car fascia. The underlying registers of the counters are
shared by the computer and the visible display.

124 /341

Corresponding problem diagram

,
Odometer K Counters) Y

mirochip o~)
\
v Travel L7

b Fascia -
Problem d
display

Diagrams

a: CR{WheelPulse}

b: OMY{IncSpeed, DecSpeed, IncDist}
c: CR{Speed, CumDist}

d: FDY{SpeedCount, DistCount}

125 /341

Simple problems are characterized by

m Simple requirements, i.e., the purpose of the machine is
intuitively comprehensible.

m Simple interfaces, i.e., it is easy to characterize the way
the parts interact at each interface.

m Simple roles of the domains, i.e., it is clearly defined,
which domain should be constrained and which should
only be observed, etc.

Problem
Diagrams

126 /341

Decomposition of realistic problems into simpler
subproblems

m Necessary for solving the problems.

m Also necessary for capturing, describing and understanding
realistic problems.
m Questions:

m How can a good decomposition be made?
m How do you know, that solving subproblems is easier than
solving the initial problem?

Problem

decomposition

m Desirable: subproblems that belong to known classes
(Problem frames as “problem patterns”)

127 /341

Approaches to decomposition |

m Top-Down-Decomposition (“oldest and worst approach™)

m Arrange functions in a hierarchy of several levels

m At each level, decompose each function into a number of
functions at the next level.

Stop when a level is reached where all functions are
regarded as elementary.

m Disadvantages

m Approach takes no explicit account of the problem to be
decomposed.

Problem

s m Unlikely to achieve a good decomposition if not already
familiar with the problem.

m Example: Reduce enumerating all prime numbers up to a
certain limit to determining the next prime number
greater than a given number. Subproblem is not simpler
than original problem.

128 /341

Approaches to decomposition |l

m Use-Case-Decomposition

m Known through object-oriented analysis.

m Works well when it makes sense to think of the machine as
a facility offering discrete services that are used in clearly
defined episodes.

m Not suitable for continuing interaction between machine
and problem domains, as often needed for embedded
systems, e.g. in patient monitoring problem.

m “Knowledge-based” decomposition through projection.

Problem

decomposition m Decomposition into “parallel” (not hierarchical)

subproblems.
m Knowledge of problem classes and their solutions are used

for decomposition.

129 /341

Characteristics of subproblems

m Subproblems treat sets of related requirements.

m Subproblems are complete, independent problems with
their own problem diagrams.

m When analyzing a subproblem, the other subproblems are
considered as solved (separation of concerns).

m Subproblems are related to each other.

Problem
decomposition

m Subproblems are projections of the overall problem, i.e.,
some aspects are ignored.

130 /341

Problem frames

Problem frames

are patterns that characterize frequently occurring
problems

simple subproblems resulting from problem decomposition

should fit to a problem frame

are represented with frame diagrams

concrete problems are “fitted to problem frames”
six fundamental problem frames and variants exist

Literature: Jackson, Chapter 4

131 /341

Problem frame: Required Behaviour

Informal Description
There is some part of the physical world whose behaviour is to
be controlled so that it satisfies certain conditions. The
problem is to build a machine that will impose that control.

Frame Diagram

Control | CMIC1 Controlled C3 /" Required

=---------- ')

machine | CD!C2 domain c ‘. behaviour /

Problem frames

C: Causal domain, reacts to events in a predictable way
C1-C3: indicate causal relations, C2: Feedback

132 /341

Example: Sluice Gate Control |

A small sluice is used in a simple irrigation system. The sluice
gate can rise and fall. A computer system should control the
sluice gate. The requirement is that the gate should be held in
the fully open position for ten minutes in every three hours and
otherwise kept in the fully closed position.

The gate is opened and closed by rotating vertical screws. The
screws are driven by a small motor, which can be controlled by
clockwise, anticlockwise, on and off pulses. There are sensors
at the top and bottom of the gate travel. At the top it's fully
open, at the bottom it’s fully shut. The connection to the
computer consists of four pulse lines for motor control and two
status lines for the gate sensor. Sluice Gate Control fitted to

Problem frames

133 /341

Problem frames

Example: Sluice Gate Control Il

Required Behaviour frame

Control Controlled
machine domain
Sluice a Gate &
Controller Motor
a: SCHClockw, Anti, On, Off} [C1]
GM! {Top, Bottow} [C2]
[C3]

b: {Open, Shut}

Required
behaviour

Fitting problems to problem frames is achieved by instantiation

of the variables contained in the frame diagram.

134 /341

Problem frame: Commanded Behaviour |

Informal Description
There is some part of the physical world whose behaviour is to
be controlled with commands issued by an operator. The
problem is to build a machine that will accept the operator’s
commands and impose the control accordingly.

Difference to “required behaviour”: An operator can issue
commands that influence the behaviour of the controlled
domain. Usually operator knows that he/she is an operator

Problem frames

135 /341

Problem frames

Problem frame: Commanded Behaviour I

Frame Diagram

CMIC1
cDIC2
Control
machine
OP!E4

Controlled

domain EY)

Operator

E,

‘Commanded "
. behaviour -

E4

B: A biddable domain cannot be influenced through a machine

E4: operator commands

Determine how and when the machine should — or should not -
cause Cl-phenomena in response to E4 commands.

136 /341

Example: Occasional Sluice Gate Control |

A small sluice is used in a simple irrigation system. The sluice
gate can rise and fall. A computer system is needed to raise
and lower the sluice gate in response to the commands of the
operator.

The gate is open and closed by rotating vertical screws. The
screws are driven by a small motor, which can be controlled by
clockwise, anticlockwise, on and off pulses. There are sensors
at the top and bottom of the gate travel; at the top it's fully
RS open, at the bottom it's fully shut. The connection to the
computer consists of four pulse lines for the gate sensor, a
status line for each class of operator command.

137 /341

Problem frames

Example: Occasional Sluice Gate Control Il

Behaviour frame

Control
machine

Sluice
control

a: SCY{Clockw, Anti, On, Off}
GM!{Top, Bottom}

b: {Open, Shut, Rising, Falling}

c: SOY{Raise, Lower, Stop}

Fitting the Occasional Sluice Gate Control to the Commanded

Controlled
domain

Gate
&
Motor

Operator

Sluice
operator

[C1]
[C2]
[C3]
[E4]

Commanded
RN behaviour

/ Raiseand
|
. lower gate ¥

138 /341

Problems in introducing an operator

m possible that commands cannot be obeyed
Example: two stop-commands in succession

m possible that commands should not be obeyed
Example: raise-command when the gate is already at the
top of its travel.

These situations must be taken into account when elicitating
the requirements!

Problem frames

139 /341

Problem frame: Information Display |

Informal Description
There is some part of the physical world about whose states
and behaviour certain information is continually needed. The
problem is to build a machine that will obtain this information
from the world and present it at the required place in the
required form.

Frame diagram

RWIC1 Real -...C3
world g .- .
Problem frames . P N
Information // Display
machine \. Real world
IMIE2 Display |~ Y4
[C]

140 /341

Problem frame: Information Display Il

Information
machine

IMIE2

Real \
world c

Display |«
IC|

/- Display
‘. Real world -

Y4

m The real world is entirely autonomous, nothing in the

Problem frames problem context can affect its behaviour.

Y4.

m The machine must satisfy the requirements by diagnosing
phenomena C3 from the phenomena C1.

m It must cause events E2, in order to generate phenomena

141 /341

Example: Odometer display

Odometer display fitted to information display frame

Real world
Display
Information Caron c ~
machine a road Tl R Real world
Odometer (,’ Co~unters ‘\‘
microchip U Travel /
b Fascia -7 d
Display
Problem frames
Display
a: CR! {WheelPulse} [C1]
b: OM! {IncSpeed, IncDist, DecSpeed} [E2]
c: {Speed, CumDist} [C3]
d: {SpeedCount, DistCount} [Y4]

142 /341

Problem frame: Commanded Information (Simple

Information Systems) |

Informal description
A machine is to be built, which answers questions about a
domain of the real world.

Frame diagram

| Real 2
RWICLA o (5 -
Answering | AMIES | . <Y4 Answer
Pt fremes machine 1sp ay@ L rules
EOIE5™ Enquiry |- E5
operator

143 /341

Problem frame: Commanded Information (Simple

Information Systems) Il

\ Real . c
RWICT world ~.c2

Answering | AMIE3) Y4 / Answer
machine | | Display = L rules]
[C]
EoiesN| Enquiry |7 E5
operator B

m Enquiries E5 are regarded as commands, shared with the

Pt femes machine

m The requirements stipulate the answers to be produced for
each combination of a real world state C2 with an Eb

enquiry
m Answers are symbolic phenomena Y4.

144 /341

Example: Mail Order Company |

Customers can order products from a mail order company. The
mail order company can introduce new products and
discontinue products that do not sell well. A machine is to be
built that provides information to the management on the sales
that have taken place. It should be possible to e.g. retrieve
information about the goods in stock, how much of a product
has been sold in a certain time period, as well as information
SR about the last order placed by a customer.

145 /341

Example: Mail Order Company I

Mail order company fitted to commanded information frame.

Real world
Mail order . a
Answering— b company L N
machine N Answer rules
Display Teo Lt
Managerrlent d Business e K Inform~at|on N
information information = \ " ,]
system \\) Reality v
. Enquiry operator e
e
Management |
Problem frames a: {Order, Stock, Customers} [C2]
b: MOC{StoredOrders, StoredStock, StoredCustomers} [C1]
c: M!{AvailableAmount, SoldAmount, LastOrder} [E5]
d: MIS!{OrderDisplComm, StockDisplComm, CustomerDisplComm} [E3]
e: {OrderDispl, StockDispl, CustomerDispl} [Y4]

146 /341

Problem frame: Simple Workpieces |

Informal Description
A tool is needed to allow a user to create and edit a certain
class of computer-processable text or graphic objects, or similar
structures, so that they can be subsequently copied, printed,
analysed or used in other ways. The problem is to build a
machine that can act as this tool.

Workpieces:
Normally a piece of material worked on by a machine, e.g.
wood blocks, metal castings, etc.

Problem frames

Here: things that are worked on by a computer.

147 /341

Problem frame: Simple Workpieces Il

Frame Diagram

EIE1

WPIY2 Workpieces |~._ va

Editor ;" Command \\‘

. effects

UIE3 User |- E3

X: Lexical Domain, i.e. data type

Phenomena E1: Operations on workpieces

Phenomena Y2: allow the machine to examine the current
state and values of the workpiece.

Workpieces domain is contained in the machine, indicated by

Problem frames

148 /341

Problem frame: Simple Workpieces Il

EIE1 .
Workpieces <. v4

Editor ’ Command \
_ effects

UIE3 user |- E3

B

Phenomena E3: user commands

Requirements: describe effects, commands E3 should have on
phenomena Y4.

Y4 often differs from Y2: Phenomena Y4 can have some
meaning to the user that is insignificant for editing.

Simple workpieces does not deal with printing, representing or
further processing the workpieces.

Problem frames

149 /341

Example: Party plan |

Lucy and John need a system to keep track of the many parties
they give and the many guests they invite. They want a simple
editor to maintain the information, which they call their party
plan. Essentially the party plan is just a list of parties, a list of
guests, and a note of who is invited to each party. The editor
will accept command-line text input.

Problem frames

150 /341

Problem frames

Example: Party plan Il

Editing tool

Party ¢
editor

a: PE{PlanOperations}
PPY{PlanStates}

b: JL{Commands}
c:{PlanEffects}

[E1]
[ya]
[E3]
[Y4]

Workpieces

Party
plan

John & Lucy

User

Command
S~
Tl effects
/ Correct Y
' editing)

151 /341

Remark

The structure of the problem frames simple workpieces and
commanded behaviour are very similar!
Differences:

m The Workpieces domain is lexical and formal, but the
Controlled domain is causal and informal

m In the Controlled domain, approximations must be taken
into account, which is unnecessary for the Workpieces
domain

m The requirements in the simple workpieces frame relate
only to the user's commands, while in the commanded
behaviour frame other requirements can occur, e.g. that
the sluice gate is not driven beyond the limits of its
vertical travel.

Problem frames

152 /341

Problem frame: Transformation |

Informal Description

There are some given computer-readable input files whose data
must be transformed to give certain required output files. The
output data must be in a particular format, and it must be
derived from the input data according to certain rules. The
problem is to build a machine that will produce the required
Y outputs from the inputs.

153 /341

Problem frame: Transformation Il

Frame diagram

IN'Y1 Inputs .. Y3
Transform 10 N
machine .\ . relation
T™MIY2 Outputs 1~~~ Y4
X

Problem frames

The input cannot be changed, and is not restricted through
requirements.

Y1 and Y3, as well as Y2 and Y4 may differ, but do not have
to.

154 /341

Example: Mailfiles analysis |

John wants to analyse his email-correspondence. He is
interested in the average number of messages he receives and
sends in a week, the average and maximum message length,
and similar things. After some thought he has worked out that
he wants a report that looks like this:

[Name | #In | Max.Length | @ Length | # Out | Max.Length | & Length |

Albert 19 52136 6027 17 21941 2123
Anna 31 13248 1736 37 34763 2918

Problem frames

The report contains a line for each of his correspondents.

155 /341

Example: Mailfiles analysis I

Mailfiles analysis fitted into transformation frame diagram

Inputs
Transform - 10
machine a Mailfiles Teel \C\ relation
Mail i T
al / Analysis Y
analyser I)
\ rules /
b - -
Report <" d
a:MF! {MsgDir, File, Line, Char} [Y1]
Problem frames i V2
b: MA! {ReportLine, Char} [Y2] Outputs
c: {Msg, From, To, Date, Lenght} [Y3]
d: {LineData} [Y4]

156 / 341

Summary

m Simple problems that occur during problem decomposition
should belong to known problem classes, which have
common solution methods.

m These kinds of problem classes are characterized through
problem frames. Problem frames contain patterns for the
domains involved and their shared phenomena. They also
define which domains the requirements refer to and which
domains they restrict.

Preftam e m In order to solve a subproblem with a method that is
associated with a problem frame, the subproblem needs to
be "fitted” to the frame by instantiating the frame
diagram.

157 /341

Decomposition

m Realistic problems must be divided into (simple)
subproblems.
A useful way of decomposition is projection, i.e., ignoring
certain aspects.
This kind of decomposition adds to other types of
decomposition, such as top-down or Use Cases.

m The problem frames help to find suitable subproblems.

m If a problem does not fit into one of the problem frames, a
new problem diagram can be developed.

Decomposition
operations

158 / 341

Decomposition operations

To fit a subproblem into a problem frame, the following
operations can be applied on the context diagram:

m Leave out domains (with corresponding interfaces)
Combine several domains into one domain

Divide a domain

Introduce a connection domain

Reduce interface between domains

Refine phenomena

Decomposition
operations

u
u
u
u
u
m Combine (i.e., abstract) phenomena

159 /341

Subproblem relationships

The following relationships between subproblems can be
identified and help to compose the solution:

m Parallel subproblems are largely independent of each other,
and the global machine will have to treat the problems in
parallel. If the same domain is contrained in parallel
subproblems, priorities should be assigned. These priorities
must be consistant with the priorities in the requirements.
They must be updated if necessary.

m Sequential subproblems have to be treated one after
another.

m Alternative problems are exclusive. Only one of them will

Subproblon have to be treated at a given time.

relationships
Subproblem relationships can be expressed using a context-free
grammar in in so-called Backus-Naur Form (BNF). The BNF

can be extended with a symbol for parallel subproblems.
160 /341

Context-free grammars, Backus-Naur-Form

A context-free defines a language, i.e., a set sequences of
(terminal) symbols.

A BNF specification is a set of production rules, written as
< NTS >::=< expression with symbols >.

< NTS > is a nonterminal symbol.

The expression consists of sequences of symbols, where
“|" indicates alternatives.

m The expression describes possible substitution for the
symbol on the left.

The language consists of all sequences of terminal symbols
that can be derived using the production rules, starting
from a specified start symbol.

Subproblem
relationships

161 /341

Subproblem relationship notation example

The dependencies between the subproblems can be summarized
using a context-free grammar describing the possible

sequences. In the following grammar, “||" denotes parallel
problems and “|" denotes an alternative.
< start > n= < main_passing >||< fire >||< broken_light >
< main_passing > 1= MainRoadPassing < sec_passing >
< sec_passing > == SecondaryRoadPassing < main_passing >
< fire > = EmergencyRequest < main_passing >
< broken_light > := BrokenLightSafeState

In this grammar, the terminal symbols MainRoadPassing,
Subproer SecondaryRoadPassing,

i EmergencyRequestSecondaryRoadPassing and
BrokenLightSafeState are all the subproblems of the traffic
light control problem.

162 /341

Subproblem relationship notation remarks

m We always start with the nonterminal < start >.

m The subproblems correspond to terminal symbols of the
grammar.

m The nonterminals (< main_passing >, < sec_passing >,
< fire >, and < broken_light >) may correspond to states.
These states form the conditions the the previous

subproblem establishes and the succeeding subproblem
requires.

Subproblem
relationships

163 /341

Procedure

Phase 3: Decompose problem

requirements R to be imple- | natural lan-
mented of Phase 2 guage
domain knowledge D of | natural lan-
Phase 2 guage

context diagram of Phase 2

ext. Jackson

gram of Phase 2

output: set of problem diagrams with | Jackson with
associated set of requirements | dot-notation
expression of the subproblem | grammar
relationships

validation] consistent with context dia-

requirements R of Phase 2
must be treated in at least one
subproblem

164 /341

Executing Phase 3

To decompose the problem the following steps have to be
performed:

m ldentify subproblems that should fit to problem frames.

m Set up the correspondig problem diagrams. Try to assign
each requirement to exactly one subproblem.

m Add connection domains (possibly part of the machine)
according to facts and assumptions.

m Introduce domain knowledge for connection domains.

m Describe the relationships between the subproblems.

Procedure

165 /341

Example 1: traffic light control

166 /341

Example - TLC

Requirements for traffic lights |

R2 :

R3:

R4 :

: When there is a car waiting on the secondary road, the

traffic lights should stop the flow of traffic on the main
road for a period of time and allow the traffic flow on the
secondary road.

As long as the emergency button is activated, the flow of
traffic on the main road should be stopped and the flow
of traffic on the secondary road should be allowed.

Vehicles on the main road should be allowed to pass the
crossing for a longer period of time than from the
secondary road (if not emergency-case*).

While vehicles on one road are allowed to pass, the others
should be stopped.

167 /341

Requirements for traffic lights I

. The lights should switch in the following order: red -
red+yellow - green - yellow - red. Other combinations
(except “all off”, yellow blinking, and green - yellow -
green in emergency case®) are not allowed.

R6 : In case of a broken light bulb the traffic lights should
blink in yellow for the secondary road, after all red lights
have been switched on for a period of time.

R7 : After switching to red, the traffic flow of both roads
should be stopped for a period of time *°.

Example - TLC

“Added later to eliminate contradictions
5Added later to eliminate contradictions

®A star (*) denotes: added later
168 /341

Context diagram for traffic lights

crossing

waiting area
of secondary road

enter,
leave

road users
on lanes

see_red
see_green
see_yellow

Example - TLC

vehicle_waiting

enter,
I
cave traffic light

control
on, off emergency_request
broke; see_red
see_green
lights see_yellow fire brigade

169 /341

SecondaryRoadPassing Problem Diagram |

m Variant of the required behavior problem frame. (no operator, lights
domain is controlled, additional domains without a direct connection
to the machine exist)

m Because of F10 it is not possible to connect lights and the machine
directly (different voltage). Therefore, the connection domain lights
control (being part of the machine) must be introduced.

crossing ~._vehicles on crossing
TLC h
secondary ruoll{enter,leave}
phase - L-mTTTTe <
road users on vehicles on crossing 57 ™
lanes [roomommeiemiee--- + R3R4RS)
ticl{on,off} RN R7
I){sec_yellow_red,
lights sec_green,
control sec_yellow, L
sec_red} R i
e TIE . light settings
ligh
Ic{24V, 0V} ights o

170 /341

SecondaryRoadPassing Problem Diagram |l

In this diagram only the parts of the requirements concerning
the secondary phase are considered.
The following projection operators have been applied:

m The domains waiting area of secondary road, fire brigade,
and the corresponding interfaces are left out.

m The connection domain light control is introduced. The
phenomena of the context diagram (on, off) are used
between the machine TLC secondary phase and the
connection domain.

m The interface between machine and lights domain is
reduced (dropping the phenomenon broken).

Example - TLC

171 /341

SecondaryRoadPassing Problem Diagram ||

m The interface between road users on lanes and lights
domain is refined (e.g., see_green = sec_green or
main_green) and reduced (e.g., dropping main_green; it
only contains the phenomena relevant for the secondary
road passing phase).

Example - TLC

172 /341

MainRoadPassing Problem Diagram |

TLC
main
phase

Example - TLC

m Variant of the required behavior problem frame.

induction loop
control

waosrl{srr} | waiting area of

ilcl{vehicle_waiting}

secondary road

m To detect if a road user is on the waiting area an additional

connection domain is necessary (F9). The connection domain
induction loop control is introduced.

m Lights control is introduced (see SecondaryRoadPassing).

ruoll{enter,leave} " vehicle_waiting

road users on .
lanes N yghicles on crpssing
1{main_yellow_red, em T N
main_green, R1, R3, R4,
main_yellow, R5, R7)
tictfon,off} main_red} light settings el - -
lights 1c424V, 0V} | lights s
control

In this diagram only the parts of the requirements for the
secondary phase are considered.

173 /341

MainRoadPassing Problem Diagram I

The following projection operators have been applied:

m The domains crossing, and fire brigade, and the
corresponding interfaces are left out.

m The interface between machine and lights domain is
reduced (dropping the phenomenon broken).

m The interface between road users on lanes and lights
domain is refined (e.g., see_red = sec_red or main_red)
and reduced (e.g., dropping sec_green; it only contains the
phenomena relevant for the main road passing phase).

Example - TLC

174 /341

EmergencyRequest Problem Diagram |

m Variant of the commanded behavior problem frame. The domain fire
brigade is the operator (biddable domain) in the problem frame.

m Lights control is introduced (see SecondaryRoadPassing).

fire brigade BN

fbl{emergency_request_sta
emergency_request_end

crossing -) ‘emergency_request
TLC [N
fire brigade ruol{enter,leave} vehicles on crossin\g\ <. .
road users on vehicles on crossing ~5-~ Ro. RS, R7 -
lanes [~ Tcmmmmmmee- 4 , RS,)
ticlon,offy anes e »
1{main_yellow, main_red, o)
lights sec_yellow_red, L7
| sec_green, o
contro sec_yellow, e
sec_red} .-~ light settings
Example - TLC lioh ,/’,
ights 3
Icl{24V, OV} 9 “

175 /341

EmergencyRequest Problem Diagram |l

The following projection operators have been applied:
m Lights control is introduced (see SecondaryRoadPassing).

m The interface between machine and lights domain is
reduced (dropping the phenomenon broken).

m The interface between road users on lanes and lights
domain is refined (e.g., see_green = sec_green or
main_green) and reduced (e.g., dropping main_green; it
only contains the phenomena relevant for the emergency
phase).

m The phenomenon emergency_request is refined into
emergency_request_start and emergency_request_stop.

Example - TLC

176 /341

Example - TLC

BrokenLightSafeState Problem Diagram |

m Variant of the required behavior problem frame.

m The connection domain lights control is also necessary to detect
broken lights by measurement of the power consumption (F7).

TLC
fault tolerance

lights

Ic{broken_light}
ticl{on,off}

road users on
lanes

main_red,

I{sec_red,

control

Ic{OV,24V}
{current}

lights

">~ _ vehicles on lanes

sec_yellow, all_off} T o

o i R6)
light settings /

broken lightbulb ~ ~~~—____--

177 /341

BrokenLightSafeState Problem Diagram ||

The following projection operators have been applied:

m The domains crossing, waiting area of secondary road, fire
brigade, and the corresponding interfaces are left out.

m The interface between road users on lanes and lights
domain is refined (e.g., see_yellow = sec_yellow or
main_yellow) and reduced (e.g., dropping main_green; it
only contains the phenomena relevant for the broken
phase).

m The domain lights control with its phenomena (0V, 24V,
current) is introduced. The electric current is used to
detect a broken light bulb (F7).

Example - TLC

178 /341

Problem Diagram relationships

< start > = < main_passing >||< fire >||< broken_light >
< main_passing > = MainRoadPassing < sec_passing >

< sec_passing > := SecondaryRoadPassing < main_passing >

< fire > = EmergencyRequest < main_passing >

< broken_light > »= BrokenLightSafeState

m Once activated, the subproblem EmergencyRequest has priority. That
implies, only the machine for EmergencyRequest is allowed to control
the lights until it gives the control to the machine for
MainRoadPassing.

m The subproblem BrokenLightSafeState acts in parallel to the
subproblems EmergencyRequest, MainRoadPassing, and
SecondaryRoadPassing. It has a higher priority than all the other
subproblems: Once activated, only the machine for

Example - TLC BrokenLightSafeState is allowed to control the lights.

179 /341

Validation

The problem diagrams are consistent with the context diagram:
m The problem diagrams were derived from the context
diagram by applying the introduced operators.

m All phenomena and all domains of the context diagram are
covered.

Example - TLC

180 /341

Example 2: sun blind control

181 /341

Requirements for sun blind |

R1 If there is sunshine for more than one minute but no heavy
wind, the sun blind will be lowered (lower sun blind).
(Parts of R3 included to prevent contradictions)

R2 If there is no sun shine for more than 5 minutes, the sun
blind will be pulled up (pull up sun blind).

R3 The sun blind should not be destroyed: If there is heavy
wind, the sun blind will be pulled up (pull up sun blind).

Example - SBC

182 /341

Requirements for sun blind [l

R4 If there is no heavy wind and the user manually adjusts the
fins with positive degree the fins are rotated with positive
degree (rotate fins with positive degree).

If there is no heavy wind and the user manually adjusts the
fins with negative degree the fins are rotated with negative
degree (rotate fins with negative degree).

R5 If the user manually opens the sun blind, the sun blind will
be pulled up (pull up sun blind).

R6 If the user manually closes the sun blind and there is no
heavy wind, the sun blind will be lowered (lower sun blind).
(Parts of R3 included to prevent contradictions.)

Example - SBC

183 /341

Example - SBC

Requirements for sun blind Il

R7

R8

The sun blind should not be destroyed: When the sun blind
is in its lowest position (sun blind is lowered) or in it
highest position (sun blind is pulled up) the sun blind
should stop (stop sun blind).

If the user interacts with the sun blind (manually opens the
sun blind, manually closes the sun blind, rotate fins with
positive degree or rotate fins with negative degree), sun
shine and no sun shine are ignored within the next 4 hours.

184 /341

Context Diagram for sun blind |

sun blind
with fins

e sun blind b

n)
su control wind

user

a: manually adjust fins with negative degree, manually adjust
el GEE fins with positive degree, manually open sun blind, manually
close sun blind, stop closing sun blind, stop opening sun blind

185 /341

Context Diagram for sun blind Il

b: heavy wind, no heavy wind

c: lower sun blind, pull up sun blind, stop sun blind, sun blind
is lowered, sun blind is pulled up, rotate fins with positive
degree, rotate fins with negative degree

d: destroy sun blind

e: sunshine, no sunshine

Example - SBC

186 /341

SunControl Problem Diagram |

m Variant of the commanded behavior problem frame. The
domain user is the operator (biddable domain). The
domains wind, sun, and sun blind are the the controlled
domains.

m Because of Al, A2, and A3 (description of the user
interactions) the connection domain button (being part of
the machine) must be introduced.

m F1 and F2 show that a sun sensor is necessary to measure
the intensity.

Example - SBC

187 /341

SunControl Problem Diagram |l

e
motor H sun blind ‘V
N

"R, R2, R 1
1
sun sensor H
a: SC!{turn motor right,
turn motor left} g: U!{manually open sun blind, stop closing sun
b: WSHintensity of wind} blind, manually close sun blind, stop opening
c: B!{up-button pushed, sun blind, manually adjust fins with negative
down-button pushed} degree, manually adjust fins with positive
d: SS!{intensity of sun degree}
shine} h: S!{sunshine, no sunshine}
e: M!{lower sun blind, pull i: "heavy wind”
up sun blind} j: "user input”
Example - SBC f: W!{heavy wind, no k: "weather conditions”
I:

heavy wind} " position of sun blind"

188 /341

SunControl Problem Diagram Il

The following projection operators have been applied:

m The domain sun blind with fins is split and the domain fins
is left out with the corresponding phenomena.

m The connection domains motor, wind sensor, buttons and
sun sensor are introduced with additional phenomena.

m The phenomena rotate fins with positive degree, rotate
fins with negative degree are dropped.

m The phenomena dealing with pulled up or lowered sunblind
and blocked motor are dropped.

All phenomena of the user are included since sun_shine and
no_sunshine are ignored for 4 hours in if one of the user
Example - SBC phenomena occurs.

189 /341

UserControl Problem Diagram |

m Variant of the commanded behavior problem frame. The
domain user is the biddable domain. The domains wind
and sun blind are controlled domains.

m Because of Al, A2, and A3 (description of the user
interactions) the connection domain button (being part of
the machine) must be introduced.

m F3, F4, F11, and F13 show that a motor is necessary to
control the sun blind (conection domain). (domin
knowledge added in Phase 1)

Example - SBC

190 /341

UserControl Problem Diagram I

motor d sun blind
N9

buttons }—f‘ user " -

a: UCH{turn motor right, turn motor
left} f: Ul{manually open sun

b: WSHintensity of wind} blind, stop closing sun

c: BY{up-button pushed, up-button blind, manually close sun
released, down-button pushed, blind, stop opening sun
down-button released} blind}

d: M!{lower sun blind, pull up sun &: " position of sun blind”
blind} h: "heavy wind”

Example - SBC e: W!{heavy wind, no heavy wind} i "user input”

191 /341

Example - SBC

UserControl Problem Diagram Il

The following projection operators have been applied:

The domain sun blind with fins is split and the domain fins
is left out with the corresponding phenomena.

The domain sun is left out with the corresponding
phenomena.

The connection domains buttons and motor and necessary
phenomena are introduced.

The phenomena concerning the fins are dropped in the
user interface.

The phenomena dealing with pulled up or lowered sunblind
and blocked motor are dropped.

192 /341

FinsControl Problem Diagram |

m Variant of the commanded behavior problem frame. The
domain user is the biddable domain. The domains wind
and fins are controlled domains.

m Because of Al, A2, and A3 (description of the user
interactions) the connection domain button (being part of
the machine) must be introduced.

m F6 shows that a wind sensor is necessary to measure the
speed of the wind.

m The fins have an interface that can be directly connected
to a microcontroller (F12 added).

Example - SBC

193 /341

FinsControl Problem Diagram I

buttons }—b‘ user ‘

a: B!{up-button pushed, up-button
released, down-button pushed,
down-button released}

d: WSH{intensity of wind}

e: Wl{heavy wind, no heavy
wind}

f: "user input”

b: U!{manually adjust fins with
negative degree, manually adjust
fins with positive degree}

c: FCl{rotate fins with positive
degree, rotate fins with negative & " fins position”

Example - SBC degree} h: "wind strength”

The following projection operators have been applied:

194 /341

FinsControl Problem Diagram IlI

m The domain sun blind with fins is split and the domain sun
blind is left out with the corresponding phenomena.

m The domain sun is left out with the corresponding
phenomena.

m The connection domains buttons and wind sensor and
necessary phenomena are introduced.

m The phenomena manually open sun blind, stop closing sun
blind, manually close sun blind, stop opening sun blind,
manually adjust fins with negative degree, manually adjust
fins with positive degree are dropped.

Example - SBC

195 /341

NoDestruct Problem Diagram |

m Variant of the required behavior problem frame. The
domains wind and sun blind are controlled domain.

m F6 shows, that a wind sensor is necessary to measure the
speed of the wind.

m F3, F4 and F11 show, that a motor is necessary to
control the sun blind. Additionally, the motor must be
able to inform the machine that the sun blind is blocked
(F10). When the sun blind is pulled up or the sun blind is
lowered, the motor is blocked.

Example - SBC

196 /341

NoDestruct Problem Diagram Il

d
motor }—{ sun blind ‘V\ e

" R3R7

no destruct
control

D
wind sensor a wind |' oo

a: W!{heavy wind, no heavy wind}
b: WSHintensity of wind}

c: NDC!{turn motor right, turn motor left, stop motor},
M!{turn right is blocked, turn left is blocked}

d: M!{lower sun blind, pull up sun blind, stop sun blind},
SB!{sun blind is lowered, sun blind is pulled up}

e: "position of sun blind”
f: "heavy wind”
g: Wl{detroy sunblind}

Example - SBC

197 /341

NoDestruct Problem Diagram IlI

The following projection operators have been applied:

m The domain sun blind with fins is split and the domain fins
is left out with the corresponding phenomena.

m The domains sun and user are left outwith the
corresponding phenomena.

m The connection domains motor and wind sensor and
necessary phenomena are introduced.

Example - SBC

198 /341

Problem Diagram relationships

All supproblems are parallel.
jstart; ::= SunControl || NoDestructControl || FinsControl ||
UserControl

m NoDestructControl should have the highest priority.

m UserControl should have a higher priority than SunControl.

m No priority must be assigned to FinsControl since a
different domain (fins, not sun blind) is contrained.

Example - SBC

199 /341

Validation

m Usually, the phenomena in the problem diagrams the same
as in the context diagram. Only when connection domains
are introduced, new phenomena have been introduced.

m Usually, the domains in the problem diagrams the same as
in the context diagram. Only connection domains are
introduced.

m All requirements of Phase 2 are captured.

Example - SBC

200 /341

Phase 4: Derive machine behavior specification for
each subproblem P;

Decompose problem
Derive machine behavior specification for each subproblem

Design global system architecture

o o W

Derive specifications for all components of the global
Introduction system architecture

7. Design a software architecture for all components of the
global system architecture that should be implemented in
software

201 /341

Phase 4: Derive machine behavior specification for

each subproblem P;

requirements R from Phase 2 natural language

domain knowledge D from Phase 2 natural language
problem diagram for P; from Phase 3 Jackson with dot-
notation
output: specification Sp, of machine to construct natural language

sequences of interactions with annotated states | sequence diagrams
for the domains in the environment, expressing | with annotated

Rp, and Dp, states
sequences of interactions on initialization sequence diagram
with annotated
states
Introduction validation] D A Sp, are non-contradictory

DA SP[= Rp,

all requirements must be captured

in the sequence diagrams refined phenomena of
the problem diagrams are used as signals
direction of signals must be consistent with con-
trol of shared phenomena

signals must connect domains as connected in
problem diagram

the relationships of Phase 3 must be consistent
with the states

202 /341

Notations and concepts

m Terminology
m Specifications

m UML sequence diagrams

Notations

203 /341

Terminology

/ (O environment—controlled phenomena
@ machine-controlled phenomena

Terminology

- 4

|

gﬁ\r/tignment machine to be
) constructed
environment relevant for problem part of

environment
visible to machine

204 /341

Deriving specifications from requirements |

m Searched: specification of the machine

m Known: facts F, assumptions A and requirements R

Specifications

m Question: How do you get the specification S, such that
FANAANS =R (correctness of the specification)

205 /341

Deriving specifications from requirements Il

206 /341

Specifications vs. requirements

In contrast to the requirements, the specification of the
machine gives an answer to the question: “How should the
machine act, so that the system fulfills the requirements?”
Specifications are descriptions that are sufficient for building
the machine. Specifications are implementable requirements.
To derive the specification:
m Replace phenomena not observable / controlled by the
machine by observable / machine controlled phenomena
that are related to the requirements phenomena.

Specifications

207 /341

A negative Example: Airbus Accident in Warsaw

Requirement:
Reasoning:

reverse_thrust_allowed < plane_landed

plane_landed < wheels_turn_fast € F

wheels_turn_fast < pulses € F

Conclusion:
Specifications reverse_thrust_allowed < pulses € S

Problem: aquaplaning!
Result: plane refused reverse thrust during landing when
raining

208 /341

Correctness criteria

Consider requirements R, facts F, assumptions A,
specifications S.

1. Each element of R is considered acceptable by the client,
and R contains all customer preferences concerning the
software development project.

. Each element of F was checked for correctness.

. Each element of A was checked for plausibility.

Specifications

2
3
4. All elements of S are implementable.
5. FAAAS = R is demonstrated.

6. It is proved that F, A and S are consistent.

When these criteria are fulfilled, then the construction of a
machine that fulfills S can be started.

209 /341

Sequence diagrams

UML Superstructures Specification:

A sequence diagram describes an Interaction by
focusing on the sequence of Messages that are
exchanged, along with their corresponding
OccurrenceSpecifications on the Lifelines. An
OccurrenceSpecification is the basic semantic unit of
Interactions. The sequences of occurrences specified
by them are the meanings of Interactions.
OccurrenceSpecifications are ordered along a Lifeline.

UML sequence

diagrams Literatu re:

m Laurent Doldi: UML 2.0 Illlustrated.
TMSO, 2003. http://www.tmso-systems.com

m M. Jeckle, C. Rupp, J. Hahn, B. Zengler, S. Queins: UML
2 glasklar.
Hanser, 2004.

210/341

Basic Elements

Each sequence diagram has a name and a bounding box.

bject
A/ °

:V76_DLC
lifeline ” SUa ‘
' i signal
signal~ | L_EstabReq(0) consumption
sending i
i

P

' asynchronous
|
!

message
UML sequence L/
diagrams

Objects are not underlined.
(This and the following pictures are taken from Doldi, 2003.)

211 /341

Asynchronous vs. synchronous messages

Asynchronous messages First, the sending of the message
occurs, and after a certain (variable) amount of
time, the message is consumed by the receiver.
The sender does not wait for the receiver’s reply
but continues its process. Example: mailbox.

Synchronous messages Sending and reception of the message
take place at (almost) the same time. The sender

UML sequence

e waits for reply message before resuming its
process. Example: function call.

212 /341

Synchronous messages

sd test2

02
i synchronous
i
{socket(AF_INET, SOCK_STREAM, IPPROTO_TCP) 4 message
: ==
i B
| 2
g INVALID_SOCKET AN)
< = execution
!
| occurrence
| reply

UML sequence
diagrams

Gray box represents execution of actions.
The different kinds of messages are indicated by different
arrowheads.

213 /341

UML sequence
diagrams

Co-region

sd coregl

L_EstabReq (0)
L_ReleaseReq (0)

coregion

————23

Messages can be received in any order.

equivalent diagrams

— OR

sd resi J

i

L_ReleaseReq (0) .
e NEIRASEVET T

sd res1
L 1 V76]

_L_ReleaseReq LUL‘:,E

|
L_EstabRegq U)"_-;),‘
2

214 /341

Reference

Enables reuse of diagrams. Semantics: replace reference by its
contents.

sd casel

interaction
| StaiSU ‘ P VLG] occurrence
Mi / equivalent diagram
h i
ref sd case2
| L_ReleaseReq (0)_i l SUa: SU * 1V76 ‘
e |
_> lEAEs\abConf (0)
sd txData {L_DataReq (0, 15).
UML sequence
diagrams g_ Datalnd (0, 36)
SUa zEU V76 L_ReleaseReq (0)>

L_DataReq (0, 15

)
_ Datalnd (0, 36)

215 /341

Combined Fragments

alt

opt

loop
break
par
ignore
consider

UML sequence Seq
strict
neg
critical

assert

diagrams

Operators for combining different sequence diagrams:

alternatives; more than two alternatives are

possible.

option

repetition

description of behavior expected after a break
parallel independent execution of several operands
to define messages to be ignored in the execution
to define messages to be considered in the

execution

weak sequencing (default)

strict sequencing

to define forbidden behavior

critical region, non-interruptible behavior
assertion, to define a message sequence that must

occur

216 /341

UML sequence

diagrams

sd test 4

‘ SUa: SU

‘ : V76 J

_EstabConf (0)

alt |
L_DataReq (0, 15)

_Datalnd (0, 15)

N fragment

Alt operator, non-deterministic

corresponding behavior

sd res_1

'SUa:SU

‘ V76 '

._EstabConf (0)

L_DataReq(0, 15)

sd res_2

| SUa: SU

]

_EstabConf (0)

 |_Datalnd (0, 15)

We will use non-determinism, although not allowed in standard.

217 /341

Alt operator with guards

sd test 6
SUa: SU 1 V76

alt) n<3]

L_DataReq (0, 15).

[else]
_Datalnd (0, 15)

UML sequence

diagrams

m Guards specify what alternative will be taken.

m More than two possibilities may be specified (case
construct).

m The guards must be exclusive, and their disjunction must

be true.
218 /341

Opt operator

Corresponds to “Alt" with only one alternative. Standard
requires interaction condition (conditions not given are
considered to be true).

corresponding behavior

sd 0
sd test 8 ﬁj

ISUa:SU' I : V76 [

._EstabConf (0) L_ReleaseReq (0)
opt | —> = res 1
UML sequence
diagrams L_DataReq (0, 15). | SUa - SU] | V76 '
._EstabConf (0)
L_ReleaseReq (0) L_DataReq (0, 15)
L_ReleaseReq (0)

219 /341

Loop operato

Fragment can be repeated a number of times.

corresponding behavior

O repetition:| gd res 0

1 V76

sd test 4

V76

i L_EstabConf (0)
eSO) |
h

L_DataReg (0, 15).

UML sequence
diagrams

k&_Es\abCon(o) !
g Estabonti(0)
H H

|

| L_ReleaseReq (0)
R

1 repetition:[g reg 1
—

_EstabConf (0)

L_DataReq (0, 15).
L_ReleaseReq (0)_{
—_—

2 repetitions: [gdf res 2

SUa: SU V76
_EstabConf (0)

L_DataReq (0, 15).
L_DataReq (0, 15)

L_ReleaseReq (0)

220 /341

Loop operator variants

repetitions

minimum | maximum
loop (0, 2) 0 2
loop (3) 3 3
loop (0, *) 0 not limited
loop 0 not limited

UML sequence
diagrams

221 /341

Nested operators

sd test 7
SUa: SU l 1 V76 l l 1 V76 ’ \SUD:SUL

loop (0, 5)

alt

—

_DalaReq (0, 15)

L_Datalnd (0, 15)_i

L_DataReq (0, 15) |
L_Datalnd (0, 15) i

UML sequence
diagrams

Combined fragments can be nested (e.g., alt fragment inside a
loop fragment).

222 /341

Par operator

sd test 11

SUa: sSU V76

par !
i L_EstabReq (0)
f O
i _L_EstabConf (0)

L._EstabReq (1)
UML sequence i_L_EstabConf (1)

|
diagrams h 1
1 1
i i

Describes the parallel merge between the behaviors of the
operands (interleaving).

223 /341

UML sequence
diagrams

Expanded behavior of par operator

L_EstabReq (0)

L_EstabReq (1)

L_EstabConf (0)
L_EstabConf (1)

sd res_1 } sd res 4

SUa:SU V78 [sua:su | ivrs
L_EstabReq (0) L _EstabReq (1)
L_EstabConf (0) L_EstabReq (0)
L_EstabReq (1) L_EstabConf (1)
L_EstabConf (1) L_EstabConf (0)

sd res 2 } sd res_5 J

SUa:SU V76 [svasu] [:vms |

pL_EsIabReg 1) >
L_EstabReq (0)

L_EstabConf (0)
L_EstabConf (1)

sd res_3 J

sd res_6

|SUa:

su|

ISUa:

qu [V76

L_EstabReq (0)

L_EstabReq (1)

L_EstabConf (1)

L_EstabConf (0)

L_EstabReq (1))
L_EstabConf (1
L_EstabReq (0)
L_EstabConf (0)

224 /341

Consider operator (1)

Filter for relevant messages, noted in “headline” after the name
of the interaction.

sequence diagram execution trace result
sd tA consider { ER, EC }J sd res_1 J
SUa:SU 1 V76 | SUa: SU i ' 1 V76]
ER (0) - ER (0)
: RR(0) conform
I — -

Further (“irrelevant”) messages, here RR, may occur.

225 /341

Consider operator (2)

sequence diagram

execution trace

result

sd 1B consider (ER, EC, RR}] | | sd res 2 J

| SUa:SsU l V76 [SUa: SU ‘ I : V76 J
| ER (0) : ER (0)
| RR(0) e
1 . EC (0) EC (0 i

not
l.conform

UML sequence

diagrams

If RR is considered, too, then the execution trace does not
conform to the sequence diagram tB.

226 /341

lgnore operator

Dual to consider operator. All messages that are not ignored
are considered.

sequence diagram execution trace result

sd tA ignore { RR } J sd res_1 i
Sael| | v [|[sdessd] | e |
)

ER (0) ER (0
WIHIL cemuee: BRI conform
diagrams EC (0) EC (0)

227 /341

Local attributes

may be public or private.

d i
_S,M + userData: Integer -
SUa: SU : V76

L_DataReq(0, userData)

™~

UML sequence

diagrams

Like classes, sequence diagrams may have local attributes that

local
attribute

Local attributes can be used as parameters of messages.

State invariants

Express conditions for interactions. Interactions where the
condition does not hold do not conform to the given diagram.

sd s11 J disp state
/invariant

{ disp.x==0 }
L_EstabReq (0)

tommmme==33 diG[1]
UL sequence state SABME(D

1
1
invariant | ready(0)

Invariants can be expressed as constraints, state symbols or
notes.

229 /341

Time constraints

The used time unit must be specified, e.g., using a note.

Points in time and durations may be specified.

Durations may be specified as time intervals, e.g.,
{t.t+3}

m Pre-defined: now for actual time, duration for duration
T — between sending and reception of a message.

diagrams

230 /341

UML sequence

diagrams

Example

sd res 1
SUa: SU 1V76

L_EstabReq(0) d=duration

{d.d+2}
L_EstabConf(0)

L_DataReq(0, 17) {2..8}

L_EstabReq(1)
| _L_EstabConf(1)

t=now——

(1423 }——

m The time between transmission and reception of signal

L_EstabReq(0) is measured and stored in d.
m Signal L_EstabConf(0) must occur between d and d + 2

time units after L_EstabReq(0).
m The duration of signal L_DataReq must be between 2 and

8 time units.
m The date of transmission of L_EstabReq(1) is stored into t,

and the reception of L_EstabConf (1) must occur at t + 23.

231 /341

Lost and found messages

sd lost = l

o | T
abji | obj2

L_EstabReq(0) |
e A A ,i
| SABME(0)
message |
found L
‘ message |
| ! fost

UML sequence
diagrams

m Notation: large dot.
m Lost message: reception event not modeled.
m Found message: sender not known.

Will be used for initialization of machine.

232 /341

Messages from and to gates

sd s11 disp state
: /invariant
{ disp.x==0 }

L_EstabReq (0)
bommm=e==3 dic[1]
e)
state — SABME(0
invariant ready(0)

UML sequence
diagrams

Used for messages with unknown source or destination.
L_EstabReq(0) is a message from a gate and SABME(0) is a
message to a gate.

233 /341

Phase 4: Derive machine behavior specification for

each subproblem P;

requirements R from Phase 2 natural language

domain knowledge D from Phase 2 natural language
problem diagram for P; from Phase 3 Jackson with dot-
notation
output: specification Sp, of machine to construct natural language

sequences of interactions with annotated states | sequence diagrams
for the domains in the environment, expressing | with annotated

Rp, and Dp, states

sequences of interactions on initialization sequence diagram
with annotated
states

validation] D A Sp, are non-contradictory

DA SP[= Rp,

all requirements must be captured

in the sequence diagrams refined phenomena of
Procedure the problem diagrams are used as signals
direction of signals must be consistent with con-
trol of shared phenomena

signals must connect domains as connected in
problem diagram

the relationships of Phase 3 must be consistent
with the states

234 /341

Executing Phase 4

1. Derive a specification of the machine.

2. Express requirements and domain knowledge as sequence
diagrams.

3. Check the correctness of the developed specification.

Procedure

235 /341

Procedure

Executing Phase 4 — Sequence diagrams |

To create the sequence diagrams the following steps have to be

performed:

For each domain which is directly connected to the
machine in a problem diagram, a lifeline is drawn.

Domains can be merged in the sequence diagram to
simplify the description.

The machine to be built (together with all domains that
belong to the machine) can be represented by one lifeline
in the sequence diagrams.

The phenomena are represented by asynchronous signals
between lifelines.

It should be assumed that an asynchronous signal occurs
when the state in the environment changes.

236 /341

Executing Phase 4 — Sequence diagrams ||

To express the coherence between the sequences states for
the domains in the environment should be included.

m Appropriate case distinctions according to these states
should be introduced.

m For the case distinctions new diagrams should be created
instead of using the alt operator.

m The sequence diagrams can be split at appropriate states,
if necessary.

m Specify the initialization of the machine. A found signal or
a signal from a gate can be used to specify a power on
signal.

Procedure

m Refine events by adding parameters to phenomena or
define rules for the refinement.

m Add timing constraints.

237 /341

Remarks |

m The relationships of Phase 3 should be consistent with the
states, e.g., if for two sequential sequence diagrams the
last state of the first diagram is the same as the first state
of the second diagram.

m Sequence diagrams can be used to discuss important
aspects with the customers, and they are the outline for
the test in Phase 12.

m Each diagram represents one concrete interaction

sequence. Do not try to make your diagrams too general.
Framitie It is better to draw further diagrams. The sequence
diagrams should express typical cases with example values.
Loops, states, references, and co-regions do not cause any
problems, while e.g., parallelism and considered signals
should be used with care.

238 /341

Remarks Il

m To reuse these diagrams later, the requirements and the
domain knowledge should be expressed as separate
sequence diagrams instead of expressing the specification
directly.

m For all connection domains (being not part of the
machine) the domain knowledge should be described by
separate sequence diagrams.

m To express the requirements, the separately described
domains should be merged with the machine.

Procedure

239 /341

Remarks Il

m The relationships between subproblems must be
considered for validation:

m If two subproblems are sequential the sequence diagrams of
the first subproblem end with the same states as the
second subproblem sequence diagrams start.

m All sequence diagrams of one subproblem end with the
initial states of succeeding diagrams (all alternatives can
be considered).

m Sequences for parallel subproblems must start with states

Procedure that can be reached in some parallel subproblem.

240 /341

Example 1: traffic light control

241 /341

Domain Knowledge of lights domain (Sequence
diagram) |

sd lights 1 J

[lights

z :
It is difficult (many signals) i
to express the specification M
directly, therefore D and R I m_yellow (0)
are expressed as separate se- L green (0)

main_red ()

Example - TLC

quence diagrams. 0
i
.
.
i
.

242 /341

Domain Knowledge of lights domain (Sequence

diagram) Il

sd lights 2 J
| lights sd lights 3 J
l | lights
/ ! j
! 1
unit = V ! N '
™ -
| T
mred (0 | m_red (0)
M|
I)
m_yellow (24) I m_yellow (0)
b —
! I
| m_green (0) iLM_green (24) |
&
W 1
' main_green () i
Example - TLC main_yellow (), I
: :
! 1
1
1

243 /341

Domain Knowledge of lights domain (Sequence
diagram) Il

sd lights 4 J sd lights 5 J
[lights [lights
ey | ey] |
unit=V ! unit=V 1
T h
L mred@4) | ' s red (24)
|

1
I m_yellow (24) | | s yellow (0)
—YEOW) |
|
N © I s_green (0)
o> green i)
b)
IYJ
main_yellow_red !
1
1
1
1

Example - TLC

I
1

| sec_red ()

1 <~ ——
i

i

244 /341

Example - T|

LC

Domain Knowledge of lights domain (Sequence
diagram) IV

sd lights 6 J
[lights
5 :
4,
' s_red (0)

sec_yellow ()

1
! s_yellow (24)
PR ALLLA L/

! s_green (0)
&

sd lights 7 J
| lights
s :
4,
' s_red (0)

sec_green ()

1
I s_yellow (0)
—=YeOW) |

! s_green (24)
&

245 /341

Domain Knowledge of lights domain (Sequence

diagram) V

sd lights 1 J

I lights
sd lights 8) :
I lights - :
'9 unit=V !
: h
Z 1 |
| L mred@) |
unit=V + |
L sred(24) | !_m_yellow (0) |
! !
s yellow (24) i mgreen(0)
]
1
_s_areen 0) | Sred@ |

sec_yellow_red
Example - TLC 0

1
LL L s_yellow (0)
: =
! s_green (0)
i —=-green &)
i
1
1
1

all_off ()

Rl -

246 /341

SecondaryRoadPassing Problem Diagram |

crossing ~~. _vehicles on crossing
TLC e
secondary ruoll{enter,leave} IR
phase S P o
road users on vehicles on crossing Ty N
lanes [~ oomotooeto-e- + R3R4RS)
tlcKon,off} RN R7
Il{sec_yellow_red, L
lights sec_green, e
control sec_yellow, ,,,’
sec_red} .-~ light settings
lights e

Ic{24V, OV}

R3 : Vehicles on the main road should be allowed to pass the crossing for
a longer period of time than from the secondary road (if not
emergency-case).

Example - TLC

R4 : While vehicles on one road are allowed to pass, the others should be
stopped.

247 /341

SecondaryRoadPassing Problem Diagram I

. The lights should switch in the following order: red - red+yellow -
green - yellow - red. Other combinations (except “all off”, yellow
blinking, and green - yellow - green in emergency case7) are not
allowed.

R7 : After switching to red, the traffic flow of both roads should be
stopped for a period of time

Example - TLC

"Added later to eliminate contradictions
248 /341

Example - TLC

SecondaryRoadPassing — Derive Specification |

allowed to pass the crossing is no interface phenomenon of the machine
(controlled by the environment, not observable by the machine). =
Transformed into s_green(24) or m_green(24) followed by s_green(0) or
m_green(0) using F2 and Al.

should be stopped is no interface phenomenon of the machine (controlled
by the environment, not observable by the machine). = Transformed into
s_red(24) or m_red(24) followed by s_red(0) or m_red(0) using F1 and Al.
longer period of time should be refined into concrete values using F4 and
F12 (definition of fairness, maximum time for waiting).

S3 The traffic light should switch on the green light bulb for the main
road (m_green(24), m_green(0)) for at least 20 s and for the secondary
road (s_green(24), s_green(0)) 10 s (if not emergency-case).

S4a While green is shown for the main road (m_green(24)), the secondary
road lights should show red (s_red(24)).

S4b While green is shown for the secondary road (s_green(24)), the main
road lights should show red (m_red(24)).

249 /341

SecondaryRoadPassing — Derive Specification |l

S5a The lights should be switched in the following order:
red (m_red(24), m_yellow(0), m_green(0)) —
red/yellow (m_red(24), m_yellow(24), m_green(0)) —
green (m_red(0), m_yellow(0), m_green(24)) —
yellow (m_red(0), m_yellow(24), m_green(0)) —
red (m_red(24), m_yellow(0), m_green(0)).

Other combinations (except “all off”
(m_red(0), m_yellow(0), m_green(0)) and yellow blinking
(m_red(0), m_yellow(24/0), m_green(0)) are not allowed.

S5b The lights should be switched in the following order:
red (s_red(24), s_yellow(0), s_green(0)) —
red/yellow (s_red(24), s_yellow(24), s_green(0)) —
green (s_red(0), s_yellow(0), s_green(24)) —

Example - TLC yellow (s_red(0), s_yellow(24), s_green(0)) —

red (s_red(24), s_yellow(0), s_green(0)) .

Other combinations (except “all off”

(s_red(0), s_yellow(0), s_green(0)) and yellow blinking

(s-red(0), s_yellow(24/0), s_green(0)) are not allowed.

250 /341

SecondaryRoadPassing — Derive Specification Il

S7 After switching to red (s_red(24) or m_red(24)) the lights traffic show
red for both roads for 3 s (s_red(24) and m_red(24)) before (s_red(0)
or m_red(0)).

Example - TLC

251 /341

Sequence diagram for SecondaryRoadPassing |

For the TLC instead of the specification, the requirements are
expressed as sequence diagrams:

m The domains crossing and road users on lanes are merged.

m The domains TLC secondary phase, lights control, and
lights are also merged to express requirements.

In this step the requirement is refined by adding timing
constraints, e.g., the state SECONDARY PASSING should take
10 seconds (see F4 and F12).

252 /341

Sequence diagram for SecondaryRoadPassing Il

sd Secondary Road Passing 1 J

crossing, road users on TLC secondary phase,
lanes lights control, lights

t=now —

ALL WAIT 8

{t+2.9 ..
3.1}

SEC PASSING WILL
START

{t+3.9 ..
tr4.1)—k

SEC PASSING

sec_yellow_red ()

sec_green ()

t+13.9 ..
{ t+14.1} sec_yellow ()

SEC PASSING WILL
END

t+14.9 .
{ t+15.1} sec_red ()

ALL WAIT M

Example - TLC

253 /341

MainRoadPassing Problem Diagram |

Example - TLC

R1 :

R3:

induction loop
control

waosrl{srr} | waiting area of

ilc!{vehicle_waiting}

TLC
main
phase

ticK{on,off}

lights
control

secondary road

ruoll{enter,leave} "

road users on
lanes

1i{main_yellow_red, .
main_green,
main_yellow,
main_red} light settings -~
1c24V, 0V} | lights e

vehicle_waiting

~ vehicles on crossing

R1,R3,R4,
RS, R7

|

When there is a car waiting on the secondary road, the traffic lights
should stop the flow of traffic on the main road for a period of time
and allow the traffic flow on the secondary road.

Vehicles on the main road should be allowed to pass the crossing for
a longer period of time than from the secondary road (if not

emergency-case).

254 /341

MainRoadPassing Problem Diagram |l

. While vehicles on one road are allowed to pass, the others should be
stopped.

R5 : The lights should switch in the following order: red - red+yellow -
green - yellow - red. Other combinations (except “all off”, yellow
blinking, and green - yellow - green in emergency case®) are not
allowed.

R7 : After switching to red, the traffic flow of both roads should be
stopped for a period of time

Example - TLC

8Added later to eliminate contradictions
255 /341

MainRoadPassing — Derive Specification |

allowed to pass the crossing is no interface phenomenon of the machine
(controlled by the environment, not observable by the machine). =
Transformed into s_green(24) or m_green(24) followed by s_green(0) or
m_green(0) using F2 and Al.

should be stopped and allow the traffic flow are no interface phenomena of
the machine (controlled by the environment, not observable by the
machine). = Transformed into s_red(24) or m_red(24) followed by
s_red(0) or m_red(0) using F1 and Al.

car waiting on the secondary road is no interface phenomenon of the
machine (controlled by the environment, not observable by the machine).
= Transformed into (srr) using F9 and A4.

S1 When a secondary road request occurs (srr), the traffic lights should
should switch on the red light for the main road for a period of time
(m_red(24) followed by m_red(0)) and switch on the green light for
the secondary road for a period of time (s_green(24) followed by
s_green(0)).

Example - TLC

S3 see SecondaryRoadPassing.

256 /341

MainRoadPassing — Derive Specification Il

S4a/b see SecondaryRoadPassing.

S5a/b see SecondaryRoadPassing.
S7 see SecondaryRoadPassing.

Example - TLC

257 /341

Sequence diagrams for MainRoadPassing |

[sd Main Road Passing 1 J

crossing, road users
on lanes

TLC main phase,
lights control, lights,
induction loop control

waiting area of
secondary road

t=now —
ALL WAITM

“:fégﬁ main_yellow_red ()

MAIN PASSING
WILL START

(";ff{‘; main_green ()

MAIN PASSING

t+3 ..
s om0

t+23.9 ..
{ t+24.1} main_yellow ()

MAIN PASSING)
Example - TLC WILL END

t+24.9 .. .
{ +25.1} main_red ()

ALL WAIT S

258 /341

Sequence diagrams for MainRoadPassing |l

sd Main Road Passing 2 J

crossing, road users
on lanes

TLC main phase,
lights control, lights,
induction loop control

waiting area of
secondary road

t=now —|

ALL WAIT M

((:fég{; main_yellow_red ()
-1}

MAIN PASSING
WILL START

“:3491) main_green ()

MAIN PASSING

24y srr()

H=nowl main_yellow ()
{ }

MAIN PASSING
WILL END
Example - TLC

t+0.9 .. .
{ t+1.1} main_red ()

ALL WAIT S

259 /341

Sequence diagrams for MainRoadPassing |lI

m The first sequence diagram expresses that the state MAIN
PASSING takes at least 20 seconds, and therefore the
requirement R3 is considered.

m The domains crossing and road users on lanes are merged.

m The domains induction loop control, TLC main phase,
lights control, and lights are merged to express
requirements.

Example - TLC

260 /341

EmergencyRequestSecondaryRoadPassing Problem
Diagram |

fire brigade

fbl{emergency_request_stark
emergency_request_en

crossing - “emergency_request
TLC e)
fire brigade ruol!{enter,leave} vehicles on crossin\g\ -
road users on vehicles on crossin\g\ 37) N
lanes ~ [TTTtttmemeeeeee- « R2,R5R7)
tic!{on,off} >, R
1{main_yellow, main_red, - B
lights sec_yellow_red, .
| sec_green, e
contro sec_yellow, L
sec_red} -~ light settings
light 2
Ic{24V, 0V} ights “

Example - TLC

R2 : As long as the emergency button is activated, the flow of traffic on
the main road should be stopped and the flow of traffic on the
secondary road should be allowed.

261 /341

EmergencyRequestSecondaryRoadPassing Problem
Diagram I

. The lights should switch in the following order: red - red+yellow -
green - yellow - red. Other combinations (except “all off”, yellow
blinking, and green - yellow - green in emergency caseg) are not
allowed.

R7 : After switching to red, the traffic flow of both roads should be
stopped for a period of time

Example - TLC

9Added later to eliminate contradictions
262 /341

EmergencyRequestSecondaryRoadPassing — Derive

Specification |

should be allowed is no interface phenomenon of the machine (controlled
by the environment, not observable by the machine). = Transformed into
s_green(24) or m_green(24) followed by s_green(0) or m_green(0) using F2
and Al.

should be stopped is no interface phenomenon of the machine (controlled
by the environment, not observable by the machine). = Transformed into
s_red(24) or m_red(24) followed by s_red(0) or m_red(0) using F1 and Al.

S2 As long as the emergency button is activated
(emergency _request _start, emergency _request_end), the lights for the
main road should be red (m_red(24)) and the lights for the secondary
road should be green (s_green(24)).

S5a see SecondaryRoadPassing.

Example - TLC

S5b see SecondaryRoadPassing.
S7 see SecondaryRoadPassing.

263 /341

Sequence diagrams for

EmergencyRequestSecondaryRoadPassing |

sd Emergency Request 1

crossing, road users
on lanes

MAIN PASSING *

‘ fire brigade ‘ ‘ TLC fire brigade, lights ‘

control, lights

unit =
second

emergency_request_start

t=now
FIRE MAIN
PASSING WILL END

{t+0.9 .
1.1}

H
FIRE ALL WAIT
1

{ttffﬁ : sec_yellow_red ()
A}—k x

FIRE SEC PASSING
WILL START

{t+4.9 .
+5.1}

FIRE SEC PASSING

[S

main_yéllow]

main_red ()

Example - TLC

sec_green ()

_7______

264 /341

Example - TLC

Sequence diagrams for

EmergencyRequestSecondaryRoadPassing |l

sd Emergency Request 2)

crossing, road users
on lanes

fire brigade

| |

TLC fire brigade, lights
control, lights

(_ALLWAT*)

(__FIREALLWAIT)

t=now —k

v |unit=
emergency_request_start second

sec_yellow_red ()

FIRE SEC PASSING
WILL START

t+1.1)—

sec_green ()

{t+0.9 .. !

(FIRE SEC PASSING)

265 /341

Sequence diagrams for

EmergencyRequestSecondaryRoadPassing Il|

sd Emergency Request3)

crossing, road users
on lanes

TLC fire brigade,
lights control, lights

unit =
second

fire brigade

t=now —,
1

SEC PASSING WILL
START

T
|
|
|
|
|
|
|
|
|
|
|
|
|

N}

FIRE SEC PASSING
WILL START

i
i emergency_request_start
i
i

{t+0.9 ..
t+1.1)—

(FIRE SEC PASSING)

sec_green ()

L CEE

Example - TLC

266 /341

Sequence diagrams for
EmergencyRequestSecondaryRoadPassing IV

sd Emergency Request4 J

crossing, road users on
lanes

SEC PASSING WILL i 1]
END i 1 |unit=
v | emergency_request_start 1 |second

sec_gi'een ()

’ fire brigade ‘ ’ TLC fire brigade, lights ‘

control, lights

]
«

FIRE SEC PASSING

Example - TLC

267 /341

Sequence diagrams for

EmergencyRequestSecondaryRoadPassing V

sd Emergency Request 5 J
crossing, road users on fire brigade TLC fire brigade, lights
lanes 9 control, lights
¢ FIRE *) ; ; it =

. , emergency_request_end : [second
t=n ow—if sec_yelchJW_red () E
FIRE SEC PASSING i :
WILL END i i
{t+09 .. 1 ! ;
11} sec_:'ed () :
Example - TLC ! i I
(_ ALLWATM) | E

268 /341

Sequence diagrams for
EmergencyRequestSecondaryRoadPassing VI

m The emergency request can occur at any time; therefore
all possible starting states have to be considered.

m The star (*) indicates that the diagram can be applied for
all states, whose name begins with the given string.

m The domains crossing and road users on lanes are merged.

m The domains TLC fire brigade, lights control, and lights
are merged to express requirements.

Example - TLC

269 /341

BrokenLightSafeState Problem Diagram |

TLC road users on

fault tolerance lanes
T vehicles on lanes
Tlc!(brokenilight) ooy -
ticl{on,off} sec yellow,all off ..
lights lights I R6)
control IcOV,24v} light settings ~ .
I{current) broken light bulb B

R6 : In case of a broken light bulb the traffic lights should blink in yellow
for the secondary road, after all red lights have been switched on for
a period of time.

Example - TLC

270 /341

BrokenLightSafeState — Derive Specification |

broken light bulb is no interface phenomenon of the machine (controlled by
the environment, not observable by the machine). = Transformed into
current not beween 300 mA and 1 A using F7.

S6 In case of a current below 300 mA or above 1 A for a light bulb that
is switched on, the traffic lights should blink in yellow for the
secondary road (s_yellow(24), s_yellow(0)), after all red lights have
been switched on (s_red(24) or m_red(24)) for a period of time.

Example - TLC

271 /341

Domain knowledge about broken_light()

sd Lights Control Broken consider {current, broken_light})
+vLight: eLight
[lights | lights control |
i P
H H un
oop (0)| i
{vCurrent of vLight
changed} !
E current (vLight, vCurrent) \E
{vCurrent<300 or
vCurrent>1000} !
Example - TLC i ! broken_light ()

272 /341

Sequence diagrams for BrokenLightSafeState |

sd Broken 1 Seite 172
crossing, road . .
users on lanes ‘ ’ lights control, lights ‘ ’ TLC fault tolerance ‘
| i |
' i '
I H !
H H ! unit=
! ! broken_light () N second
' H d
1 h !
H ref
H set_all_red
i ! :
L main_red () 1 '
: : :
! 1
t=now— sec_red () | :
! 1
Example - TLC BROKEN ALL 1 '
WAIT ! '
; H :

273 /341

Sequence diagrams for BrokenLightSafeState |l

sd Broken 1 J Seite 2/2

crossing, road
users on lanes

loop J

‘ ‘ lights control, lights ‘ ‘ TLC fault tolerance

T

i

'

H

E ref
H set_all_off
'

H

'

i

'

'

b

H

ST

{t+09 .
t+1.1)—

BROKEN BLINK
OFF

all_off ()

- - -

ref
set_sec_yellow

19
t+2.1)
Example - TLC t=now—*

BROKEN BLINK
ON

sec_yellow ()

RS

274 /341

Sequence diagrams for BrokenLightSafeState Il|

The phenomenon broken_light can occur in every state. It
is detected by a very high or very low current for one light
bulb.

m Although the domain lights control is part of the machine,
it is included in this diagram because the phenomenon
broken_light is more abstract. A diagram using the more
technical phenomenon current is hard to understand.

m The references set_all_red and set_sec_yellow are not
specified here since the behavior is described in Phase 6.

m The safe state is realized by periodically switching on and
off the yellow light of the secondary road. It is not
specified how to repair the traffic lights, i.e., how to leave
the safe state.

Example - TLC

275 /341

Sequence diagrams for Initialization

sd Initialization J
crossing, road TLC, lights conftrol,
users on lanes lights
E \ power_on()
%
: sec_red () :
1 1
| main_red () :
(. ALLWAITM) .
Example - TLC : :
1 1
1 1

276 /341

Validation |

m no contradictions found in FAAAS
B FAAANS = R’

m SLAFLAFIAALNA AL — R1
S2AF1IANF2ANA1l — R2
S3IANF2ANALAFANF12— R3
S4aNS4bAF1LAF2NAL = R4
S5a A S5b A Al = R5
S6ANF7TNAL — R6
STAF1INAL — R7

A m All requirements are captured. They are assigned to the
subproblems as described in Phase 3 and therefore also
assigned to the corresponding sequence diagrams.

277 /341

Validation |l

m In the sequence diagrams, exactly the phenomena of the
problem diagrams are used, and the direction of signals is
consistent with the control of the shared phenomena.

m The signals connect domains as connected in the problem
diagram.

m The specification can be easily derived from the
requirements and the domain knowledge expressed as
sequence diagrams.

m The relationships of Phase 3 are consistent with the state

invariants:
l Subproblem \ Start State \ End State ‘
el MainRoadPassing ALL_WAIT_M | ALL_.WAIT_S
SecondaryRoadPassing | ALL WAIT_S | ALL.WAIT_M
EmergencyRequest all ALL_WAIT _M

SecondaryRoadPassing
BrokenLightSafeState all none

278 /341

Example 2: sun blind control

279 /341

SunControl Problem Diagram

e
motor H sun blind ‘V
T '
" R1,R2,R8
K e
9 T e
buttons user K

h
sun sensor H sun

R1 If there is sunshine for more than one minute but no heavy wind, the
sun blind will be lowered (lower sun blind). (Parts of R3 included to
prevent contradictions. R8 has priority!)

sun
control

R2 If there is no sun shine for more than 5 minutes, the sun blind will be
pulled up (pull up sun blind). (R8 has priority!)

S SEC R8 If the user interacts with the sun blind (manually opens the sun blind,

manually closes the sun blind, manually rotate fins with positive
degree or manually rotate fins with negative degree), sun shine and no
sun shine are ignored within the next 4 hours.

280 /341

SunControl — Derive Specification

SunShine, noSunShine, heavyWind, noHeavyWind,
manuallyOpenSunBlind, manuallyCloseSunBlind,
manuallyRotateFinsWithPositiveDegree and
manuallyRotateFinsWithNegativeDegree are controlled by the environment
and observable by the machine.

lowerSunBlind, pullUpSunBlind are controlled by the machine and
observable by the environment.

R8 expresses conditions that can only be decided in the future.

S1 =R1
S1 =R2

S8 The sunblind should not be lowered or pulled up (lowerSunBlind,
pullUpSunBlind) when the user interacted with the sun blind

Example - SBC (manually opens the sun blind, manually closes the sun blind, rotate
fins with positive degree or rotate fins with negative degree) within the
last 4 hours.

281 /341

SunControl Sequence Diagrams |

sd S1and S8 J Seite 1/2

[SunControl | Wind | Sun | SunBlind | User |
T T T T T
1 i i i
H (HEAVY_WIND_) C NO_SUN D C UP D no interaction withi
: : : : the last 4 hours
i i i i 1
H H H H H
H H H H
H H H H
I . I I
sunShine ' H
t=now— T 1 '
i h H H
: ; ;
H T H H
i i i i
1 H H
(1499} 1 1 1 |
H
NEG ! ! lowerSunBlind ! ! !
H 1 1 | H
i
1 1 1 1 |
H
I (__HEAVY_WIND) C NO_SUN D C UP D no interaction within
H H H H the last 4 hours
i i i i 7
H H H H H
! noHeavyWind ! ! ! !
1

e
h ' '

h
H (_WEAK WND) C NO_SUN D C UP D no interaction within

' T the last 4 hours

H

I

H

H

Example -

282 /341

SunControl Sequence Diagrams ||

sd S1and S8 J Seite 2/2

[SunControl | Wind | Sun | SunBlind | User
1 | 1 1 1
H H H H
sunShine

tenow— i< 0 | 1 1
| H h H H
H H H H
H H ; H H
H H H H H
H H H H H
i i i i
[T] : :
h h h h i
NEG [[[[‘ '
| h h N '
i i i { i
h h h h H
i i i i H
i h h h

H (_WEAK_WIND) C NO_SUN D C UP D no interaction within

1 1 1 T the last 4 hours
H H H H T
i i i i i
H ' H H H
SunShine

tenow— | T] H H
H H H H H
1 1 1 \ H
et —; 1 1 | 1

H (_WEAK WND) C SUN D C DOWN D no interaction within

! T T T the last 4 hours

H H H H T
I I I I I
H H H H H
H H H H H
H H H H H
i i i i i
H H H H H

10

283 /341

SunControl Sequence Diagrams Il

[sd S2and S8 J
[suContol | [Wind] Sun] SunBlind] User]
: T T T v
1 1 H i H
1 1 C SUN D C DOWN i
i i |]
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 H 1 1
H 1 1
P— noSunShine ; :
H 1 1 1
ftr ! | H
" sunShine
300}— 1 T i |
i | [1
1 1 1 1
1 1 H H
! ! C SUN D C DOWN
i i H i
1 1 1 1
1 1 1 1
1 i 1 1
i noSunShine i |
t=now— i
H 1 1 1
1 1 1 1
e : I1UpSunBlind i i
ot 1 pullUpSunBlin H o
3014 1 1 \
1 1 1 1
1 1 1 1
1 1 H H
1 1 C NO_SUN D C UP D no i
Example - SBC H H H H within the last 4
' ' ' ' hours
H H H H
i i H i H
H H H H H
H H H H H
H H H H H
H H H H H

284 /341

SunControl Sequence Diagrams [V

[swoomar] [Wi] T sm] T SuBin 0 Usor
—w >
[GNORE
lowerSunBiing
g
JlyOpenSunblind
_____________________________________ O RS Sl
_____________________________________ Y Sl usupug
ser interaction witin
sunShine the last 4 hours
noSunShine
«
NEG ‘
Example - SBC {bt+ 3600
%
C 3 D " interaction within
the last 4 hours

0Fjrst the exceptions are specified.
285 /341

UserControl Problem Diagram

motor d sun blind
S 9

user
control

buttons H user " °

R5 If the user manually opens the sun blind, the sun blind will be pulled
up (pull up sun blind).

R6 If the user manually closes the sun blind and there is no heavy wind,
the sun blind will be lowered (lower sun blind). (Parts of R3 included
to prevent contradictions.)

Example - SBC

286 /341

UserControl - Derive Specification |

heavyWind, noHeavyWind, manuallyOpenSunBlind, and
manuallyCloseSunBlind are controlled by the environment and observable
by the machine.

lowerSunBlind, pullUpSunBlind are controlled by the machine and
observable by the environment.

S5 =R5
S6 = R6

Example - SBC

287 /341

UserControl Sequence Diagrams |

[UserControl] [Wind] [SunBlind] [User
' ' : '
H H DOWN H
1 1 1 1
1 1 1 1
3 ! manuallyOpenSunBlind ! N
! ! : !
1 pullUpSunBlind 1 :
| | 1 I
i i i
1 1 1 1
1 1 1 1
' ' ' '
' ' ' '
1 1 1 1

Example - SBC

288 /341

UserControl Sequence Diagrams Il

[UserControl] [Wind] [SunBlind] [User

T T T T

1 ' ' 1

H (__HEAVY_WIND__) C UP D) |

i i i i

' ! manuallyCloseSunBlind ! !

1 1 1

H H H |

NEG ! lowerSunBlind N !
' [1 1

i i i i

1 1 1 1

[noHeavyWind ' : :

:\ : 1 1

i (__WEAK WIND__) C uP D i

i i i i

L ! manuallyCloseSunBlind ! !

i g i i

! lowerSunBlind ! !

1 ' 1 1

1 1

Example - SBC ' C WEAK WIND D C DOWN D !
i i i i

1 1 1 1

1 1 1 1

289 /341

FinsControl Problem Diagram

i e
wind sensor H wind ‘
d AL
fin g N
II 777777777 A R ’
buttons }—b{ user ‘

R4 If there is no heavy wind and the user manually adjusts the fins with
positive degree the fins are rotated with positive degree (rotate fins
with positive degree).

If there is no heavy wind and the user manually adjusts the fins with

e G negative degree the fins are rotated with negative degree (rotate fins

with negative degree).

290 /341

FinsControl - Derive Specification

heavyWind, noHeavyWind, manuallyRotateFinsWithPositiveDegree and
manuallyRotateFinsWithNegativeDegree are controlled by the environment
and observable by the machine.

rotateFinsWithPositiveDegree and rotateFinsWithNegativeDegree are
controlled by the machine and observable by the environment.

S4a If there is no heavy wind and the user manually adjusts the fins with
positive degree the fins are rotated with positive degree (rotate fins
with positive degree).

S4b If there is no heavy wind and the user manually adjusts the fins with
negative degree the fins are rotated with negative degree (rotate fins
with negative degree).

Example - SBC

201 /341

FinsControl Sequence Diagram |

sd Sdalb J

l FinsControl] l Wind] l Fins] l User

_WIND

'
manuallyAdjustFinsWithNegativeDegree
|

Example - SBC

'
WEAK_WIND

T
'

'

'

'

'

'

h :]
'

NEG ! rotateFinesWithNegativeDegree N !
I I 1 '
: : : :
' I ' '
1 noHeavyWind 1 : :
' i ' '
H WEAK_WIND H H
' 7 ' '
' I ' '
L manuallyAdjustFinsWithNegativeDegree H
: : : :
1 rotateFinesWithNegativeDegree ! :
' i ' '
H WEAK_WIND H H
: i : :
v manuallyAdjustFinsWithPositiveDegree H
i i i i
H rotateFinesWithPositiveDegree ! :
'

'

'

'

'

'

'

'

'

202 /341

NoDestructControl Problem Diagram

d
motor }—{ sun blind ‘V\ e
‘g [RSRT)

no destruct
control N
wind sensor a wind |” f

R3 The sun blind should not be destroyed: If there is heavy wind, the sun
blind will be pulled up (pull up sun blind).

R7 The sun blind should not be destroyed: When the sun blind is in its
lowest position (sun blind is lowered) or in it highest position (sun
blind is pulled up) the sun blind should stop (stop sun blind).

Example - SBC

293 /341

NoDestructControl - Derive Specification

heavyWind, noHeavyWind, sunBlindIsLowered, and sunBlindIsPulledUp are
controlled by the environment and observable by the machine.
rotateFinsWithPositiveDegree and rotateFinsWithNegativeDegree are
controlled by the machine and observable by the environment.

S3 =R3
S7 =R7

Example - SBC

294 /341

NoDestructControl Sequence Diagram

sd S3 and S7

NoDestructControl | [
| |
' '
' '
' '
' '
i i
' '
: WEAK_WIND :
' 1 '
' ' '
' lowerSunBlind '
i 1 '
| owered H
t= now— T i
' '
'
' '
stopSunBlind 1
{.+0.2)— "

i
(C__WEAKWIND) C DOWN D

T

heavyWind

©
'
' '
'
'
'
'
'
'
'
'

'
pullUpSunBlind

h
H
1
|
\ v
t= now—I< T £
i i
1 H
' stopSunBlind
{.t+0.2—r = T
Example - SBC H (_HEAVWY_WIND__) C UP D
i i i
! noHeavyWind ! H
—
h 1 '
h H
(__WEAK WND__) C UP D

205 /341

Example - SBC

Initialization Sequence Diagram

sd Initialization Seite 1/2
[SBC Wind] Sun [sumsind] | User
i i | | |
powerOn 1 H H 1
—
d ' ' ' '
' ' ' ' '
H H pullUpSunBlind N ! H
1 ' ' ' '
' ' ' ' '
! ! tumLeftlsBlocked ' ' !
h | 1 H i
1 1 1 1 1
! ! ' ' '
I T T > 1
' ' ' ' '
| | : :
1 1 1 v 1
' ' ' ' '
1 1 1 1 1
' ' ' ' '

296 /341

Validation |

m no contradictions found in DA S
B DAS—R
m S1<— R1
52 <= R2
S53<«<= R3
S4a N S4b<— R4
S5<= R5
56 < R6
58 —> R8 (other time reference)
S7 < R7

m all requirements are captured

Example - SBC

m in the sequence diagrams exactly the phenomena of the
problem diagrams are used (space + letter converted to
capital letters)

297 /341

Validation |l

m direction of signals is consistent with control of shared
phenomena

m signals connect domains as connected in problem diagram

m all phases are parallel, and therefore it is not checked that
the relationships are consistent with the state invariants

Example - SBC

208 /341

Phase 5: Design global system architecture
subproblem

4. Derive machine behavior specification for each subproblem
5. Design global system architecture

6. Derive specifications for all components of the global
system architecture

7. Design a software architecture for all components of the
{niroduction global system architecture that should be implemented in
software

8. Specify the behavior of all components of all software

299 /341

Introduction

Phase 5: Design global system architecture |

context diagram from Phase 2

ext. Jackson

problem diagrams from Phase 3

Jackson with dot-
notation

sequences of interactions between machine
and environment of all subproblems from
Phase 4

sequence diagrams

expression of the subproblem relationships | grammar
from Phase 3
output: | system architecture composite struc-
ture diagram
perhaps subcomponents (recursively) composite struc-

ture diagrams

purpose of each component

natural language

specification of external interfaces

interface classes

specification of interfaces between the com-
ponents

interface classes

technical description of hardware interfaces | natural language,
figures
expression of the subproblem relationships | grammars

for all components

30

/ 341

Phase 5: Design global system architecture |l

validation: all machine interfaces of the problem dia-
grams must be captured

the signals in the sequence diagrams must
be the same as the signals in the external
interfaces

to each programmable component at least
one problem diagram must be associated
each problem diagram must be associated
to at least one component

all domains in the problem diagrams being
part of the machine must be associated to
a component

each machine domain in the context dia-
gram must occur in the architecture
purpose must be consistent with the asso-
ciated requirements

the grammar for each component must de-
scribe a subset of the grammar in Phase 3

Introduction

301 /341

Notations and concepts

m UML composite structure diagrams

Notations

302 /341

Composite structure diagrams

m Represent internal structure of a component

m Also called architecture diagrams

m Answers question "How are components structured and
how do they work together”?
UML

Composite
structure

diagrams

303 /341

Basic elements

m parts: named rectangles, denote architectural components

m ports: small rectangles, denote interaction points of a part
with its environment; may have names

m connectors: lines between two ports; may have names

| nes] ' L |

N Lr‘ port
controller : ABS_ECU [hyd acu

UML
Composite {eaamr _";‘\ g S
structure peday part | = =———0
diagrams : wheels wh
&2 S — J
connector

1 pedal2
{}

304 /

341

Part multiplicity

| vre_DLC

o Jq-;r\"-
IJ—'r'i‘.l l Sud
| 33
dispatch : Dispateh [1] DLCs| dle : DLC[O..maxDLC+1)
-
S W— G2 el
‘]‘}reeﬂ paer2 € ,{ [}
el 1 FeOL?) -
UML " peer
Composite J — |
structure e | it e d
I oy

diagrams

There is exactly one instance of part dispatch and between 0
and maxDLC + 1 instances of part dlc.

305/

341

UML
Composite
structure
diagrams

Interfaces

May be associated to ports

m required interface: "socket” notation

m provided interface: "lollipop” notation

Stereo

ControlButtons
provided interface

Loudspeaker

required interface

306 /

341

Interface classes

m Serve to describe interfaces

m Notation: class diagrams, with stereotype
" <<interface>>"

m Contain no attributes

<<interface>> .
-

ControlButtons interface name
UML
Composite start()
structure
diagrams stop()

volume_up() A 3

volume_down() <----- operations, signals

307 /341

Notation for architectures

Machine <<interface>> Machine J
P1_if
Part — = Part
_ phen1()

i phen2()
i P1_if
;ﬁ\ P1_if Domain (P1)

Domain (P1)

[(——1]

UML
Composite

structure
diagrams

Parts = Components = Objects or Classes (Classifiers)

308 /341

UML
Composite
structure
diagrams

Notation for interfaces

Machine J

PartA

1

]

P1_]

if

PartB

<<interface>>
P1_if

phent()
phen2()

Composite structure diagrams can be transformed into class

diagrams.

11>

PartA

<<requires>> \|

<<interface>>
P1_if

<<provides>> -~

p phen1()

phen2()

PartB

309 /341

Problem diagrams with phenomena vs. composite
structure diagrams with interface classes |

Phenomena controlled by the machine become part of a
required interface of the machine.

Machine] <<interface>>
MIP1 Part P1_if
= a
. phen2()

P1: {phen1, phen2}

i P1_if
UML ;JJ\
Composite P17if

structure

diagrams Domain (P1)

310 /341

Problem diagrams with phenomena vs. composite
structure diagrams with interface classes Il

Phenomena controlled by lexical domains in the environment
can become part of a required interface of the machine, if the
lexical domain returns a value.

_
=> Part
II LDP1 o getProperty(): property
P1: {property} i 1 it

UML
Composite P1 if

structure . n
diagrams Lexical Domain

311 /341

Problem diagrams with phenomena vs. composite
structure diagrams with interface classes Il|

Phenomena controlled by the environment become part of a
provided interface of the machine.

Machine J <<interface>>
P1_if
Part =
- phent()
o phen2()
P1: {pheni, phen2
o phenz} Puf
gML X
S P1_if
e Domain (P1)

312 /341

Procedure

Phase 5: Design global system architecture |

context diagram from Phase 2

ext. Jackson

problem diagrams from Phase 3

Jackson with dot-
notation

sequences of interactions between machine
and environment of all subproblems from
Phase 4

sequence diagrams

expression of the subproblem relationships | grammar
from Phase 3
output: | system architecture composite struc-
ture diagram
perhaps subcomponents (recursively) composite struc-

ture diagrams

purpose of each component

natural language

specification of external interfaces

interface classes

specification of interfaces between the com-
ponents

interface classes

technical description of hardware interfaces | natural language,
figures
expression of the subproblem relationships | grammars

for all components

/ 341

Phase 5: Design global system architecture |l

validation: all machine interfaces of the problem dia-
grams must be captured

the signals in the sequence diagrams must
be the same as the signals in the external
interfaces

to each programmable component at least
one problem diagram must be associated
each problem diagram must be associated
to at least one component

all domains in the problem diagrams being
part of the machine must be associated to
a component

each machine domain in the context dia-
gram must occur in the architecture
purpose must be consistent with the asso-
ciated requirements

the grammar for each component must de-
scribe a subset of the grammar in Phase 3

Procedure

314 /341

Executing Phase 5 |

m Find out which hardware and software components are
necessary.

m Existing components can become parts of the machine.
We distinguish between programmable components (e.g.,
Microcontroller, Embedded PC with Operating System)
and hardware components (e.g., Network and
Interconnection Components, Analog-Digital-Converter,
Clocks). (Software components will be considered in Phase
7).

m If distributed processing is required, several components

being part of the machine are necessary.

Domains in the problem diagrams that are part of the

machine (marked with a big dot) will become separate

components inside the architectual diagram.

Procedure ™

315 /341

Executing Phase 5 Il

m Add ports with their provided and required interfaces.
m The signals and parameters of the operations for the
external interfaces can be extracted from the sequence
diagrams.
m The other interfaces must be designed according to the
desired functionality of the connected components.

m In addition to the interface description using interface
classes, the technical realization of the interfaces must be
described. Natural language or figures from the application
domain can be used for these technical descriptions.

m For each component, its purpose should be described in
one or two sentences. This description must be clear
enough to distinguish between the different components.

Procedure

316 /341

Executing Phase 5 IlI

m State for each programmable component which (parts of)
subproblems are solved by the component and what their
relatenships are.

m The subproblem relationships are described for each
component with the same notation as introduced in
Phase 3.

m Parallel problems constraining different domains can be
easily distributed to different components.

m Sequential and alternative problems must be associated to
the same component or a new component must be
introduced that decides which of the machines should be
activated.

Procedure

317 /341

Remarks

m For all programable components, the architecture diagram
will be refined in Phase 7.

m For hardware components to be developed, the
architecture diagram is the starting point for the hardware
development.

m Clock components should only be included if the
programable component does not provide a clock signal or
timer functionality and at least one time-dependent
requirement exists. Operating systems often provide some
kind of timer functionality. In this case, all software
components can use the given functionality, and no
dedicated interface for the clock signal must be described.

Procedure

318 /341

Example 1: traffic light control

319 /341

Example - TLC

linduction loop
to detect cars

TrafficLightsControl System Architecture

on secondary
road

‘TrafficLights
Controller

bl_if
lights_on_off_if
LI L
: InductionLoop : LightsControl
Control

Il

lights_on_off

>

bl

emergency
request button at
fire brigade

] lights

320 /341

Purpose of each component

TrafficLightsController Decides on the signaling shown by the
physical traffic lights.

LightsControl Connects the TrafficLightsController to the
physical lights. We buy this component.

InductionLoopControl Connects the TrafficLightsController to
the induction loop. We buy this component.

Example - TLC

321 /341

Subcomponents

No subcomponents are necessary for this problem.

Example - TLC

322 /341

TrafficLightsControl System Architecture - External

Interfaces |

((interface))
lights_on_off

main_red (voltage: integer)

sec_red (voltage: integer)
main_yellow (voltage: integer)
sec_yellow (voltage: integer)
main_green (voltage: integer)
sec_green (voltage: integer)

((interface))
srr

vehicle_waiting ()

Example - TLC

323 /341

TrafficLightsControl System Architecture - External
Interfaces Il

({enumeration))
elLight
m_red, m_yellow, m_green
s_red, s_yellow, s_green

((interface))
bl

current (light: eLight,
current_of_light: integer)

((interface))
er

Semph- TIE emergency_request_start()
emergency_request_end()

324 /341

TrafficLightsControl System Architecture - Internal
Interfaces

((interface))
lights_on_off_if

m_red (on: boolean)

s_red (on: boolean)
m_yellow (on: boolean)
s_yellow (on: boolean)
m_green (on: boolean)
s_green (on: boolean)

((interface))
srr_if

srr ()

Example - TLC <<interface>>
bl_if

broken_light ()

325 /341

TrafficLightsControl System Architecture —
Technical interface description

Example: Interface b/

The signal of the interface bl describes the measurement of the
electric current for each light. If the electric current is not in
the range from 300 mA to 1000 mA, the signal broken light()
of the interface bl is sent to the TrafficLightsController as a
single event.

Example - TLC

326 /341

Subproblem relationships

We decided to implement all subproblems in the component
TrafficLightsController. The subproblem relationship of the
component TrafficLightsController is therefore the same as for
the overall machine (Step 3).

The other components are hardware components.

Example - TLC

327 /341

Validation |

The external interfaces of the components cover the
interfaces of all problem diagrams.

m The signals in the sequence diagrams are the same as in
the external interfaces.

m All subproblems are associated to the component
TrafficLightsController. (At least one must be associated.)

m All domains in the problem diagrams being part of the
machine are associated to a component (domain lights
control — component LightsControl, domain induction loop
control — component InductionLoopControl).

Example - TLC

m LightsControl and InductionLoopControl are hardware
components.

328 /341

Validation |l

m Only one machine domain in the context diagram exists.
Its structure is given by the architecture.

m The purpose of each component is consistent with the
associated requirements.

Example - TLC

329 /341

Example 2: sun blind control

330 /341

SunControl System Architecture

Sun Blind Control

usr_cmds

]/C Buttons Sun
Sensor >/ [] sun
0 0

sun_state

button_state

sun_intensity

Sun Blind
Controller

O——— JFins

fin_ctrl

wind_speed
motor_state

motor_ctrl
wind_state sun_blind_ctrl

}/C - -
Wind Motor O\[
Example - SBC AuH Sensor)/ "] SunBlind

sun_blind_state

331/341

Purpose of each component |

Button Transforms the user commands into a button state.

SunSensor Measures the sun intensity and transforms it into a
lux-value.

WindSensor Measures the speed of the wind and transforms it
into a number of pulses per minute proportional to the speed
of the wind.

Motor Pulls up and lowers the sunblind according to its turning
direction. The direction can be controlled by the
SunBlindController.

SunBlindController Controlls the sun blind and the fins. It
Example - SBC should react to sunshine and user commands, and it prevents
the sun blind from taking damage caused by heavy wind.

332 /341

Subcomponents |

No subcomponents are necessary for this problem.

Example - SBC

333 /341

SunControl System Architecture - External

Interfaces |

< interface >
usr_cmds

manuallyOpenSunBlind()
manuallyAdjustFinsPositiveDegree()
manuallyCloseSunBlind()
manuallyAdjustFinsNegativeDegree()

< interface >
sun_blind_state

sunBlindIsPulledUp()
sunBlindlsLowered()

< interface >
sun_blind_ctrl

Example - SBC stopSunBlind()
lowerSunBlind()
pullUpSunBlind()

334 /341

SunControl System Architecture - External
Interfaces Il

< interface >
sun_state

sunShine()
noSunShine()

< interface >
wind_state

heavyWind()
noHeavyWind()

< interface >
fin_ctrl

rotateFinsWithPositiveDegree()
rotateFinsWithNegativeDegree()

Example - SBC

335 /341

SunControl System Architecture - Internal

Interfaces |

< interface >
button_state

upButtonPushed()
upButtonReleased()
downButtonPushed()
downButtonReleased()

< interface >
motor_state

motorLeftBlocked()
motorRightBlocked()

< interface >
motor_ctrl

Example - SBC stopMotor()
turnMotorRight()
turnMotorLeft()

336 /341

SunControl System Architecture - Internal
Interfaces Il

< interface >
sun_intensity

sunintensity(lux: Integer)

< interface >
wind_speed

windPulse()

Example - SBC

337 /341

SunControl System Architecture - Wind sensor
description

wind speed pulses per minute delay between two pulses

1 km/h 10 6000 ms
2 km/h 20 3000 ms
5 km/h 50 1200 ms
10 km/h 100 600 ms
20 km/h 200 300 ms
50 km/h 500 120 ms
80 km/h 800 75 ms
100 km/h 1000 60 ms
200 km/h 2000 30 ms

Example - SBC

338 /341

Subproblem relationships |

The component SunBlindController is the only programmable
component.

SunBlindController <Start> ::= SunControl || NoDestructControl |
FinsControl || UserControl
(R1 - R8)

Example - SBC

339 /341

Validation |

m All machine interfaces of the problem diagrams are
captured (e.g., lower sun blind — lowerSunBlind).

m The signals in the sequence diagrams are the same as in
the external interfaces.

m To each programmable component at least one problem
diagram is associated (see previous slide).

m All problem diagrams are associated to the component
SunBlindController.

m All domains in the problem diagrams being part of the
machine are associated to a component (Buttons —
Buttons, SunSensor — SunSensor, WindSensor —
WindSensor, Motor — Motor).

Example - SBC

340 /341

Validation |l

m Only one machine domain in the context diagram exists
(Sun Blind Control). Its structure is given by the
architecture.

m The purpose of each component is consistent to the
associated requirements.

Example - SBC

341 /341

Embedded Systems
WS 08,09

Maritta Heisel
Maritta.Heisel(AT)uni-duisburg-essen.de

Denis.Hatebur(AT)uni-duisburg-essen.de
University Duisburg-Essen — Faculty of Engineering

Department of Computer Science
Workgroup Software Engineering

1/241

file:Maritta.Heisel(AT)uni-duisburg-essen.de

ES

Heisel

Overview

Overview of development process (DePES) |

o

sl

Describe system in use
Describe system to be built
Decompose problem

Derive a machine behavior specification for each
subproblem

Design global system architecture

Derive specifications for all components of the global
system architecture

Design an architecture for all programmable components
of the global system architecture that will be implemented
in software

2 /241

ES

Overview

Overview of development process (DePES) Il

10.
11.
12.

. Specify the behavior of all components of all software

architectures, using sequence diagrams

. Specify the software components of all software

architectures as state machines

Implement software components and test environment
Integrate and test software components

Integrate and test hardware and software

3/241

Phase 6: Derive specifications for all components
of the global system architecture |

5. Design global system architecture

6. Derive specifications for all components of the global
system architecture

Introduction

7. Design a software architecture for all components of the
global system architecture that should be implemented in
software

8. Specify the behavior of all components of all software
architectures, using sequence diagrams

9. Specify the software components of all software
architectures as state machines

4/241

Introduction

Phase 6: Derive specifications for all components

of the global system architecture

For each subproblem:

same interface behavior as in Phase 4

input: architecture from Phase 5 composite structure
diagrams
interface specifications from Phase 5 interface classes
subcomponents (if defined) from Phase 5 composite structure
diagrams
sequences of interactions from Phase 4 sequence diagrams
with annotated states
or existing technical
documentation
output: interface behavior of all components (test spec- | sequence diagrams
ification) with annotated states
validation] sequence diagrams together must describe the

all signals in the interface classes of Phase 5
must be used in at least one sequence diagram

direction of signals must be consistent with the
required and provided interfaces of Phase 5

signals must connect components as connected
in the system architecture of Phase 5

it must be possible to map the new states to the
states of Phase 4

5/241

Executing Phase 6 |

To create the sequence diagrams, for each subproblem the
following steps have to be performed:

m Draw a lifeline for all components of the architecture that
are necessary to describe the interface behavior of the
subproblem and one or more lifelines for the environment.
If the diagram becomes too complex, components can be
merged in the sequence diagram, and the interaction
between these components must be described separately.

Procedure

m Alternatively, for each component the behavior can be
described separately.

m Describe the interface behavior of all components using
the signals from the system architecture (Phase 5). The
behavior must refine the behavior described in Phase 4.

6 /241

Executing Phase 6 I

m Add states where they are relevant to describe the
behavior.

m Add missing sequence diagrams to describe the behavior
Procedure for all relevant states for all components.

m Add timing constraints if necessary.

m To describe complex interactions between two
components, references to detailed sequence diagrams can
be used.

m As for Phase 4: each diagram represents one concrete
interaction sequence. Do not try to make the diagrams
too general. It is better to draw further diagrams.

7 /241

Remarks

m The sequence diagrams together must describe the same
behavior as in Phase 4.

m The signals at the external interfaces of this phase must
be the same, have the same direction and the same order
as in Phase 4.

Procedure

m All signals in the interface classes specified in Phase 5
must be used in at least one sequence diagram of one
subproblem, and the direction of signals must be
consistent with the required or provided interfaces.

m It must be possible to map the new states to the states in
Phase 4.

8 /241

Example 1: traffic light control

9 /241

Interface behavior for TrafficLightsControl,
Subproblem MainRoadPassing 1 |

d Main Road Passing 1 Seite 172
Grossing, waiting
road users on . . traffic lights induction loop
e | [[| [| [| [
road
time unit =
second,
parameter
lunit =
t=now_ voltage
ALL WAIT M
Example - TLC main_red (24) m_red (on)
main_yellow (24) m_yellow (on)
main_green (0) m_green (off)
“1123'91\ main_yellow_red ()
main_red (0) m_red (off)
main_yellow (0) m_yellow (off)
main_green (24) m_green (on)
.“1?4‘91\ main_green ()
MAIN PASSING

10/ 241

Interface behavior for TrafficLightsControl,

Subproblem MainRoadPassing 1 |l

sd Main Road Passing 1 Seite 2/2
Crossing, wailing P
T ‘] ‘ - ‘ ‘ p— ‘ ‘ - ‘ ‘ inotonoap ‘
lanes controller control
road
3 srr:
t+24}.
vehicle_waiting ()
main_red (0) m_red (off)
main_yellow (24) m_yellow (on)
Example - TLC
main_green (0) m_green (off)
{t+23.9
w2a s main_yellow ()
MAIN PASSING
WILL END
main_red (24) m_red (on)
main_yellow (0) m_yellow (off)
main_green (0) m_green (off)
{t+24.9
w25 main_red ()
ALLWAITS)

11/241

Interface behavior for TrafficLightsControl,
Subproblem MainRoadPassing 1 IlI

We suggest to use the alternative way of specification:

m In this phase, it is also possible to merge the domains
lights, lights control and TLC main phase and express the
interaction between these components separately.

Example - TLC

m Since the diagrams become very complex in this case and
only little additional information is given in the diagrams
above, the specification of Step 4 can be re-used, and the
behavior of the components LightsControl and
InductionLoopControl can be specified separately on the
next slides.

12 /241

Example - TLC

Interface behavior for LightsControl |

All subproblems

The component lights control con-
verts the digital signals (on/off) into
an analog voltage to control the
lights.

[sd LightsControl ignore current J

[lights’

lights

ntrol |

[alt

sec_red (24)

s_red (on)

sec_red (0)

sec_yellow (24)

sec_yellow (0)

sec_green (24) s_green (on)
oot s quemion
e o) mreaon)
nan ot m o)

main_yellow (24)

main_yellow (0)

main_green (24)

main_green (0)

m_green (off)

13 /241

Example - TLC

Interface behavior for LightsControl Il

Subproblem BrokenLight-
SafeState

When a light bulb is
supplied with 24 V, a
functioning lights bulb

uses a current between
300 mA and 1000 mA.
If another current can be
measured for one light
bulb, the BrokenLight
signal is generated.

'sd Lights Control Broken consider {current, broken_light} J

+vLight: eLight

[lights | lights control]
i i)
:
'
loop (0,%) 1
{vCu rren;o' vLight
changed}
' I
i current (vLight, vCurrent) i
v >
{vCu rrer;t<300 or

vCurrent>1000}
i

!
! broken_light ().
E—
'

14 /241

Interface behavior for LightsControl Il

sd LightsControl example

lights

lights control

a

mA
sec_red (24) s_red(on)
{vCurrent>300 and
Example - TLC vCurrent<1000}

SprrOblem current (sred1, vCurrent)

BrokenLightSafeState sec_red ©) «_red(of)
(sample sequence) {vourent=0}

current (sred1, vCurrent)

sec_red (24) s_red(on)

{vCurrent<300 or
vCurrent>1000}

current (sred, vCurrent)

broken_light
0

15 /241

Example - TLC

Interface behavior for InductionLoopControl |

The secondary road re-
quest (srr()) is trans-
formed into the signal
vehicle_waiting. Since
the abstract signal srr is
used, an additional tech-
nical description is nec-
essary (but not provided
here).

Subproblem MainRoadPassing

sd InductionLoopControl J

waiting area of seconday
road
H

induction loop control

1 sir () |

'
H vehicle_waiting ().
(yenicle_waiting ()
'

16 /241

Validation

m The sequence diagrams together describe the same
behavior as in Phase 4, since all diagrams are re-used.

Erampe - THE m All signals in the interface classes of Phase 5 are used in at
least one sequence diagram.

m The direction of signals is consistent with the required or
provided interfaces of Phase 5.

m The signals connect components as connected in the
system architecture of Phase 5.

17 /241

Example 2: sun blind control

18 /241

Interface behavior for SunBlindControl

Subproblems SunControl, NoDestructControl, FinsControl,
UserControl

The interface behavior can be directly derived from Phase 4
and the sequence diagrams of the other components.

Example - SBC

19 /241

Interface behavior for Button |

The signals to the Buttons are abstract and represents the
intention of the user.

Subproblem FinsControl
[sd Buttons4 J

[Buttons |

N

Example - SBC

=

nit = s

ALT

manuallyAdjustFinsWith
NegativeDegree

t=now—

ot 29—
manuallyAdjustFinsWith
PositiveDegree

Lo

upButtonPushed

t=now—

upButtonReleased

{tt+ 29—

20 /241

Example - SBC

Interface behavior for Button I

Subproblem UserControl

sd ButtonS5 /

Buttons

| JE—

manuallyOpenSunBlind

ﬁ’nit =S

upButtonPushed

t=now—

upButtonReleased

Pt 3—

21 /241

Example - SBC

Interface behavior for Button Il

Subproblem UserControl

sd ButtonS6 /

Buttons

manuallyCloseSunBlind

ﬁ’nit =s

t=now—

{>=t+ 34—

| JE—

downButtonPushed

downButtonReleased

22 /241

Interface behavior for Button IV

Example - SBC Subproblem SunControl
All sequence diagrams for Button together cover S8.

23 /241

Interface behavior for SunSensor

Subproblem SunControl

sd SunSenorS1S2S8 J

IALT

Example - SBC sunShine

noSunShine

24 /241

Interface behavior for WindSensor

Subproblems SunControl, NoDestructControl, FinsControl,

UserControl
sd WindSensor J
[Witd - \
;
ALT
noHeavyWind
Example - SBC . windPulse
loon) :
.7 1 windPulse
t=now
heavyWind
- windPulse
[loop J
(1475} WindPulse
t=now

The phenomena WindSpeed is an abstraction of a signal
sequence consisting of WindPulses.

25 /241

Interface behavior for Motor

Subproblems SunControl, NoDestructControl, FinsControl,
UserControl

sd Motor J
[Motor
ALT |
Example - SBC turnMotorLeft :
1
H pullUpSunBlind
___________________ e oo -
turnMotorRight !
H lowerSunBlind
................... Amcmmmm -
stopMotor i
|
H stopSunBlind
I
'
'
1
'
'
1
'

26 /241

Validation

The sequence diagrams together describe the same
behavior as in Phase 4, because all digrams are re-used.

m All signals in the interface classes of Phase 5 are captured
in at least one sequence diagram. The phenomenon
WindSpeed is an abstraction of a signal sequence
consisting of WindPulses.

Example - SBC

m The direction of signals is consistent with the required or
provided interfaces of Phase 5.

m The signals connect components as connected in the
system architecture of Phase 5.

m No new state invariants are introduced.

27 /241

Introduction

Phase 7: Software architecture for all programm-
able components of the global system arch. |

5. Design global system architecture

6. Derive specifications for all components of the global

10.

system architecture

Design a software architecture for all components of the
global system architecture that should be implemented in
software

. Specify the behavior of all components of all software

architectures, using sequence diagrams

. Specify the software components of all software

architectures as state machines

Implement software components and test environment

28 /241

Introduction

Phase 7: Software architecture for all programm-

able components of the global system arch.

global system architecture from Phase 5

composite structure di

gram
problem diagrams from Phase 3 Jackson with do
notation
interface specifications from Phase 5 interfaces classes
relationships between subproblems specified in Phase 5 | grammars

possibly reusable components from other projects

(Phase 9)

active or passive class
with interface classes

machine behavior specifications from Phase 4

sequence diagrams wi
annotated states

with problem diagram

output: layered software architecture for each subproblem composite structure di
grams
merged layered software architecture (with subcompo- | composite structure di
nents) grams
purpose of each software component natural language
specification of interfaces between software components | interface classes
validation{] if no instantiation of architectural patterns: consistent

signals of Phase 4 sequence diagrams are interfaces of
the application layer

direction of all signals consistent to each other and input

external interfaces must be consistent with the interfaces
of the system architecture developed in Phase 5

29 /241

Notations and concepts

Conents m Notation for connections and interfaces

m Four-variable model

m Architectural patterns

30 /241

Notation for connections and int

Component1 Component1 Componenti
port_name1

Connection
notation

port_name1 port_name1

>

connection_name OR

if_name

port_name2 port_name2

Component2 Component2 Component2

Component1

port_name1

port_name2

Component2

f_name2

31/241

Connection
notation

Layered architectures

Application

[H]

Interface Abstraction Layer

(]

Hardware Ab:

@

traction Layer

[H]

I
]
S
H
N
%
)

[

Hierarchical organization of
software plus hardware
executing the software

“Lower” layers provide
services for “higher” layers
Usually, only adjacent layers
should be connected (no layer
bridging)

Advantage: modifications
only affect adjacent layers
Well-known example:
ISO/0SI reference model for
communication protocols

32 /241

Four-variable model - basic idea

m Divide software into device-dependent and
device-independent parts.
m Use (extended) four-variable model

m Developed by David Parnas, extension by Connie
Heitmeyer

m Four Variables:

Four-variable 1. Monitored variables: measured quantities (i.e., physical

o values, measured by sensors)

2. Controlled variables: affected quantities (i.e., physical
values, controlled by actuators)

3. Input data: resources from which the values of monitored
variables must be determined; submitted via a technical
interface (electric signals corresponding to digital values)

4. Output data: resources available to affect controlled
variables; submitted via a technical interface (digital
values corresponding to electric signals)

33/241

Four variable model: System architecture, |

technical interfaces
(digital values, corresponding to
electrical signals),
Four-variable (input and output data)
physical

model
physical [Machine)
values A

values S / \
measured (D) Internal Control Internal]_< controlled by
by sensors P Sensors Component Actuators \?ctuatoﬁsd
controlle

(mopitored variables)
variables)

34 /241

Four variable model: System architecture,

technical interfaces
(digital values, corresponding to

Four-variable electrical signals),
model (input and output data)
physical Maghine physical
values S values A
measured O_HE External Control External controlled by
by sensors Sensors Component Actuators X actuators
. (controlled
(monitored / varlables
variables)

35 /241

Layered system architecture

ControlComponent

Application

{1
Actuator IAL

(1

(1
Actuator HAL

(1

{1 {1

(1 (1

Sensors

Actuators

Four-variable
model

Hardware Programmable hardware component

HAL Hardware Abstraction Layer: consists of drivers for
external components; needed for portability

IAL Interface Abstraction Layer: provides input data or
accepts output data, respectively

Application Layer: computes output data from input data

36 /241

Extended four-variable model: Interfaces

m Basic idea: application layer software should have the the
same interfaces as the system, i.e., monitored and
controlled variables

m Thus, application layer becomes device-independent,
device dependencies are factored out in IALs and HALs.

A

System Behavior (Phase 4) =

System Behavior (Phase 4) 2 ControlComponent i
Application Component Behavior (Phase 8) Application Component Behavior (Phase 8)

Four-variable Application

model 0
{1
i

[
Actuator HAL

Sensors Actuators

{1

{1 {1
Hardware

{1 {1

Component Behavior (Phase 6)
37 /241

Four-variable model: System vs. Component
behavior |

sd TeaTimer J sdif_TeaTimer J

‘ : User ‘ ‘ : TeaTimer ‘ ‘

renv ‘ ‘ : TeaTimer
T T

| incMin() |
—_— =
. incMin :
1 incMini '

i i loop (10) J
Four-variable ! i

model

| adjust_time (3,10) |
—_—

! lincSeci) 1

ladjust_time (1,05) I decMin()

1 decMin()

1decSec .
\decSec('
\decSec |
i decSec(i
'decSec('

System behavior (Phase 4) Component behavior (Phase 6)

38 /241

Four-variable model: System vs. Component

behavior Il

sd Fill J sd if_Fill J

‘:WaterConlainer ‘ ‘ : Control ‘ ‘

renv ‘ ‘ : Control

|AboveMin () ! FillState (10)
: : FillState (11) !
 FillState (42 1
‘ ‘

unit = ADC-Value
1kg20.2V
£10.2 (ADC-Valug

‘
‘ ‘

FillState (43)

ATRELLC ! AboveMax() FillState (51) ‘
‘ 1 Filltate (52)

; ; FillState (51) ;
1BelowMax() IFillState (49)
; ; FillState (11) :
FillState (13) :
1 i

System behavior (Phase 4) Component behavior (Phase 6)

Analog-digital converter (ADV) to transform measured weight of vessel.
(5 V = 255 = 25 kg)

39 /241

Architectural patterns

m For the most important problem frames the corresponding
architectural patterns will be proposed.

m If a subproblem fits to a known problem frame, then a
simple instantiation of the patterns will suffice.

Architectural
patterns

m This architectural pattern is one possible solution and can
be used as a starting point for further development.

40 /241

Required behaviour frame diagram and
architectural pattern

Application

Control | CM!C1 Controlled c3 /" Required

machine | CDIC2 domain o] _behaviour

Architectural

patterns
Hardware

- -
Controlled Controlled
Domain (C2) Domain (C1)

Fully automatic control system, no operator.

41 /241

Commanded behaviour frame diagram and
architectural pattern

Application
I

{1 {1
CMIC1 Controlled c3 User Sensor IAL Actuator IAL

domain {1 {1

Control - Interface
ontrol . .

h /Commanded {1 {1
machine Sensor HAL Actuator HAL

L1 L1

Operator

Architectural Lt
patterns Hardware
E
i, i, i,
Operator Controlled Controlled
Domain (C2) Domain (C1)

Control system with operator.

42 /241

Detailed architectural pattern for user interface

1
:
‘ User Input/Output Interface ‘ Note: The architectual pat-
i i tern contains a display to
LT LT .
, give feedback to the user
Display User _
i — Interface Input (in contrast to the problem
patterns Device f)
Interface rame
1 1
T

43 /241

Architectural
patterns

Information display frame diagram and
architectural pattern

Application ‘

!

!

LI LI
. Sensor IAL
Display
Interface
Information " Display
machine eal world Sensor HAL
T il

“va

[H

Hardware

(1 [+

el

Display (E2)

LT
Real world (C1)

Display machine with application layer to process sensor values.

44 /241

Commanded information frame diagram and
architectural pattern

Display Application Input Application

User
Interface

|Answering
machine

E5

Cl /
Enquiry
operator B

i
Hardware

Architectural
patterns

L1 L1
Display (E3) / Enquiry operator (E5) Real world (C1)

Display machine with operator. A data storage component
serves to store information that can be queried by operator
commands.

45 /241

Workpieces frame diagram and architectural
pattern

Application
! 1
EIE1 . E1, 2
WP!Y2 Workpieces |~._ y4 0
Editor /" Command \‘ Interface L
UIE3 .- E3
Architectural User s O
{1
L1
User (E3) Workpieces (E1, Y2)

Note that there is only one interface with the environment.

46 /241

Transformation frame diagram and architectural
pattern

‘ Application ‘
' Il
IY1 iyz
L LT
INIYL Inputs [~ Y3 ‘ Storage IAL ‘ ‘ Storage IAL ‘
— [} e e age
[Transform 0
machine ¢ relation /,‘ 0 _1
Architectural \ e ‘ Storage HAL ‘ ‘ Stora’g_e‘ HAL ‘
rchitectural -
patterns T™MIY2 Outputs |~ Y4 e
[X] 4 \
T T
‘ Hardware ‘
Inputs Outputs

47 /241

Procedure

Phase 7: Software architecture for all programm-

able components of the global system arch.

global system architecture from Phase 5

composite structur

gram
problem diagrams from Phase 3 Jackson with

notation
interface specifications from Phase 5 interfaces classes
relationships between subproblems specified in Phase 5 | grammars

possibly reusable components from other

(Phase 9)

projects

active or passive ¢
with interface classe

machine behavior specifications from Phase 4

sequence diagrams
annotated states

with problem diagram

output: layered software architecture for each subproblem composite structur
grams
merged layered software architecture (with subcompo- | composite structure
nents) grams
purpose of each software component natural language
specification of interfaces between software components | interface classes
validation] if no instantiation of architectural patterns: consistent

signals of Phase 4 sequence diagrams are interfaces of
the application layer

direction of all signals consistent to each other and input

external interfaces must be consistent with the interfaces

A thAa cvsetrarma averhitractiivra AaviAalAmad ha Dhaca £

48 /241

Executing Phase 7 |

For each programmable component and each subproblem,
an architecture should be developed. If the component
implements several subproblems, we develop a seperate
architecture for each subproblem:

m If a subproblem fits to a known problem frame, then a
simple instantiation of the corresponding pattern suffices.

m If the subproblem fits to a variant of some problem frame,
the corresponding architectual pattern can be adjusted.

m If a subproblem is unrelated to any problem frame, then a
corresponding architecture has to be developed from
scratch. The following rules can be applied to develop a
layered architecture:

m The interfaces of the architecture correspond exactly to
the interfaces of the machine domains as defined in the
different problem diagrams.

Procedure

49 /241

Executing Phase 7 I

If the machine has interfaces with causal domains, the
corresponding architecture should contain components for
handling sensors and actuators. This reflects the way in
which software can communicate with and influence the
physical world.

m If the frame diagram contains a biddable domain (i.e., an
operator or user), then the corresponding architecture
should contain a user interface component.

m If the machine has interfaces with lexical domains, these
domains should be reflected as parts of the corresponding
architecture, because lexical domains can only exist inside
the machine.

m Components for data storage should only be included if the

data is stored persistently. Otherwise they can be assumed

to be part of some other component.

Procedure

50 /241

Executing Phase 7 Il

Merge the architectures to a global architecture:

m Decide if two components contained in different
subproblem architectures should occur only once in the
global architecture.

m Make use of the information gathered when decomposing
the overall problem into subproblems. Therefore,
distinguish the following cases:

1. The components are hardware (HAL) or interface
abstraction layers (IAL), establishing the connection to
some hardware device.

Such components should be merged if and only if they are
associated to the same hardware device.

2. Two application components belong to subproblems being
related sequentially or by alternative.

Such components should be merged into one application
component.

Procedure

51 /241

Executing Phase 7 IV

. Two application components belong to parallel
subproblems and share some output phenomena.
Such components should be merged, because the output
must be generated in a way satisfying both subproblems.
4. Two application components belong to parallel
subproblems and share some input phenomena.
If the components do not share any output phenomena,
both alternatives (merging the components or keeping
Procedure them separate) are possible. If the components are not
merged, then the common input must be duplicated.

5. Two application components belong to parallel
subproblems and do not share any interface phenomena.
Such components should be kept separately.

m If a component is too complex, it should be split into
subcomponents.

52 /241

Executing Phase 7 'V

m If timing constraints have been specified, include a timer
component with corresponding time-out timer.

Procedure

53 /241

Executing Phase 7 VI

Specify interface classes:

m The external interfaces are the same as the interfaces in
the system architecture between the components.

m Since we use interface classes to describe the hardware
interfaces, the interfaces between IAL and HAL are similar
to the external interfaces of the component. Thereby, the
HAL contains no application-specific functionality. It only
provides easy-to-use software interfaces to access the
hardware (e.g. registers, interrupts, direct memory access).

Procedure

m The interfaces to the application component can be
derived from sequence diagrams that describe the machine
behavior (Phase 4).

54 /241

Executing Phase 7 VII

m If the interface of the application layer is the same as the
interface of the HAL, the IAL can be removed from the
architecture.

m As described in Phase 5, for each interface it must be
decided, which component provides the interface and
which component uses the interface. Usually, the
component being in control of a phenomenon uses the
corresponding interface. If an interface contains operations
with return values, then the component providing these
interfaces is in control of a phenomenon.

Procedure

55/241

Remarks |

If reusable components from other projects are used, they
must be integrated into the software architecture.

m The already developed architectures of the other
subproblems should be checked for reusable components.

m The global architecture must contain all components of all
subproblem architectures. Its external interfaces must be
the same as in the system architecture developed in
Phase 5.

m The external interfaces of the software architecture are
usually connected with a microcontroller component. The
software components can access these interfaces using
ports and interrupts.

Procedure

56 /241

Remarks Il

m Ports are provided by the microcontroller, and the software
can use ports to read out input data or to send output
signals.

m Interrupts are required interfaces of the microcontroller.
The microcontroller sends the interrupts to the
pre-configured software component when a change of the
state at the interface is detected. Note: An interrupt
cannot have parameters. The parameters must be read out
using ports.

m Interrupts are assigned to fixed input pins of the
microcontroller. Each microcontroller has a fixed number
of pins that can send interrupt signals.

Procedure

57 /241

Example 1: traffic light control

58 /241

TrafficLightsControl System Architecture

‘TrafficLights
Controller

bl_if

lights_on_off_if

linduction loop) ‘—‘
ample - TLC RO EESEE : InductionLoop
on secondary [Control

road

L
: LightsControl

Il

lights_on_off

o

bl

emergency
request button at
fire brigade

] lights

59 /241

Example - TLC

TrafficLightsControl SecondaryRoadPassing
problem diagram

rossin
crossing ~~ . _vehicles on crossing
TC -
secondary ruoll{enter,leave}
phase . e N
road users on hicl i Ty N
anes | vehicles oncrossing____; .\ R3,R4,R5
tickon,off) o RTS
Ii{sec_yellow_red,
lights sec_green,
control sec_yellow, -
sec_red} -~ light settings
c{24V, 0V} lights ~

Variant of the required behavior.

60 /241

TrafficLightsControl SecondaryRoadPassing

architecture

[Taesconoter) Variant - of the

required behavior

TraifioLightApplicationSRP architectural pattern.

—

In the problem

diagram no sensor

[l
LightsInterf: . .
is contained. For
L1 .
this reason, the

components Sensor
IAL and Sensor

HAL are removed

]
LightsDriverSRP|
(]

Example - TLC

from the software

‘ Microcontroller architecture.
The Microcon-
troller is a reused
1
LightsControl com ponent.

61 /241

TrafficLightsController

diagram

induction loop waosrl{srr}

MainRoadPassing problem

control

ilc!{vehicle_waiting}

TLC
main
phase

Example - TLC

Variant of the

waiting area of
secondary road

ruol{enter,leave} " vehicle_waiting

lanes

road users on

~ vehicles on crossing

I{main_yellow_red,

/" RLR3, R4,
. R5R7 E

light settings -~ ~~_____--~

main_green,
main_yellow,
tlc!{on,off} main_red}
lights Icl{24V, 0V} lights
control

required behavior.

"

62 /241

TrafficLightsController MainRoadPassing

architecture

TrafficLightsController J

TrafficLightApplicationMRP

—

(]
InductionLoop
IAL_MRP

{1

(]
InductionLoop

DriverMRP

(]

(]
Lightsinterface
AbstractionMRP

(]

(]
LightsDriverMRP

(]

Microcontroller

AN

|
InductionLoopControl
(to detect cars
on secondary
road)

LightsControl

63 /241

EmergencyRequestSecondaryRoadPassing Problem
Diagram

fire brigade

fbl{emergency_request_start,
emergency_request_end;

crossing - \\er\nergencyirequesl
TLC e ’
fire brigade ruoll{enter,leave} vehicles on crossing ~~ .
road users on vehicles on crossing™ . N
lanes R2, R5, R7 |
ticK{on,off} N o
I{{main_yellow, main_red, s ’ o
i sec_yellow_red, e
ample - TLC lights ' secjreenf o
control sec_yellow, L
sec red light settings
ligh
e ,

Variant of the commanded behavior.

64 /241

EmergencyRequestSecondaryRoadPassing

architecture

‘TrafficLightsController J

: TrafficLightApplicationER

1

]
: LightsInterface
AbstractionER
L]
L]
: LightsDriverER
L]

: Microcontroller

A sensor is not neces-
sary and therefore re-

moved. The user in-

- Emergency

Bequest terface is just a but-
[]

ton and no feedback

ample - TLC

is given to the user.

h\
LI LI
LightsControl emergency
request button at
fire brigade

65 /241

TrafficLightsController BrokenLightSafeState
problem diagram

TLC
fault tolerance

lights

Ic!{broken_light}
tic!{on,off}

road users on
lanes

Ii{sec_red,

main_red,

">~ _ vehicles on lanes

sec_yellow, all_off}

control

Example - TLC

Icl{oV,24V}
{current}

lights

Variant of the required behavior.

<
light settings

broken light bulb

66 /241

TrafficLightsController BrokenLightSafeState

Architecture

TrafficLightsController J

TrafficLightApplicationBL

1 1

LightsInterface
AbstractionBL

]
LightsDriverBL
L]

U [

Microcontroller

BrokenLight
DriverBL

Example - TLC

1 I

L
LightsControl

67 /241

Global Architecture |

TrafficLightsController J

TrafficLightApplication
— —
[
InductionLoop LightsInterface
Abstraction
bl_if er_if
Ll

BrokenLight
Driver

InductionLoop
Driver

Emergency
Request
Driver

ports O, Q),ira9

Microcontroller

Example - TLC

1 1
sre_if biif or if
lights_on_off_if g
Lt Lt
induction loop LightsControl emergency
to detect cars request button at
on secondary fire brigade
road

68 /241

Global Architecture Il

TrafficLightApplication

IndictionLooplAL
LightsInterfaceAbstraction

Example - TLC

IndictionLoopDriver

LightsDriver

EmergencyRequestDriver
BrokenLightDriver

Microcontroller

components of the subproblem architectures.

TrafficLightApplicationSRP,
TrafficLightApplicationMRP,
TrafficLightApplicationER,
TrafficLightApplicationBL

IndictionLooplAL_MRP

LightsInterfaceAbstractionSRP,
LightsInterfaceAbstractionMRP,
LightsInterfaceAbstractionER,
LightsInterfaceAbstractionBL

IndictionLoopDriverMRP

LightsDriverSRP, LightsDriverMRP,
LightsDriverER, LightsDriverBL

EmergencyRequestDriverER
BrokenLightDriverBL
Existing component

69 /241

Global Architecture Il

The components LightsinterfaceAbstractionSRP,
LightsinterfaceAbstractionMRP, LightsinterfaceAbstractionER, and
LightsinterfaceAbstractionBL are merged since they are associated to the
same hardware device (Case 1).

The components LightsDriverSRP, LightsDriverMRP, LightsDriverER, and
LightsDriverBL are merged since they are associated to the same hardware
device (Case 1).

The components TrafficLightApplicationSRP and
TrafficLightApplicationMRP implement sequential subproblems and are
Example - TLC merged into one application component (Case 2). The merged component
and the components TrafficLightApplicationER and
TrafficLightApplicationBL belong to parallel subproblems and share all
output phenomena. They are also merged, because the output must be

generated in a way satisfying all subproblems (Case 3).

70 /241

Global Architecture — TrafficLightApplication

Since the component is complex, it is split into subcomponents.
A TimeOutTimer and a Clock are introduced to separate the
timers from the logic (in TrafficLightBehavior).

TrafficLightApplication J

ms_clock
Clock H TimeOutTimer
seuimeou(\ﬁ timeout
|
TrafficLightBehavior
—
lights_state_if
s bl_if’ er_if'
LT

3 &

Example - TLC

Ep (@

71 /241

Global Architecture — Purpose of the components

Clock
TimeOutTimer

TrafficLightBehavior
IndictionLooplAL

LightsInterfaceAbstractionl AL

Example - TLC

IndictionLoopDriver
LightsDriver
EmergencyRequestDriver
BrokenLightDriver

Microcontroller

Generates a pulse each millisecond.

Sends a timeout message after a predefined
time is elapsed.

Control of Traffic Lights.

Detects if a vehicle is waiting (based on a
secondary road request). (More complex in
real machines).

Transforms lights commands for each road
into commands for each light bulb.

HAL for induction loop access.

HAL for lights access.

HAL for emergency request button.
HAL for lights (broken light detection).

Hardware running the application.

72 /241

Example - TLC

TrafficLightsControl interfaces |

({interface))
srr

vehicle_waiting ()

({interface))
irq7

interrupt_request_7 ()

({interface))
srr_if’

see srr_if

The microcontroller schematic and
databook show that the Induction-
LoopControl is connected to the pin
of the microcontroller that generates
the interrupt request with number 7.

({interface))
srr_if

srr ()

73 /241

Example - TLC

TrafficLightsControl interfaces Il

((interface))
lights_state_if

main_red ()
main_yellow_red ()
main_yellow ()
main_green ()
sec_red ()
sec_yellow_red ()
sec_yellow ()
sec_green ()
all_off ()

({interface))
lights_on_off_if

s_red (on: boolean)
s_yellow (on: boolean)
s_green (on: boolean)
m_red (on: boolean)
m_yellow (on: boolean)
m_green (on: boolean)

((interface))
ports

((interface))
lights_on_off_if’

see lights_on_off_if

see Hardware descriptions

74 /241

Example - TLC

TrafficLightsControl interfaces Ill

({interface))
bl_if

broken_light ()

((interface))
bl_if’

see bl_if

((interface))
irq8

interrupt_request_8 ()

The microcontroller schematic and
databook show that the broken lights
detection of LightsControl is con-
nected to the pin of the microcon-
troller that generates the interrupt re-
quest with number 8.

75 /241

Example - TLC

TrafficLightsControl interfaces IV

({interface))
er_if

emergency_request_start()
emergency_request_end()

((interface))
er_if’

see er_if

((interface))
irq9

interrupt_request_9 ()

The microcontroller schematic and
databook show that the button at the
fire brigade is connected to the pin
of the microcontroller that generates
the interrupt request with number 9.

76 /241

TrafficLightsControl interfaces V

((interface)) ((interface))
ms_clock set_timeout
MsClock () SetTimeOut (seconds: Integer)
({interface))
timeout
Example - TLC TlmeOut ()

77 /241

Validation

m The subproblem architectures have the same external
interfaces as the problem diagrams.

m The signals of sequence diagrams at the external
interfaces are the same as the signals in the interfaces of
the application layer.

m The direction of all signals is consistent to each other and
consistent to the input.

Example - TLC m The architecture has the same external interfaces as the
traffic lights control component of the system architecture
developed in Phase 5.

m The overall architecture contains all components of all
subproblem architectures.

78 /241

Example 2: sun blind control

Example - SBC

79 /241

Example - SBC

SunBlindCo

m architecture

Sun Blind Control

usr_cmds

Buttons

L

Sun

Sensor] Sun

button_state

Sun Blind
Controller

wind_speed

motor_ctrl

wind_state

C
. D~

sun_state

sun_intensity

O—Ej Fins

fin_ctrl

motor_state

sun_blind_ctrl

L
Wind
Sensor

L
Motor O>>£] Sun Blind

sun_blind_state

80 /241

SunControl Problem Diagram |

sun blind ‘V

!/ R1,R2,R8
K %

user }" ;

1
h
sun sensor sun

Example - SBC

81 /241

SunControl architecture

SunBlindController

SunBindAppSC The 1AL for the
WindSensor is split-

0 . .
SunSensor ted since it has to

IAL_SC

perform two differnt
task (transform
pulses to a speed,

calculates if there is

0 .
heavy wind).
i The Microcon-
Microcontroller

Lk i,

Example - SBC

troller is a reused

component.

Buttons SunSensor WindSensor Motor

82 /241

UserControl problem diagram

motor d sun blind
S 9
] e) L h R -7 T N
wind sensor H wind ‘ e R5R6 |
buttons H user " -

user
control
c

Example - SBC

83 /241

UserControl architecture

SunBlindController

SunBlindAppUC

—

O
WindSensor
1AL_UC

indSensor
HAL.

Microcontroller ‘
— —
— LS L1
Buttons WindSensor Motor

Example - SBC

84 /241

FinsControl problem diagram

i e
wind sensor H wind ‘
d Noh
- BN N
fin g N
II 77777777 l\ M ’
buttons }—b‘ user ‘

Example - SBC

85 /241

Example - SBC

FinsControl

architecture

SunBlindController

SunBlindAppFC

—

.

0
WindSensor
IAL_FC

{1

]

WindPulse
ToSpeedIAL_FC
{1
N

WindSensor
HAL_FC
(]

Lt
Microcontroller

—

L

Buttons

i,
WindSensor

T

Fins

There is no IAL for
the fins since the
requirements for the
fins are the same as
the specification and
no hardware compo-
nent is necessary to

control the fins.

86 /241

NoDestructControl problem diagram

motor sun blind ‘ N

no destruct
control

wind sensor

}—{ F@Q} b

Example - SBC

87 /241

NoDestructControl architecture

SunBlindController

SunBlindAppNDC

—

|

0O
WindSensor
IAL_NDC

L1

indSensor
HAL.

Example - SBC

Microcontroller ‘

LS L1
WindSensor Motor

88 /241

Global architecture

SunBlindController

SunBlindApp
— — —
sun_blind_ sun_blind_
usr_cmds sun_state state . p)
U O

SunSensor
IAL

fin_ctri

Example - SBC

L
Mikrocontroller
— — In
ston_state 5 5 ﬁm\umr cr fin_ctrl
1 {1]
Butions SunSensor WindSensor Motor Fins

Components with similar names are merged.

89 /241

Global architecture — SunBlindApp

SunBlindApp
SunBlindAppCtrl
— —
sun_blind_ sun_blind_
usr_cmds sun_state_if state p)

g
wind_state
]
SunDetection
] fin_ctr
7 1

In this example the timer is an internal class.
The component SunDetection was seperated since the state
machine of the whole component SunBlindApp is too complex.

RS

Example - SBC

90 /241

Global architecture — Purpose of the Components |

SunBlindApp

SunDetection

SunBlindAppCtrl

ButtonlAL

Example - SBC

SunSensorlAL

WindSensorlAL

WindPulseToSpeedIAL

Control of SunBlind according to state of Blind,
Buttons, Sun and Wind. Control of the Fins
according to Buttons and Wind.

Calculates if the sun is shining or not shining for a
certain period of time.

Control of SunBlind according to Buttons, Sun
and Wind.

Transforms button state to intended user
commands.

Calculates if sun is shining or not based on
intensity.

Calculates if there is heavy wind or not based on
speed.

Calculates wind speed from sequence of pulses.

91 /241

Global architecture — Purpose of the Components I

MotorlAL Transforms sun blind commands into motor

commands and motor state into sunblind state.
ButtonHAL HAL for button access.
SunSensorHAL HAL for sun sensor access.
WindSensorHAL HAL for wind sensor access.
MotorHAL HAL for motor access.
FinsHAL HAL for fin access.

Example - SBC

Microcontroller Hardware running the application.

92 /241

Example - SBC

SunControl interfaces |

Hardware interfaces:

< interface >
button_state

upButtonPushed()
upButtonReleased()
downButtonPushed()
downButtonReleased()

< interface >
wind_speed

windPulse()

< interface >
sun_intensity

sunintensity(lux: Integer)

< interface >
motor_ctrl

stopMotor()
turnMotorRight()
turnMotorLeft()

93 /241

SunControl interfaces Il

< interface >
fin_ctrl

rotateFinsWithPositiveDegree()
rotateFinsWithNegativeDegree()

Microcontroller interfaces:

< interface > < interface >
ports irq7

out(adr, value)
in(adr): value interrupt_req_7()

Example - SBC

< interface >
irq7

interrupt_req_8()

94 /241

Example - SBC

SunControl interfaces Il

HAL interfaces:

< interface >

button_state’

< interface >
sun_intensity’

upButtonPushed’()

upButtonReleased’()
downButtonPushed’()

sunintensity’(lux: Integer)

downButtonReleased’()

i < interface >
terf:
<<w::d2:::d/>> motor_ctrl’
stopMotor’()
i / turnMotorRight'()
windPulse() urnMotorl of'()

95 /241

SunControl interfaces IV

< interface >
fin_ctrl’

rotateFinsWithPositiveDegree'()
rotateFinsWithNegativeDegree'()

IAL Interfaces:

< interface >
usr_cmds < interface >
sun_state
Example - SBC manuallyOpenSunBlind()
manuallyCloseSunBlind() sunShine()
adjustFinsPositiveDegree() noSunShine()
adjustFinsNegativeDegree()

96 /241

SunControl interfaces V

< interface >

sun_blind_ctrl < interface >

sun_blind_state

stopSunBlind()
lowerSunBlind()
pullUpSunBlind()

sunBlindIsPulledUp()
sunBlindlsLowered()

Interface inside application:
< interface >
sun_state_if

sun()
noSun()

Example - SBC

97 /241

SunControl interfaces VI

Interface inside IAL:

< interface >
wind_kmh

windSpeed(kmh: Integer)

Example - SBC

98 /241

Validation

m The subproblem architectures have the same external
interfaces as the problem diagrams.

m The phenomena of sequence diagrams at the external
interfaces are the same as the signals in the interfaces of
the application layer.

m The direction of all signals is consistent to each other and
consistent to the input.

m The architecture has the same external interfaces as the
sun blind controller component of the system architecture
developed in Phase 5.

Example - SBC

m The overall architecture contains all components of all
subproblem architectures.

99 /241

Introduction

Phase 8: Specify the behavior of all components of
all software architectures, using sequence diagrams

5. Design global system architecture

6. Derive specifications for all components of the global

10.

system architecture

Design a software architecture for all components of the
global system architecture that should be implemented in
software

. Specify the behavior of all components of all software

architectures, using sequence diagrams

Specify the software components of all software
architectures as state machines

Implement software components and test environment

100 /241

Introduction

Phase 8: Specify the behavior of all components of

all software architectures, using sequence diagrams

For each subproblem:

the same interface behavior as in Phase 6

input: software architectures from Phase 7 composite structure
diagrams
interface specifications from Phase 7 interface classes
system behavior from Phase 4 sequence diagrams
with annotated states
interface behavior of all programmable compo- | sequence diagrams
nents from Phase 6 with annotated states
output: interface behavior of all software components | sequence diagrams
(test specification) with annotated states
validation] all sequence diagrams together must describe

all signals in the interfaces classes of Phase 7
must be used in at least one sequence diagram

direction of signals must be consistent with the
required and provided interfaces of Phase 7

signals must connect components as connected
in the software architecture of Phase 7

it must be possible to map any new states to the
states of Phase 6

101 /241

Notations and concepts

m Four-variable model (repetition)

Concepts

m Transformation of timing constraints

102 /241

Four-variable model

A System Behavior (Phase 4) 2
System Behavior (Phase 4) 2 ControlComponent Application Component Behavior (Phase 8)

Application Component Behavior (Phase 8)
Application O

Sensors Actuators

Four-variable
model

~

Component Behavior (Phase 6)

m Application layer software should have the the same
interfaces as the system, i.e., monitored and controlled
variables.

m States of the environment will be mapped to internal
states.

103 /241

Transformation of timing constraints |

In Phase 4, timing constraints are specified as shown in the
following figure.

sd Phase 4 Sequence J

x: integer
| Environment | | Machine |

unit =
seconds

Timing
constraints

IncommingSignal()

~

t=now—

OutgoingSignal()

ftex}—

e

104 /241

Transformation of timing constraints |l

These timing constraints can be transformed in this phase into
implementable events to reuse the specification from Phase 4,
e.g., as shown in the following figure:
sd Phase 8 Sequence J

X'": integer
l Application] [Timeout Timer] [IAL]
T T

unit =
seconds

)

Timing 1
L '
constraints setTimeout(x') !
! —t=now

mmqmmegmm—————

timeout() :)
& 1 —{t&x]

OutgoingSignal()
I

R 2 |

x' is derived from x according to the expected execution time
of the application component and the hardware devices.

105 /241

Transformation of timing constraints ||

The Timeout Timer can be specified as follows:

sd Timeout Timer Behavior /J
X: integer
l Application] l Timeout Timer] l Clock]

i i i

H H Vg

! ! v funit=

1 : H seconds

' ' '

' ' '

H setTimeout(x) ! H

' 1 1

1 L s

: loop(x*1000) J: :

' ' '

1 1 1
Timing : ! millisecond_pulse() 1
constraints ! ' '

' ' '

| timeout() 1 !

.

| | 1

' ' '

' ' '

' ' '

From the timing constraints, concrete requirements for the
execution time of the application component and the precision
of the clock can be derived.

106 /241

Executing Phase 8 |

To create the sequence diagrams, for each software component
and each subproblem the following steps have to be performed:
m Draw a lifeline for the software component to be specified.
Either introduce a lifeline for the connected components,
or connect the arcs representing a signal with the left and
right border of the sequence diagram.
Procedure m Describe the interface behavior of the component using
the signals from the software architecture.
m The specification of the application components should be
reused from Phase 4.

107 /241

Executing Phase 8 I

m The specification for the interface abstraction layer can be
derived from the domain knowledge used to derive the
specification and the specification of the other
components in the system architecture, expressed as
sequence diagrams.

m The specification for the hardware abstraction layer should

show the mapping from the IAL to the hardware and vice
Bt versa. Since this specification is usually described in the
data book and in the schematic of the hardware, only a
reference must be given.

m If possible, refer to other sequence diagrams and do not
draw diagrams for the same sequence several times.

108 /241

Executing Phase 8 IlI

m Add states where they are relevant to describe the
behavior. Map the defined states to the states in the
environment.

m Add missing sequence diagrams to describe the behavior
for all relevant states.
m Add timing constraints if necessary.

Procedure

m Specify the initialization sequences. They describe the
state of the software components after initializing the
components (e.g., after power-on).

109 /241

Remarks

In this phase, each component is described separately.

m Do not forget the extended four-variable model (for reuse
of specifications).

m A specification expressed somewhere else should be
referenced and does not have to be translated into
sequence diagrams.

Procedure

m The sequence diagrams developed in this phase are a
concrete basis for the implementation of test cases for all
software components.

110 /241

Example 1: traffic light control

111 /241

Example - TLC

Global software architecture |

TrafficLightsController J

ST

InductionLoop

InductionLoop

Driver

TrafficLightApplication
— —
[
LightsInterface
Abstraction
bLif erif
0

BrokenLight
Driver

Emergency
Request
Driver

Microcontroller

1 1

str_if

bl_if er_if
lights_on_off_if K"_/‘
1

induction loop
to detect cars
on secondary

road

L]
LightsControl emergency

request button at
fire brigade

112 /241

Global software architecture Il

TrafficLightApplication)
ms_clock
Clock Q—HH TimeOutTimer
[|
set_timeout\% g timeout
{1 -
TrafficLightBehavior
Example - TLC
] | | []
lights_state_if
sIr g bl_if’ er_if’
LI LI L LI

113 /241

Behavior of the components |

TrafficLightBehavior — all subproblems: same as in Phase 4
(also for the initialization sequence), see four-variable model
and transformation of timing constrains

Clock — all subproblems: reused component without states
(initialization sequence not necessary).

Sanih-TLE TimeOutTimer — all subproblems: see slide Transformation of
timing constraints.

114 /241

Behavior of the components |l

InductionLooplAL — subproblem MainRoadPassing:

sd InductionLooplAL J
InductionLooplAL
i

| siT ()

vehicle_
waiting () 1
c————

Eammle - TLC An initialization sequence is not necessary since no states are
specified.

InductionLoopDriver — subproblem MainRoadPassing: see
InductionLooplAL and description of the Microcontroller.

115 /241

Example - TLC

Behavior of the components

LightsinterfaceAbstraction - all
subproblems:

The complete specification for this
component can be derived from
the domain knowledge about the
lights compontent in Phase 4.

sd LightslA 1 J

[LightsinterfaceAbstraction |
1

main_red ()

1
|

| m_red (on)

i

i m_yellow (off)

|
| m_green (off)
|

(example)

An initialization sequence is not necessary since no states are

specified.

LightsDriver — all subproblems: see LightsInterfaceAbstraction
and description of the Microcontroller.

116 /241

Behavior of the components |V

BrokenLightDriver — subproblem BrokenLightSafeState: see
description of the Microcontroller.

EmergencyRequestDriver — subproblem
EmergencyRequestSecondaryRoadPassing: see description of
the Microcontroller.

Example - TLC Microcontroller — all subproblems: The behavior is described in
the Microcontroller data book and therefore not specified here.

117 /241

Validation

All sequence diagrams together describe the same behavior
as in Phase 6.

m All signals in the interfaces classes of Phase 7 occur in the
specification of at least one component (in the complete
specification).

m The direction of the signals are consistent with the
required or provided interfaces of Phase 7.

Example - TLC

m The signals connect the same components as connected in
the software architecture of Phase 7.

m The states of the environment are mapped 1:1 to the
application states.

118 /241

Example 2: sun blind control

Example - SBC

119 /241

Global software architecture

SunBlindController

SunBlindApp
— — —
sun_blind_ sun_blind_
usr_cmds sun_state siate D
[

wind_state
L3

SunSensor
IAL

WindPulse
ToSpeedIAL

fin_ctri

Example - SBC

LI
Mikrocontroller
— — Tl
utton_state 5 5 ®|nr,md fin_ctrl

N L1 LT

Buttons SunSensor WindSensor Motor Fins

120 /241

Software architecture of the application

SunBlindApp

SunBlindAppCtrl

-

Example - SBC

121 /241

Behavior of the Components |

ButtonlAL — subproblems SunControl and UserControl
sd ButtonlAL (R5) /

[ButtonlAL |

—t=now

upButtonPushed

upButtonReleased

—{t>=3}

Example - SBC

manuallyOpenSunBlind

[EUSUEUEEE AN A ——

122 /241

Behavior of the Components |l

sd ButtonlAL (R6) /

[ButtonlAL |

—t=now

downButtonPushed

(Lo N]

downButtonReleased

' — (= 3}

! manuallyCloseSunBlind

Example - SBC

123 /241

Behavior of the Components ||

ButtonlAL — subproblems SunControl and FinsControl
sd ButtonlAL (R4) J

[ButtonlAL |

A
unit = s

IALT

downButtonPushed

downButtonReleased

—{t.t+ 2.9)

manuallyAdjustFinsWith
NegativeDegree

T
'
'
'
'
'
'
1
'
'
'
'

21— t=now
'
'

N}
|
'
'
'
'
T
'

upButtonPushed o

—t=now

Example - SBC

upButtonReleased

—{t.t+ 2.9)

d
1

i

|

1 manuallyAdjustFinsWith
H PositiveDegree
i

1

i

i

i

i

124 /241

Behavior of the Components |V

SunSensorlAL — subproblem SunControl

sd SunSenorlAL_J
[SunSenorlAL]
|
intensity(in) \
.
ALT ,
[in>=32000],
1
! sunShine
_____________ dmmmmmmmm—oo o
|
1
I
[in<32000]!
Example - SBC : noSunShine
i
!
T
1
1
1
1

125 /241

Behavior of the Components V

WindSensorlAL — all subproblems
sd WindSensorlAL_J

[WindSensorlAL |
.
1

windSpeed(ws)

i
]

i

ALT '
[ws<=80],

noHeavyWind

__________ A -

[ws>80]

h
1
H
|
|
h
!
Example - SBC | heavyWind
i
i
i
|
1
H
|

126 /241

Behavior of the Components VI

WindPulseToSpeedIAL — all subproblems
'sd WindPulseToSpeedIAL J

oldWindSpeed: integer
[WindPulseToSpeedIAL |
T

'
'
I
1
'
'

windPulse :

A —t=now
'
windPulse H
3 —{t+x}
L
ALT J :
[x=oldWindSpeed],

_____________ N

1
Example - SBC [else]:
wind Speed (6000/x)

oldWindSpeed:=x]

127 /241

Behavior of the Components VI

MotorlAL — subproblems UserControl and SunControl
sd MotorlAL /

[MotorlAL |
'

ALT

pullUpSunBlind

turnMotorleft

lowerSunBlind

Example - SBC

turnMotorRight

[P PR

128 /241

Behavior of the Components VIII

MotorlAL — subproblem NodestructControl

sd MotorlAL (R3 and R7) /J
[MotorlAL |
j
ALT H
i
motorLeftBlocked :
{
i
! SunBlindIsPulledUp
_________________ A e
i
i
motorRightBlocked !
>t
i
| SunBlindlsLowered
i
!
Example-SBC __________________: _________________
w stopSunBlind
1
i
stopMotor !
i
i
i
i
i
1

129 /241

Behavior of the Components [X

ButtonHAL see ButtonlAL and description of Microcontroller
SunSensorHAL see SunSensorlAL and description of
Microcontroller

WindSensorHAL see WindSensorlAL and description of
Microcontroller

MotorHAL see MotorlAL and description of Microcontroller.
St - SEE Microcontroller see description of Microcontroller.

130 /241

Behavior of the Components X

SunDetection — Subproblem SunControl

\ Surbeteion]

[ALT

sunShine()

noSunShine()

Example - SBC || P SO ouptip g

noSunshine()

nosun(

sunShine()

131 /241

Behavior of the Components Xl

SunBlindAppCtrl — Subproblem SunControl

[Sd_SunBiindAppCir (R1 and R8))
[sunBlingAppctti | [ButtonlAL][SunDetection] [windSensorAL | | MotorlAL |
PULLED_UP H H H |
! unit=ms
i
V heavyWind()
T
sun)
NEG ' ‘
noSun()
noHeavyWind()
llyOpenSunblind() H H H
| = now~— < manualyOpenSunblind(_}
sun()
NEG
Example - SBC noSun)
a0 1 | 1 |
360011 | H H H
| sin |
| | i |
b + + >
:
i i i i i

132 /241

Behavior of the Components XIl|

58 SunBINdAppCl (R2 and RB))
[swemamon] [mwomAl | [swdmeaion] [winsseworll | [weoml |
yc
t=n
noSun()
[NEG ‘
onSun()
{ar
3600} —
noSun
Example - SBC (PuEn P

133 /241

Behavior of the Components XIlI

T S TG

[] [wssemol] [Swowemon] [el] [ewena]
PULED 0P a0 u
PoManudContrl

[GRoF
lowerSuning,

AT

FULLED Up and
ManualControl

[FES TowerSnbind
Example - SBC
o 3600
—
FULLED U and
noblanuaiConirol

134 /241

Behavior of the Components XIV

SunBlindAppCtrl — Subproblem UserControl
[sd SunBindApp (®5))

[SunBlindApp] [windsensoriaL | | MotorlAL | ButtonlAL
. T T T

: manuallyOpenSunBlind()
T
'

pullUpSunBlind()

[EPEPR, ‘A

Example - SBC

135 /241

Behavior of the Components XV

sd SunBlindApp (R6) J

[SunBlindApp] i AL | MotorlAL] ButtonlAL
T ;

T
| i
. heavyWind() '
)
h i

'
! manuallyCloseSunBlind()
v

lowerSunBlind ()
1

NEG

'
noHeavyWind :
1
: manuallyCloseSunBlind ()
T

1
lowerSunBlind ()

Example - SBC

[P AP U A 5 S S ———

Bt T S ol A

136 /241

Behavior of the Components XVI

SunBlindApp — subproblem FinsControl
sd SunBlindApp (R4a) J

[SunBlindApp] [windSensoriAL
: g
i

ButtonlAL

FinHAL]
:

heavyWind() H
ey VN 1
i

' '
manuallyAdjustFinsWithNegativeDegree()
1

rotateFinesWithNegativeDegree()

NEG

noHeavyWind

RN AP 2

manﬁallyAdjustFinsWi\hNega(\veDeéree()
T T

'
rotateFinesWithNegativeDegree()
v

[

Example - SBC

'
manuallyAdjustFinsWithPositiveDegree()

1
rolaIeFinesWi(h‘Posi(iveDeg ree

R A,

Sun|

137 /241

Behavior of the Components

— subproblem NodestructControl
sd SunBlindApp (R3 and R9) J

[SsunBiindApp | [windsenorAL | [MotorlAL
: v

sunBlindIsLowered()
i

'
stopSunBlind()

'
heavyWind]

1
pullUpSunBlind
;

'
turnLeftlsBlocked
T

Example - SBC

'
stopSunBlind

[/ E /2 S

B e il al St il st

138 /241

Validation

All sequence diagrams together describe the same behavior

as in Phase 6.

m All signals in the interfaces classes of Phase 7 are captured
in at least one sequence diagram.

m The direction of the signals are consistent with the

required or provided interfaces of Phase 7.

m The signals connect the same components as connected in
the software architecture of Phase 7.

Example - SBC

m The state invariants can be mapped as follows:

m noManualControl < no interaction within the last 4 hours
m manualControl < pressed within the last 4 hours

m PULLEED_UP & UP

m LOWERED < DOWN

139 /241

Phase 9: Specify the software components of all
software architectures as state machines

. Design a software architecture for all components of the
global system architecture that should be implemented in
software

8. Specify the behavior of all components of all software
architectures, using sequence diagrams

e
9. Specify the software components of all software
architectures as state machines
10. Implement software components and test environment
11. Integrate and test software components

12. Integrate and test hardware and software

140 /241

Introduction

Phase 9: Specify the software components of all

software architectures as state machines

interface behavior from Phase 8

sequence diagrams
with annotated
states

relationships between subproblems speci-
fied in Phase 5

grammars

Phase 8

output: component overview description with refer- | class diagram with
ences to interface classes ports, sockets and
lollipops
data types and operations class diagrams
defined using pre- and postconditions formulas or natu-
ral language
state machines state machine dia-
grams
invariants formulas or natu-
ral language
validation; consistent with interface behavior from

completeness of state machines (implies
error-cases for user-interaction)

a class must be active if it contains an ac-
tive class or a timer

141 /241

Notations and concepts

Notation for active and passive classes

Pre- and postconditions
Class invariants
UML 2.0 state machine diagrams

Concepts

Active and passive sensors

142 /241

Notation for active and passive classes

Components corespond to classes.
Active Class: May contain timers, work in parallel to its

environment, may contain other passive or active

classes (see composite structure diagram of
Phase 7)

Passive Class: Cannot contain timers, functionality is executed
in the time context of an active class, may
contain other passive classes.

Active and

passive classes

required_interface

required_interface

Lk

ClassnameActiveClass ClassnamePassiveClass
attribute: Datatype attribute: Datatype
operation(..) operation(..)

—

—

provided interface orovided interfacé3/ 241

Notation for data types

Data Type Class: passive class without required or provided
interfaces

Active and
passive classes

<<type>>
DataTypeClass
attribute: Datatype
operation(..)

144 / 241

Design by Contract — Pre- and Postconditions

Needed to apply principle of design by contract.

Must be specified for all operations.
Preconditions: express when an operation may be called.

Postconditions: express effect of operations by relating the
- et state before calling the operation with the state that is
ostconditions

¢ reached after termination of the operation.

145 /241

Design by Contract — Contracts in daily life

Bertrand Meyer
Object-Oriented Software Construction

Prentice Hall 1988 (first edition), 1997 (second edition)
online see:
http://archive.eiffel.com/doc/manuals/technology/contract/page.html

m Contractual partners are clients and sellers or service
Poscanditions providers.

m Both expect advantages from the contract and are willing
to make a commitment.

146 /241

Pre- and
postconditions

Design by Contract — Example

want to travel from Berlin to Duisburg.

Commitments

Advantages

Must guarantee postcond.

Passenger Pay ticket getting to Duisburg
Be there at departure time
Must keep precondition Has advantages from post-
condition
Traffic Must take the passenger to | Receives price for the
provider Duisburg ticket; does not have to

take passengers who have
not paid or did not arrive
in time

Can assume precondition

147/

241

Pre- and Postconditions — Advantages of explicit
contracts

Meyer:

A contract document protects both the client, by
specifying how much should be done, and the
supplier, by stating that the supplier is not liable for
failing to carry out tasks outside of the specified
scope.

Pre- and
postconditions

Application to software: A contract is a formal agreement
between a machine / a class and its actors / clients. It specifies
the rights and duties for both sides.

148 /241

Pre- and Postconditions — Example: Stack (generic
class)

class
attribute
method

end class

Stack|[T]
nb_elements: integer
empty(): Boolean
full(): Boolean
push(x: T)

pop()

top(): T

Stack[T]

149 /241

Pre- and Postconditions — Specification of the
stack operations |

empty() pre true
post Result = true < nb_elements = 0

full() pre true
post Result = true < nb_elements = ...

push(x: T) pre not full

post not empty
psie and nb_elements = nb_elements@pre + 1
postconditions and “top = X"

150 /241

Pre- and Postconditions — Specification of the
stack operations |l

pop() pre not empty
post not full

and nb_elements = nb_elements@pre - 1
and "top element of the stack is deleted”

top(): T pre not empty
i e post noChange
Cios o and Result = “top element of the stack”

151 /241

Pre- and Postconditions — Commitments and
advantages

Commitments Advantages
Client | Call push(x) only if | Element x is put on
stack is not full stack, top() results in x,
nb_elements is increased by
1.
Must keep precondition | Has advantages from post-
condition
postconditions Server | Makes sure that x is | Unnecessary to handle the
placed on the stack case if stack is full.
Must guarantee post- | Can assume precondition
condition

152 /241

Pre- and Postconditions — Application of the design

by contract principle |

m An operation may only be called when its precondition is
satisfied. Otherwise, its effect is unspecified.

m The caller of an operation must make sure that the
precondition of the operation holds.
This can be done by checking the precondition explicitely
before calling the operation. However, the precondition
can also be guaranteed by the context. For example,
immediately after a pop operation, a push operation is

Pre- and

postconditions a |WayS pOSSi ble.

m Pre- and postcondition must be contained in the code of
each operation, either as an assertion that can be checked
at runtime, or (at least) as a comment.

m In the implementation of the operation, the precondition is
not checked!!

153 /241

Pre- and Postconditions — Application of the design
by contract principle Il

m Operations that are called from the environment outside
the machine should be robust, i.e., they should have
precondition true, and the treatment of error cases should
be performed in the operation.

m Internal operations may have stronger preconditions than
true. Then, the treatment of error cases must be
performed in the operations that call the operation in

Pre- and question.

postconditions

m Example: An operation pushl that checks if the stack is
full is a different operation than the push operation given
above. It implements a different functionality!

154 /241

and Postconditions — Syntax

Boolean expressions like in programming languages
Example: x <> 0 and x <=y

m Formulas, using logical connectives
Example: x #0A x <y
m Natural language
Pre- and

posteonditions Example: “x must not be equal to zero, and x must be
less than or equal to y”

155 /241

Class invariants

Condition that holds for all objects of a class, in the initial
state, before and after each operation.

Example: class invariant for Stack: 0 < nb_elements

Class invariants

156 /241

State Machines

Consist of states and transitions between these states.

Example: two states with transitions

transition_2

transition_1

UML 2.0 state

n?achine
diagrams state_2

157 /241

Transitions, initial states

m Transition:
m e input signal
m g: guard (boolean
expression)
® a: output signals or actions,
seperated with commas

e[g)/ a

A transition is taken when g
is true and e occurs. Then, a
PY is sent/executed.

UML 2.0 state

machine Figure 368 - Initial Pseudo State m Each state machine must

diagrams

have an initial (pseudo-) state
that points to another state

Several figures taken from UML Superstructure Specification, v2.0
(709 Pages), http://www.omg.org/docs/formal /05-07-04.pdf

158 /241

State Lists

-] L

insignal / é insignalt / insignal1 /
outsignall outsignall Outsigngn
@ @
UML 2.0 state

machine
diagrams

It is allowed to combine states.

159 /241

State References

insignall / insignal2 / —_ insignalt /

outsignalt outsignal2 outsignalt insignal2 /

outsignal2

UML 2.0 state
machine
diagrams

It is allowed to repeat states.

160 /241

Composite States

insignal2

insignal1 / é insignal1 /
outsignall outsignall

: } : } -
UML 2.0 state

machine
diagrams

“XOR" hierachical states. When the state machine is in state
AB, it is either in state A or in state B.

161 /241

Referenced Composite States

insignalt /
outsignall

insignal2

insignal1 /
outsignall B
@

>

UML 2.0 state

machine

diagrams \\x
- o
O20)

162 /241

Regions

Figure 380 - Notation for compoesite state/state machine with regions

“AND" hierarchical (parallel) states. When the state machine
UML 2.0 state is in state S, it is in all regions at the same time. To eliminate
g regions, one has to form the Cartesian product of the states of
the (two or more) regions.
Alternative: Do not use regions, but define a separate active
class (and corresponding state machine) for each parallel state

machine.
163 /241

Choice States

[1d=10]

[<=10]

Figure 374 - Choice Pseudo State

[1d==10]

UML 2.0 state
machine

diagrams

No “real” states (the state machine cannot stay in such states,
events are not processed); they are only used to make case
distinctions.

164 /241

Entry and Exit Points

i @ ®aborted

Figure 371 - Entry point Figure 372 - Exit point

ReadAmount : ReadAmount :

ReadAmountSM ReadAmountSM Heaed

again
Figure 361 - Exit Point

Figure 359 - Entry Point
UL 20 iz Entry points can be used to go directly to a specified state
o inside a composite state.

Exit points can be used to leave the composite state from a
specified state and go to another state outside (that is
connected with the exit point).

165 /241

Example: Reference to Sub-State Machines with
Entry and Exit Points

/HandIeFaiIure: \
FailureSubmachine
)
sub
error3/ —
subEnd oo
UML 2.0 state k _/

machine
diagrams

fixed1

166 /241

Final State and Terminate Node

®

Figure 363 - Final State

A final state indicates, that the composite state will be left.

X

UML 2.0 state Figure 375 - Terminate node
machine
diagrams

A terminate node indicates that the object will be destroyed.

167 /241

Sub-State Machines: Example ATM (1)

ATM

acceptCard
N
QuiOfService| ReadAmount :
- . ReadAmountSM absirted
outOfService|

UMI;_ZOState
diagrams (asetar
P VerifyTransaction releaseta ReleaseCar

Figure 390 - SubmachineState with usage of exit point

168 /241

Sub-State Machines: Example ATM (2)

ReadAmountSM ,J

abort

otherAmount

UML 2.0 state
machine
diagrams

Figure 388 - State machine with exit point as part of the state graph

169 /241

History

kel

Figure 369 - Shallow History

When a composite state is re-entered, the sub-state is entered
that was most recently left.

UML 2.0 state

machine
diagrams

Figure 370 - Deep History

Recursive history connector. May be useful when substates are
also hierarchically structured.

170 /241

Difference between active and passive sensors |

Active Sensor: Sensor actively sends its measured values (cyclic
or when they changed).

Passive Sensor: Sensor values have to be requested. We
distinguish between passive sensors that react
with and without delay.

sensor_interface_1

sensor_interface_2

sensor_interface_3b

sensor_interface_3a

newValue(value: type)

getValue(): type

actualValue(value: type)

getValue()

sensor_interface_3b

sensor_interface_1 sensor_interface_2 sensor_interface_3a
[l e
WithoutDela PassiveSensorWithDelay
[

Active and
passive sensors

measured value measured value measured_value

Both are drawn as active classes because they are hardware
components, and hardware components usually work in parallel
with their environment.

171 /241

Difference between active and passive sensors |l

send_if_to_IAL get if_for_IAL
"getlALValue()" returns lastValue
newlALValue() getlALValue(): type
send_if_to_IAL get_if_for_IAL send_if_to_IAL get_if_for_IAL send_if_to_IAL get_if_for_IAL

L
HALPassiveSensorWithDelay ||
: Il

1] HaL i [HALPassivesensorwithoutbelay ||
[[TastValue: type 1 |[lastValue: type 1
1 I [I
sensor_interface_1 sensor_interface_2 (O sensor_interface_3a

sensor_interface_3b

N\ ’\ g/ getValue()
. newValue(x) / lastValue:= x, v clock() O
-Q newlALValue(x) (wait_for

next_value
[getValue() <> lastValue]
/lastValue := getValue(),
newlALValue(lastValue)

actualValue(x)
)/ getValue()

x <> lastValue]

/lastValue := x,
newlALValue(x)

Active and
passive sensors

The interface to the higher layer can be the same for all type of
sensors if this kind of HAL is used.

172 /241

Procedure

Phase 9: Specify the software components of all

software

architectures as state machines

interface behavior from Phase 8

sequence diagrams

with annotated
states
relationships between subproblems speci- | grammars

fied in Phase 5

Phase 8

output: component overview description with refer- | class diagram with
ences to interface classes ports, sockets and
lollipops
data types and operations class diagrams
defined using pre- and postconditions formulas or natu-
ral language
state machines state machine dia-
grams
invariants formulas or natu-
ral language
validation] consistent with interface behavior from

completeness of state machines (implies
error-cases for user-interaction)

a class must be active if it contains an ac-

Fiua ~lace Ar A Filrvmar

173}

241

Executing Phase 9 |

For each component, the following steps should be performed:
m Decompose the component if necessary. In this case, add
descriptions of new interface classes.
m Draw an active (e.g., behaves like hardware, contains a
clock) or passive (e.g., calculation-routine) class with its
interfaces as a component overview description.

Procedure

174 /241

Executing Phase 9 I

For each subproblem and each component, the following steps
should be performed:

m Design a state machines that implements the behavior of
all sequence diagrams specified in Phase 8.

m Add necessary data as attributes to the component
overview description.

m In case of complex data or complex operations on data
types: add classes for data types.

m Specify pre- and postconditions for all operations of
introduced classes.

m Complete the state machines, i.e. there must be a
Procedure specified reaction to each possible input signal.

m Add class invariants to introduced classes if possible.

175 /241

Executing Phase 9 IlI

To merge the different state machine associated with one
component, the following steps should be performed:

m The state machine diagrams can be merged according to
the case distinction we made in Phase 7:

m Case 1 (The components are hardware (HAL) or interface
abstraction layers (IAL), establishing the connection to
some hardware device): often the state machines will
already be equal, because they describe the same device. If
not, the state machines must be merged manually. In
many cases, we only need to add the additional signals to
the appropriate states.

m Case 2 (Two application components belong to
subproblems being related sequentially or by alternative):
the composition can be achieved by using composite
states. The connecting arcs between the sub-automata
depend on the problem.

Procedure

176 /241

Executing Phase 9 IV

m Case 3 (Two application components belong to parallel
subproblems and share some output phenomena): here,
the merge depends on the problem to be solved. The
priorities from Phase 5 have to be taken into account.

m Case 4 (Two application components belong to parallel
subproblems and share some input phenomena): the merge
has to be performed manually.

m Case 5 (Two application components belong to parallel
subproblems and do not share any interface phenomena):
no merge should be performed, see Phase 7.

m When state machines are merged, for each state it must
St be checked if it can handle all events that can occur.

177 /241

Remarks

m In contrast to Phase 8, the behavior must be described
completely for each subproblem since the state diagrams
form the basis for the implemention.

m To validate the results, it should be assured that each
composed state machine is complete and covers all input
events that can be sent by the components with an
interface to the composed state machine.

Procedure

178 /241

Example 1: traffic light control

179 /241

Example - TLC

Global software architecture

TrafficLightsController J

TrafficLightApplication

1

InductionLoop Lightsinterface

Abstraction

InductionLoop
Driver

BrokenLight
Driver

ports irq& O, ra9

er_if
Ll

Emergency
Request
Driver

Microcontroller

1 M
srr_if bt er if
lights_on_off_if H’_‘/
1k Lk
induction loop LightsControl emergency
to detect cars request button at
on secondary fire brigade

road

180 /241

Component TrafficLightApplication |

The component TrafficLightApplication is an active component
since it contains a clock. The following overview diagram is not
strictly necessary since this component is decomposed as shown
on the following slide.

TrafficLightApplication

5 A o5 &

srr lights_state_if bl_if

er if

The component TrafficLightApplication is split into the
subcomponents TrafficLightBehavior, Clock, and
TimeOutTimer. These components are specified separately.

Example - TLC

181 /241

Component TrafficLightApplication Il

TrafficLightApplication)
ms_clock
Clock (H TimeOutTimer
[|
set_timeout@ g timeout
[] L
TrafficLightBehavior
] I I []
lights_state_if
srr bl_if’ er_if’
Example - TLC ﬁ g I %
L L L L

182 /241

Component TrafficLightApplication Il

((interface))
ms_clock

MsClock ()

((interface))
set_timeout

SetTimeOut (seconds: Integer)

({interface))
timeout

Example - TLC T|meout ()

183 /241

Component Clock

Clock component overview

Clock #T_Cdock
|

m The component is an active component since it has to
work in parallel with all other components and generates
cyclic signals.

m Usually it is a standard component, contained in the
operating system. Hence, it is not specified here.

Example - TLC

184 /241

Component TimeOutTimer |

TimeOutTimer component overview

ms_clock : TimeOutTimer
| —remainingTime: Long

— SetTime (Time: Long)
— IsZero (): Boolean

- DecTime ()
- }:J\
set_timeout timeout

m Additionally, it contains a data type and operators for the
remaining time.

m The state machine uses this data.

m The component is a passive component, since it reacts
Example - TLC immediately to the input signals of the clock.

185 /241

Component TimeOutTimer |l

TimeOQutTimer operations
IsZero()

pre true
post Result = true < remaining_time = 0
SetTime(x)
pre x >0
post remaining_time = x
DecTime()
pre remaining_time # 0

post remaining_time = remaining_time@pre —1

Example - TLC

186 /241

Component TimeOutTimer Ill

TimeOutTimer state machine

TimeOutTimer J

/ SetTime(0) SetTimeOut (seconds)

/ SetTime (seconds * 1000)
S
MsClock ()

MsClock () / DecTime()

SetTimeOut (seconds)
/ SetTime (seconds * 1000)

[IsZero()] / TimeOut ()

TimeQutTimer invariants
For the state machine and the data of the component the
following additional invariant must always be true:

Example - TLC

In state Stopped = remaining_time = 0
In state Running = remaining_time > 0

187 /241

Component TrafficLightBehavior |

TrafficLightBehavior component overview

set_timeout timeout
TrafficLightBehavior =
another_vehicle_waiting: boolean

5 A o &

srr lights_state_if bl_if

er if
m It is a passive component since it reacts immediately to
input signals.

m The attribute another_vehicle_waiting was added later.

Example - TLC

188 /241

Component TrafficLightBehavior I

TrafficLightBehavior state machine for SecondaryRoadPassing

SEC_PHASE

/SetTimeOut (3)

ALL_WAIT_S

TimeOut () / sec_yellow_red(), SetTimeOut(1)

SEC_PASSING_
WILL_START

TimeOut () / sec_green(), SetTimeOut(10)

SEC_PASSING

TimeOut () / sec_yellow(), SetTimeOut(1)

SEC_PASSING,

WILL_END

TimeOut () / sec_red()

Example - TLC ©

189 /241

Component TrafficLightBehavior Il

TrafficLightBehavior state machine for MainRoadPassing

MAIN_PHASE

ALL WAIT M srr() / another_vehicle_waiting:= true

/ SetTimeOut (3)

TimeOut () / main_yellow_red(), SetTimeOut(1)

m The attribute an-

MAIN_PASSING_ cle waitingie T iti
srr() / another_vehicle_waiting:= true other,vehlcle,waltlng

)) is added to store a
TimeOut () / main_green(), SetTimeOut(20)
secondary road

srr() / another_vehicle_waiting:= true req UeSt.
TimeOut ()

§v> [another_vehicle_waiting] / main_yellow(), SetTimeOut(1)

m The state machine
is using this data.

[ELSE]

MAIN_PASSING_ |srr() / main_yellow(), MAIN_PASSING_

LONG_ENOUGH SetTimeOut(1) WILL_END
Example - TLC TimeOut () /
main_red()

190 /241

Example - TLC

Component TrafficLightBehavior 1V

TrafficLightBehavio
state machine for
EmergencyRequest
In this state ma-
chine, the states
of the other state
machines are re-
peated (in blue)
to express the
behavior without
changing all other
state machines.

FIRE_PHASE

ALL_WAIT_M,
ALL_WAIT_S
SEC_PASSING_
WILL_START

SEC_PASSING,
SEC_PASSING_
WILL_END

MAIN_PASSING_WILL_START,
MAIN_PASSING,

MAIN_PASSING_WILL_END,
MAIN_PASSING_LONG_ENOUGH

/ main_yellow(), SetTimeOut(1)

FIRE_
MAIN_PASSING
. — ['emergency_request_end ()/
main_red(), SefTimeOut(1)

TimeOut () / main_red(), SetTimeOut(3)

FIRE_ALL_WAIT

TimeOut () / sec_yellow_red(), SetTimeOut(1)

emergency_request_end)/
sec_yellow(), SetTimeOut(1)

FIRE_
SEC_PASSING_
WILL START

emergency_request_end)/
sec_yellow(), SetTimeOut(1)

TimeOut ()

TimeOut () /sec_green()
emergency_request_end () /

FIRE_
SEC_PASSING_
sec_yellow(), SetTimeOut(1)
FIRE_
SEC_PASSING_
WILL_END

/sec_green()

TimeOut () /
SetTimeOut(3), sec_red()

191/

241

Example - TLC

Component TrafficLightBehavior V

TrafficLightBehavior State Machine for BrokenLightSafeState

/ BROKEN_PHASE

\

TimeOut () / all_off (),
SetTimeOut(1)

/ SetTimeOut(3), main_red(), sec_red()

BROKEN_
ALL_WAIT
TimeOut() / all_off(), SetTimeOut(1)

BROKEN_

o

BLINK_OFF

TimeOut() / sec_yellow(), SetTimeOut(1)

BROKEN_
BLINK_ON

192 /241

Component TrafficLightBehavior VI

TrafficLightBehavior merged state machine
This component is contained in all subproblems. The attribute
another_vehicle_waiting is only contained in the subproblem
MainRoadPassing. Therefore, in the state machines for the
other subproblems this attribute must be considered:

m In the subproblem SecondaryRoadPassing, the signal srr
must not change the attribute another_vehicle_waiting,
since the cars on the secondary road are allowed to pass
and they are not waiting.

m In the subproblem EmergencyRequest, the signal srr must

not change the attribute another_vehicle_waiting, since the
S - TILE cars on the secondary road are allowed to pass and they
are not waiting.

193 /241

Component TrafficLightBehavior VII

m On start-up, each time the main phase is activated the
attribute another_vehicle_waiting must be set to false.

Since the subproblems MainRoadPassing and
SecondaryRoadPassing are related sequentially, one state
machine will be activated as soon as the other state machine
terminates. The state machines for the subproblems
EmergencyRequest and BrokenLightSafeState are parallel and
activated with the signals broken_light() or
emergency_request_start(). Once activated, they take control
over the output signals. Additionally, the initialization sequence

Example - TLC

194 /241

Component TrafficLightBehavior VIII

is considered.

TrafficLightBehavior J
srr ()
FIRE_PHASE ’

broken_light ()

/another_vehicle

waiting:= false
emergeny_request_start()

siT ()

o)

‘emergeny_request_start()

vehicle, MAIN_PHASE
mam,rgd 0, /another_vehivle
sec_red () waiting:= false

broken_light () broken_light ()

BROKEN_PHASE

Example - TLC

195 /241

Component: InductionLooplAL |

InductionLooplAL component overview and state machine for
MainRoadPassing

sIr

InductionLooplAL J

InductionLoopIAL .\ vehicle_waiting () /
srr ()

srrif’

m It is a passive component since it reacts immediately to input signals.

St TILE This component is only contained in subproblem
MailRoadPassing, and no merge is performed.

196 /241

Component LightsInterfaceAbstraction

LightsInterfaceAbstraction component overview
lights_state_if

:

1t

LightsinterfaceAbstraction

—

L
~

lights_on_off_if

m It is a passive component since it reacts immediately to
input signals.

Example - TLC

197 /241

Component LightsInterfaceAbstraction |l

LightsInterfaceAbstraction
LightsinterfaceAbstraction state machine for Secondary-
state machine for MainRoad- RpadPassing

Pa Sssin g LightsinterfaceAbstraction J
LightsInterfaceAbstraction sec_yellow_red ()/ sec_red ()/

main_red)/ main_yellow._red ()/ s_red (true), s_red (true),
m_red (true), m_,eay(“ue)l’ s_yellow (true), s_yellow (false),

m_yellow (false), m_yellow (true), s_green (false) s_green (false)
m_green (false) m_green (false) .\
.\ S main_yellow ()/
m_red (false), sec_yellow ()/
wait_for_|_change m_yellow (true), s_red (false), wait_for_|_change
m_green (false) s_yellow (true),
s_green (false)

main_green ()/
m_red (la\se}, sec_green (i/

m_yellow (false), s_red (false),
m_green (true) sﬁye\low((la s)e),
s_green (true)

Example - TLC

198 /241

Component LightsInterfaceAbstraction Il

LightsinterfaceAbstraction

state machine for Emergen-

cyRequest

LightsInterfaceAbstraction J

sec_yellow_red ()/ sec_red ()/
s_red (true), s_red (true),
s_yellow (true), s_yellow (false),
s_green (false) s_green (false)

sec_yellow ()/
s_red (false),
s_yellow (true),
s_green (false)

wait_for_|_change

s_red (false),
s_yellow (false),
s_green (true)

sec_green (i/

LightsInterfaceAbstraction
state machine for
LightSafeState

Broken-

LightsInterfaceAbstraction J

main_red ()/ sec_red ()/

m_red (true), s_red (true),

m_yellow (false), s_yellow (false),
s_green (false)

.{een (false)
wait_for_|_change

sec_yellow ()/
s_red (false),
s_yellow Slrue),
s_green (i

all_off ()/
m_red (false),
s_red (false),

s_yellow (false),
m_green (false),
false) s_green (false)

m_yellow (false),

199 /241

xample - TLC

LightsInterfaceAbstraction global state machine

LightsInterfaceAbstraction J

main_red ()/
m_red (true),

sec_red ()/
s_red (true),

m_yellow (false), s_yellow (false).,

.<een (false) s

sec_yellow ()/
s_red (false),

s_yellow (true),

s_green (false)

main_green ()/
red (falee),

myellow (alse),

m_green (rue)

s_green (false)
main_yellow (/
m_red (false),

m_green (false)

s_red (false),
SZyellow (false).
sZgreen (rue)

sec_green (i/

m_yellow (true),

sec_yellow_red ()/
s_red (true),

s_yellow (true),
s_green (false)

main_yellow_red ()/
m_red (true),
m_yellow (true),
m_green (false)

. wait_for_|_change

alloff (1
m_red (false),
s_red (false),

m_yellow (false),

s_yellow (false),
m_green (false),
s_green (false)

200/ 241

Component: InductionLoopDriver

InductionLoopDriver component overview

srr_if

7

InductionLoopDriver

5

irq7

m When this component receives the signal interrupt_request_7, it emits
a srrsignal.

m It is a passive component since it reacts immediately to input signals
from the Microcontroller.

m It is not specified here since it only converts the interrupt into a
signal for the IAL.

Example - TLC

This component is only contained in subproblem MailRoadPassing and

need not be merged.
201 /241

Component LightsDriver

LightsDriver component overview
lights_on_off_if

g

Lk

LightsDriver

—

~

ports

m This component sets the ports to switch the lights on or off.

m It is a passive component since it reacts immediately to input signals
from the IAL.

Example - TLC m It is not specified here since it only passes on the input signals from
the IAL to specific ports of the microcontroller.

202 /241

Component: BrokenLightDriver

BrokenLightDriver component overview
bl_if’

7

BrokenLightDriver

>

irg8

m When this component receives the signal interrupt_request_8, it emits
a broken_light signal.

m It is a passive component since it reacts immediately to input signals
from the Microcontroller.

m It is not specified here since it only converts the interrupt into a
signal for the IAL.

Example - TLC

This component is only contained in subproblem BrokenLightSafeState and

need not be merged.
203 /241

Component: EmergencyRequestDriver

EmergencyRequestDriver component overview

er_if

i

EmergencyRequestDriver

irq9 ports

m When this component receives interrupt_request_9, it reads out the
port connected to the emergency request switch and emits the signal
emergency._request_start() or the signal emergency_request_end().

m It is a passive component since it reacts immediately to input signals
from the Microcontroller.

m It is not specified here since it only reads out the input port in case of

Example - TLC an interrupt request and generates the signal for the IAL.

This component is only contained in subproblem EmergencyRequest and

need not be merged.
204 /241

Component Microcontroller

Microcontroller component overview

m The Microcontroller is a reused existing component.
m It is not specified here since it is described in its datasheet.

m It is an active component since it is a hardware
component.

m The component requires and provides at least the same
interfaces as shown in the global software architecture.

Example - TLC

205 /241

Validation

m The state machines are consistent with the interface
behavior from Phase 8. All states are covered. Additional
states ending with _.PASSING_WILL_START are
introduced.

m Each architectural component is covered, and in all state
machines each possible input signal (as specified in
Phase 7) is taken into account. The interface classes are
the same as in Phase 7.

Example - TLC

206 /241

Example 2: sun blind control

Example - SBC

207 /241

Global software architecture (repetition)

SunBlindController

SunBlindApp
— — —
sun_blind_ sun_blind_
usr_cmds sun_state siate D
[

wind_state

fin_ctri

te

]
Mikrocontroller
— — 1
utton_state 5 5 mmu\n fin_ctrl
Seerpz = SEe E suantensNyK’__‘/ wmd,speed% motor S‘a\& g?
1t

Buttons SunSensor WindSensor Motor Fins

208 /241

Component SunControlApplication (repetition)

This component can be deomposed as follows:
SunBlindApp

< interface >
sun_state_if

sun()
noSun()

Example - SBC

209 /241

Component SunDetection |

SunDetection component overview

sun_state_if

bl

|-
SunDetection

g

sun state

t: Timer

Example - SBC

210 /241

Component SunDetection Il

SunDetection state machine

SunDetection J
t.timeout() /
noSun ()
NO_SUN WF_NO_SUN
sunShine () / noSunShine () / sunShine () /
t.start(60) t.stop() .
noSunShine () / tstop()
t.start(240)
WF_SUN - = SWN
t.timeout() /
sun ()
Example - SBC

211 /241

Component SunBlindAppCtrl |

SunBlindAppCtrl component overview

SunBlindAppCtrl

manualControl: Boolean
h_wind: Boolean
manTimer: Timer

L L 15

usr_cmds sun_state_if wind_ sun_ sun_ fin_
state blind_ blind_ ctrl’
state ctrl

Example - SBC

212 /241

Example - SBC

Component SunBlindAppCtrl Il

SunBlindAppCtrl state machine for SunControl

SunBlindAppCtrl J

noHeavyWind () /

manuallyAdjustFinsWithNegativeDegree () / h_wind := false

manualControl := true,
manTimer.Start (4*3600)

manuallyAdjustFinsWithPositiveDegree () /
manualControl := true,

manTime.timeout () /
manTimer.Start (4*3600)

manualControl := false

213 /241

Component SunBlindAppCtrl Il

CTRL manuallyOpenSunBlind() / manualControl:=true,
manuallyCl) [h_wind==false] /

heavyWind() / manTimer.Start(4*3600), pullL) L\]
h_wind:=true, manualControl:=true,
manTimer.Start (4*3600)
noSun() [manualControl==false] / pulll)

PULLED_UP | Loweren
manuallyOpenSunBlind(y J sun() [manualControl==false and
manualControl:=true, h_wind==false] / i i manuallyCl)/
manTimer.Start (4*3600) manualControl:=true,

manTimer.Start (4'3600)

manuallyCloseSunBlind() [h_wind==false] / manualControl:=true,
manTimer.Start(4*3600), lowerSinBlind()

Example - SBC

214 /241

Component SunBlindAppCtrl IV

SunBlindAppCtrl state machines for UserControl

SunBlindAppCtrl J

CTRL

Example - SBC

215 /241

Example - SBC

Component SunBlindAppCtrl V

CTRL manuallyOpenSunBlind() /

heavyWind() / pullUpSunBlind()
h_wind:=true,

manuallyOpenSunBlind(

PULLED_UP LOWERED

manuallyCi

manuallyCloseSunBlind() [h_wind==false] /
loweringSunblind()

216 /241

Component SunBlindAppCtrl VI

SunBlindAppCtrl state machine for FinsControl

SunBlindAppCirl

manuallyAdjustFinsWithNegativeDegree ()
[h_wind==false] /
rotateFinsWithNegativeDegree ()

manuallyAdjustFinsWitgPositiveDegree () /
[h_wind=false] /
rotateFinsWithPositiveDegree ()

Example - SBC

217 /241

Component SunBlindAppCtrl VII

SunBlindAppCtrl state machines for NoDestructControl

SunBlindAppCtrl

noHeavyWind () /

0‘ h_wind := false
CTRL

Example - SBC

218 /241

Component SunBlindAppCtrl VIII

CTRL J

heavyWind() /
h_wind:=true,

PULLING_UP heavyWind() / h_wind:=true, pullUpSunBlind() LOWERED

sunBlindlsLowered () /
sunBlindIsPulledUp () / stopSunBlind()

stopSunBlind() heavyWind() /
h_wind:=true,
stopSunBlind(),
pullUpSunBlind()

heavyWind() /
h_wind:=true,

PULLED_UP LOWERING

Example - SBC

219 /241

Component SunBlindAppCtrl IX

SunBlindAppCtrl merged state machine

SunBlindAppCtrl J

manuallyAdjustFinsWithNegativeDegree () /
manTimer.Start (4*3600),
manualControl := true

noHeavyWind () /
h_wind := false

[h_wind==false] /
rotateFinsWithNegativeDegree ()
[h_wind==false] /
rotateFinsWithPositiver

nTime.timeout () /

manuallyAdjustFinsWithPositiveDegree () / ndnualControl = false

manualControl := true,
manTimer.Start (4*3600)

Example - SBC

220 /241

Example - SBC

Component SunBlindAppCtrl X

CTRL manuallyOpenSunBlind() / manualControl:=true,
heavyWind() / manTimer.Start(4*3600), pullUpSunBlind()
h_wind:=true,

manuallyOpenSunBlind() /
manTimer.Start (4°3600) noSun() [manualControl==false] / pull)
manuallyCloseSunBlind() PULLING_UP ‘ heavyWind() / h_wind:=true, pullUpSunBlind()
[h_wind==true] /
manualControl:=true,
manTimer.Start (4°3600)

sunBlindlsPulledUp () /
stopSunBlind()

manuallyOpenSunBlind() /

heavyWind() /
h_wind:=true,

heavyWind() /
: h

‘ LOWERED

manuallyCloseSunBlind()
[h wind==false] /
stopSunBlind())
lowerSunBlind(),

‘manualControl:=true)

manTimer.Start
(4°3600)

_wind:=true,

manuallyOpenSunBlind()/
manualControl:=true,
manTimer.Start (4'3600)

PULLED_UP

J sun() [manualControl
B wind

),
pullUpSunBlind ()

manuallyC
manualControl:=true,
manTimer.Start (4°3600)

sunBlindisLowered () /
stopSunBlind()

manuallyOpenSunBlind()
[h_wind==true] /

false/
manuallyCloseSunBlind() [h_win
manualControl:=true,

true]/

manTimer.Start(4*3600), lowerSunBlind(

manuallyCloseSunBlind() [h_wind==false] / manualControl:=true,
manTimer.Start(4"3600), loweringSunblind

LOWERING
L

manuallyCloseSunBlind()/
'manualControl:=true,

manualControl:=true,
manTimer.Start (4°3600)

manTimer.Start (4*3600)

221 /241

Component ButtonlAL |

ButtonlAL component overview
usr_cmds

N

LT
ButtonlAL

timer: Timer

J

button state’

Example - SBC

222 /241

Component ButtonlAL I

ButtonlAL state machine for SunControl and UserControl

ButtonlAL J

timer.timeout() / manualCloseSunBlind()
.\ downButtonPushed'() /

timer.start(3)

downButtonRel
timer.stop()

d'()/

upButtonPushed’() /

upButtonReleased’() / timer.start(3)

timer.stop()

timer.timeout() / manualOpenSunBlind()

Example - SBC

223 /241

Component ButtonlAL Il

ButtonlAL state machine for FinsControl
ButtonlAL J

timer.timeout()
.\ downButtonPushed'() /

timer.start(3)

downButtonRel 1'()
timer.stop(),
manuallyAdjustFinsWithNegativeDegree ()

upButtonReleased’() /
timer.stop(),
manuallyAdjustFins
WithNegativeDegree ()

upButtonPushed'() /
timer.start(3)

timeout()

Example - SBC

224 /241

Example - SBC

Component ButtonlAL IV

ButtonlAL merged state machine

ButtonlAL J

timer.timeout() / manuallyCloseSunBlind()

downButtonPushed'() /
timer.start(3)

downButtonRel d’()
timer.stop(),
manuallyAdjustFinsWithNegativeDegree ()

upButtonReleased’() /
timer.stopt(),
manuallyAdjustFins
WithNegativeDegree ()

upButtonPushed'() /
timer.start(3)

timer.timeout() / manuallyOpenSunBlind()

225 /241

Example - SBC

Component ButtonHAL

ButtonHAL component overview

button_state’

b

L f

ButtonHAL

1

7

ports

This component checks the port of the microcontroller
representing the state of the buttons every 20 ms and generates
the pressed and released signals if the state of the port changes.

226 /241

Component SunSensorlAL |

SunSensorlAL component overview

sun_state

bl

|-
SunSensorlAL

g

sun_intensity’

This component is contained only in the subproblem
SunControl and need not to be merged.

Example - SBC

227 /241

Component SunSensorlAL Il

SunSensorlAL state machine

SunSensorlAL J

sunlintensity’(x) [x>=32000] /
sunShine()

sunlintensity’(x) [x<32000] /
noSunShine()

Example - SBC

228 /241

Component SunSensorHAL

SunSensorHAL component overview

sun_intensity’

bl

|-
SunSensorHAL

o8

irq7 ports

When this component receives an intrerrupt from irq7, it reads
out the port of the microcontroller where a new intentity is
stored and sends the sunlintensity signal.

SEOeBEE This component is contained only in the subproblem
SunControl and need not to be merged.

229 /241

Component WindSensorlAL |

WindSensorlAL component overview

wind_state

b

LT
WindSensorlAL

1

4

wind kmh
This component is the same for all subproblems and need not
to be merged.

Example - SBC

230 /241

Example - SBC

Component WindSensorlAL Il

WindSensorlAL state machine

WindSensorlAL J

.\

NO_HEAVY_
WIND

windSpeed(x) [x>=80]/
heavyWind()

windSpeed(x) [x<80] / HEAVY_WIND

noHeavyWind ()

231 /241

Component WindPulseToSpeedIAL |

WindPulseToSpeedlAL component overview

wind_kmh

Dl

|-
WindPulseToSpeedIAL

t0: long
t1: Timer
date: Date

4

wind_speed’

This component is the same for all subproblems and need not
to be merged.

Example - SBC

232 /241

Component WindPulseToSpeedIAL I

WindPulseToSpeedlAL state machine
WindPulseToSpeedIAL J

.Y'Stan()' t0:=getTime()
windPulse’() /
NO_KEY t1.start(10),

windspeed(6000/(getTime()-t0)),
t0:=getTime()

t1.timeout() /
t1.start(10), windspeed(0)

Example - SBC

233 /241

Component WindSensorHAL

WindSensorHAL component overview

wind_speed’

Dl

|-
WindSensorHAL

g

irg8

When this component receives the signal interrupt_req_8(), it
emits a windPulse signal.

This component is the same for all subproblems and need not
to be merged.

Example - SBC

234 /241

Component MotorlAL |

MotorlAL component overview

sun_

sun_
blind_ blind_
ctrl v state
L
MotorlAL

1

7

motor_ motor_
state’ ctrl

Example - SBC

235/241

Component MotorlAL Il

MotorlAL state machine for SunControl and UserControl

MotorlAL J

stopSunBlind () /
stopMotor ()

ONE_AND_
ONLY

loweringSunBlind () /
turnMotorRight'()

pullingUpSunBlind () /
turnMotorLeft'()

Example - SBC

236 /241

Example - SBC

Component MotorlAL Il

MotorlAL merged state machine (Signals for
NoDesctructControl added)

MotorlAL J

stopSunBlind () /

motorLeftBlocked’ () / stopMotor’ ()

sunBlindlsPulledUp ()

ONE_AND_
ONLY

motorRightBlocked’ () /
sunBlindIsLowered ()

lowerSunBlind () /
turnMotorRight'()

pullUpSunBlind () /
turnMotorLeft'()

237 /241

Component MotorHAL |

MotorHAL component overview

motor_

motor
ctrl’ -

state’

|-
MotorHAL

A~

ports

This component sets the ports to turn the motor left or right or
to stop it. It would be a passive component for the

Example - SBC subproblems SunControl, UserControl and FinsControl since it
reacts immediately to input signals. But it has to be an active

238 /241

Component MotorHAL Il

component, since it also checks the port of the microcontroller
representing the state of the motor every 10 ms and generates
the blocked signals if the state of the port changes (subproblem
NoDestructControl).

Example - SBC

239 /241

Component FinHAL

FinlAL component overview

fin_
ctrl’ fin_

v state’

LT
FinHAL

I

fin_ fin_
state ctrl

This component sets the ports to turn the fins left or right.
This component is contained only in the subproblem
FinsControl and need not to be merged.

Example - SBC

240 /241

Component Microcontroller

Microcontroller component overview

ports irg6 irq7 timertick

U

LI
Microcontroller

button_state sun_intensity wind_ motor_
speed ctrl

The Microcontroller is a reused existing component. In this Figure, only

the interfaces relevant for the problem are shown.

Example - SBC

241 /241

Validation

The state machines behave as described in the sequence
diagrams of Step 8. All states are covered.

m The interface classes are the same as in Phase 7.

m SunDetection, ButtonlAL, and WindPulseToSpeedIAL are
active classes, because they contain timers.
SunBlindAppCtrl is active, because it contains the active
class SunDetection. MotorHAL is an active component
since it works in parallel with the other components.

m The state machines handle all possible signals in all states.

Example - SBC

242 /241

ES

Heisel

Overview
Phase 10
Phase 11
Phase 12

Summary

Embedded Systems
WS 08,09

Maritta Heisel
Maritta.Heisel(AT)uni-duisburg-essen.de

Denis.Hatebur(AT)uni-duisburg-essen.de
University Duisburg-Essen — Faculty of Engineering

Department of Computer Science
Workgroup Software Engineering

file:Maritta.Heisel(AT)uni-duisburg-essen.de

ES

Heisel

Overview
Phase 10
Phase 11
Phase 12

Summary

Overview of development process (DePES) |

sl

o

Describe system in use
Describe system to be built
Decompose problem

Derive a machine behavior specification for each
subproblem

Design global system architecture

. Derive specifications for all components of the global

system architecture

. Design an architecture for all programmable components

of the global system architecture that will be implemented
in software

)

N

ES

Heisel

Overview
Phase 10
Phase 11
Phase 12

Summary

Overview of development process (DePES) Il

8. Specify the behavior of all components of all software
architectures, using sequence diagrams

9. Specify the software components of all software
architectures as state machines

10. Implement software components and test environment
11. Integrate and test software components

12. Integrate and test hardware and software

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Phase 10: Implement software components and
test environment

10.

11.
12.

. Design a software architecture for all components of the

global system architecture that should be implemented in
software

. Specify the behavior of all components of all software

architectures, using sequence diagrams

. Specify the software components of all software

architectures as state machines

Implement software components and test
environment

Integrate and test software components

Integrate and test hardware and software

Phase 10: Implement software components and
test environment

ES
Heisel
Overview
R input: software component behavior from | sequence diagrams
ase .
el Phase 8 with annotated states
Notations specification of merged components of | different notations
Java
Implementation Phase 9
of modules tout: test soft f ft t - |
oie Tocte output: est software for software components programming an-
Procedure guage or test lan-
Example - TLC
Example - SBC guage
e 111 implemented software components programming lan-
uage
Phase 12 - - guag
validation: run tests test results

Summary

Notations and concepts

ES

Heisel

Overview

Phase 10
Introduction
Notations

o m Java

Implementation
of modules

Module Tests m Implementation of modules

Procedure
Example - TLC

Example _ SBC m Module tests
Phase 11
Phase 12

Summary

6/92

Constants

min C++:
#define X 2
or const int X = 2;

m in Java: final static int X = 2;

7/92

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Classes in Java

m Always one file for one class, no header files
m Name of constructor = name of class = name of file

m There is no destructor, the garbage collection frees
memory of unused objects (e.g. for objects set to null).

m The entry point of an application is
public static void main (String[] args)
in one class (file).

Note: Java is case sensitive.

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Objects in Java

All objects that are not simple data types such as
boolean, char, byte, short, int, long, float,
double have to be created explicitly.

For some simple data types predefined classes exist (e.g.
Integer for int). These classes provide methods like,
e.g., toString.

Create an object m of the class Integer:

Integer m = new Integer(0);

Or: Integer m; m = new Integer(0);

m Attributes and methods declared as static belong to the

class and are the same for all objects.

super can be used to access functionality of the the
superclass.

this can be used to reference the object itself.

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Classes: Example

public class MainInit {
private Integer ij; // Attributes
private String s;

public MainInit() { // Constructor
s = new String();
i = new Integer(7);

}

public static void main(String [] args) {
MainInit m = new MainInit();

}

92

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Abstract Classes

m Methods that are not yet implemented can be defined as
abstract.

m A class with at least one abstract method is an abstract
class.

m Abstract classes are useful for inheritance.
m Java supports no multiple inheritance.

m An abstract class has to be extended by another class
where the method has to be implemented (keyword:
extends).

m It is not possible to create objects of an abstract class.

11/92

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Abstract Classes

<<abstract>>
Animal

abstract makesound()

i

<<class>>
Dog

<<class>>
cat

makesound()

makesound()

. Example

public abstract class Animal {
public Animal(){}
public abstract void makeSound();
}
public class Cat extends Animal {
public Cat(){}
public void makeSound()
{System.out.println("miaow");}
}
public class Dog extends Animal {
public Dog(){}
public void makeSound()
{System.out.println("woof-woof");}
}

public class Main{

public static void main(String[] args) {

Animal al = new Dog();
Animal a2 = new Cat();
al.makeSound(); a2.makeSound();

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Interface Classes

A class where all methods are abstract can be declared as

an interface.

A class can implement several interfaces (keyword
implements), but it can only extend one other class.

A class can be accessed using the interface.
An interface class has no constructor.

Solves problem of multiple inheritance.

13 /92

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Interface Classes: Example

<<interface>>
animal

abstract makesound()

i

<<class>>
dog

<<class>>
cat

makesound()

makesound()

public interface Animal {
public void makeSound();

}

public class Cat implements Animal {
public Cat(){}
public void makeSound()
{System.out.println("miaow");}

}

public class Dog implements Animal {
public Dog(){}
public void makeSound()
{System.out.println("woof-woof");}

}

public class Main{

public static void main(String[] args) {
Animal al = new Dog();
Animal a2 = new Cat();
al.makeSound(); a2.makeSound();

14 /92

Exceptions

ES
Heisel .
m Methods can throw exceptions

Overview public int div(int nl1, int n2) throws Exception {
Phase 10 if (n2==0) throw Exception;
Introduction
Notations }
Java . .
Implementation m Exceptions can be handled with try and catch
Module Tests try {
Procedure X
Example - TLC a = div(b,c);
Example - SBC } catch (Exception e) {
Phase 11 System.out.println(e); //println internally calls e.toString()
Phase 12 ¥
Summary m Other exceptions are e.g. I0Exception,

ClassNotFoundException, ArithmeticException,
OutOfMemoryError, Error.

15/92

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Assertions

m Assertions can be used to specify (and check) the
pre-conditions and possibly post-conditions of a method.

m Assertions are defined using
assert condition==true: "ErrorString";

m Assertions are introduced in Java 1.5, they are only

evaluated using the execution switch “evaluate assertions”:

java -ea

m Exceptions thrown by assertions cannot be caught.

16

92

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Threads (£ Tasks with shared memory)

m Threads are necessary for active components.

m Systems with one processor use time slices to simulate
parallelism for several threads.

m The started thread runs “in parallel” to the other parts of
the software.

m Threads in Java support the following functionality:
start starts the Thread
interrupt stops the thread
setName Assigns a name to the thread.
sleep Waits the time given as a parameter in ms.
yield Advises the scheduler to run another thread at this time.
setPriority Assigns a priority to the thread. Threads with a higher

priority get more execution time or they preempt the
other tasks (depends on OS).

17 /92

Example: Threads

ES

[t import java.lang.*; // import library functionality

: public class Clock extends Thread{
et private ms_clock clk; // Attributes
Phase 10 public Clock(ms_clock call) { // Constructor
Introduction clk = call;
Notations s
Java this.start();
Implementation ¥
of modules
Module Tests public void run () { // Thread
Procedure while (true) { // endless Loop
Example - TLC
Example - SBC clk.MsClockQ);
Phase 11 try {

Thread.sleep(1); //this.sleep(l) is also possible

Pliges 12 } catch (Exception e) { // when thread is interrupted
Summary System.out.println(e); // using interrupt()

}

18 /92

Example: Threads with runnable interface
(alternative way)

ES . .
import java.lang.*;
Heisel public class Clock implements Runnable{
private Thread clockThread; // Attributes
Overview private ms_clock clk;
Phase 10 public Clock(ms_clock call) { // Constructor
Introduction clk = call;
Notations clockThread = new Thread (this);// an object of type Thread
f:f‘emem“on clockThread.start(); // must be created with the
Om(o';‘:\dem;;cs } // object of Clock as a param.
Procedure public void run () { // Thread
Example - TLC while (true) { // endless Loop
SEpB=Ee clk.MsClock() ;
Phase 11 try {
Phase 12 Thread.sleep(1);
} catch (Exception e) {

Summary

System.out.println(e);
}

}

Must be used if the class extends another class.

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Problem: Concurrent access to variables

time

Thread 1

setVal(...)
x[0]=a
x[11=b

x2]=c

Thread 2

setVal(...
x[0] =a

getSum()
a=x[0];
b=x[1];
c=x[2];

x[1]=b
x2l=c

getSum()
a=x[0];

b =x[1]; A

¢ =x[2];

wrong Value

getSum() is executed
before the array is
filled completely.

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Solution: Synchronize

public class SharedMemSum {
private int[] x;
public SharedMemSum () {
x = new int [3] ;
x[0]1=0; x[1]=0; x[2]=0;
}

synchronized void setVal(int a, int b, int c¢) { //called from T. 1

x[0] = a; x[1] = b; x[1] = c;

}

synchronized int getSum() { //called from Thread 2
int a,b,c;
a=x[0]; b=x[1]; c=x[2];
return a+b+c;

}

The statement synchronized makes a method
non-interruptable.

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Implementation of modules / software components
I

m A module has provided and required interfaces that can be
connected with other modules

m A module only uses functionality from its required
interfaces, from the programming language, and a limited
set of operations of the operating system (e.g., tasks,
threads, memory allocation, timers, messages,
synchronization mechanisms).

m Active components are implemented using threads.

N
N
©

N

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Implementation of modules / software components

m Interfaces can be implemented using

m directly called methods,
m methods in interface classes, or
m messages, e.g.

delegates in CH,

events in Java,

signals and slots in C++ with the Qt-library,
messages in the Windows API.

Messages usually allow asynchronous communication (with
queuing) and in some frameworks multiple consumers are

allowed.

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Implementation of interfaces |

Loose and tight coupling is possible for interfaces between
components.

m For tight coupling methods are called directly.

m Tight coupling of objects can only be implemented if the
called object is created by the calling class.

m Tight coupling usually needs less resources and can also be
implemented using non-oo languages.

m For loose coupling (methods in interface classes) the
objects are created by a different class. The object that
uses an interface of another object needs a reference to
the used object. The reference can be provided in the
constructor or in an additional method to connect the
objects.

24 /92

Implementation of interfaces Il

ES
Heisel
Overview
Phase 10
e m With loose coupling, the object can be implemented
Java independently of its environment. The object becomes a

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

component. Messages also implement a loose coupling.
Loose coupling is better for the implementation of module

tests.
Phase 11

Phase 12

Summary

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Implementation of interfaces in Java

< interface >
if_name

method_1 (parl: Integer)
method_2 (): String

package project_name;

public interface if_name {
public void method_1 (int parl);
public String method_2 ();

The project name should be added as a package. Otherwise
additional parameters are necessary to compile the project.
Note: int is a simple data type and and String is a class.

26

ES

Heisel

Overview

Phase 10

Introduction
Notations
Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Implementation of provided interfaces in Java |

LineInOut
ﬁ]<<> ﬁ] Amplifier
Tuner An Speeker
1
5 PowerSupply \FH/PowerSupply
bat1: Battery bat2: Battery

Each provided interface is defined as a interface class, e.g.:

public interface LineInOut {
public void transmitMusic();

}

public interface PowerSupply {
public void powerOn();
3

Implementation of provided interfaces in Java Il

ES
Heisel
Overview A component can implement / provide several interfaces, e.g.:
Phase 10
ireducten public class AmplifierAndSpeeker implements
Java _ LineInQut, PowerSupply {
oF moduten " public AmplifierAndSpeeker (){} //constructor
Module Tests
Procedure t
S public void transmitMusic() { Play;}
: public void powerOn() { Action2;}
Phase 11
}
Phase 12
Summary All provided operations must be implemented as methods.

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Implementation of required interfaces in Java |

A component can use / require several interfaces, defined as
interface classes.

public class Tuner implements PowerSupply {
private LineInOut outputDevice;
public Tuner(){ outputDevice = NULL; }
public void connectTo(LineInOut par) {outputDevice = par;}

public void powerOn() {
while (true) {
if (outputDevice!=NULL) outputDevice.transmitMusic();

Implementation of required interfaces in Java Il

ES
m The required interfaces become private attributes

(outputDevive of type LineInQOut).

Heisel

Overview .

e m The component has to provide a method to connect the
Introduction component to the required component (connectTo). In
Notations T .

kv this connect method, the private attributes is initialized.
Implementation

ormodles m Using this private attribute, the connected component can
Bt TLC be used. It should only be used if it is initialized (if
:amp‘;w (outputDevice!=NULL) ...).

Phase 12 Alternatively, it is possible to leave out the method connectTo
SR and initialize the connected interface in the constructor.

m The component Tuner also provides the interface
PowerSupply and implements the method powerOn.

30/92

Implementation of required interfaces in Java lll

ES
Heisel

Overview public class Battery {

Plieke 10 public Battery(){ suppliedDevice=NULL }

IN”;O?“,CW private PowerSupply suppliedDevice;

IJ;LTementation public void connectTo(PowerSupply suppliedDevice) {

of modules suppliedDevice.powerOn() ;

Procedure }

Example - TLC

[xamz\e - SBC }

Phase 11

Phase 12 The component Battery powers on the supplied device when

Summary connected. It requires the interface PowerSupply.

31/92

Implementation of required interfaces in Java IV

ES
Heisel
O The components batl, bat2, myTuner, and myAmp can be
Phase 10 connected as follows:
Introduction LinelnOut
Notations
Java
; Amplifier
Implementation
e Tuner AndSpeeker
Module Tests — —
Procedure
Example - TLC 5 PowerSupply 5Power$upply
Example - SBC \)
Phase 11 | %
Phase 12 bat1: Battery bat2: Battery
Summary

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Implementation of required interfaces in Java V

AmplifierAndSpeeker myAmp = new AmplifierAndSpeeker();
Tuner myTuner = new Tuner();
Battery batl = new Battery();
Battery bat2 = new Battery()

myTumer . connectTo (myAmp) ;
batl.connectTo (myTuner) ;
bat2.connectTo (myAmp) ;

33/92

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Implementation of state machines in Java |

Can be implemented in different ways; here just one alternative
is shown.

Define a constant for each state.
Set the initial state in the constructor.

Create a method for each incoming signal.

Add a case distinction containing all possible states to this

method.

In each case emit the specified output signals and set the

new state of the state machine.

Add appropriate handling for the parameters of the signals.

Add a default case.

34 /92

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Implementation of state machines in Java Il

public class ComponentName implements provided_if {
static final int IDLE = 0, BUSY = 1;
private int state;
private req_if ri; private m;
public ComponentName (req_if ri_) {
state = IDLE // Init state
ri =ri_;

}

IDLE public void req(int id) {
switch (state) {
req (id) case IDLE:
if (id<=10) {
if (ri!=NULL) ri.minor (id);
[id>10] / m = id*2; state = BUSY;
[i[d<=10]/ major (id) } else {
minor (id), if (ri!=NULL) ri.major (id);
m:=id*2 state = BUSY;
}
BUSY break;
default:

assert false: "FSM error Req";

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Module Tests |

sd Testcase /

ProcessName ‘ ’

Test Driver

Component Under
Test

request()

reply(3)

check_reply(3)
T

W
1
1
1
1
1
1
1
1
1
1
1
1
1
'o
[
1
1
1
1
1
1
1
1
1
1
1
1
1
1

N e, (S SRR

Sequence diagrams can be transformed into test cases.

m A signal to the module can be implemented as a method
call to the module (must belong to a provided interface).

36

92

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Module Tests Il

m For each required interface, a test driver that provides the
required interfaces is necessary. It has to store the signals
and the parameters called from the module to be tested.
The test driver also needs an interface to check which
methods (with which parameters) were called.

m Each signal in the sequence diagram from the tested
module will be implemented as a command to the driver to
check which methods (with which parameters) were called.

m If a timing constraint is given, it must be checked that the
signal (method call) occurred within the given interval
(not before and not too late).

m If a sequence diagram contains a combined fragment ALT,
then for each alternative a test case must be implemented.

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Module Tests Il

m If the sequence diagram contains variables, suitable sample
values must be used for testing. Try to use also values at

the limit of the range and out of the range.

m If a sequence diagram describes a typical interactions, also

implement test cases for similar interactions and

exceptional behavior. (In this case you have to check the

state machines to find out the expected behavior.)

38/92

Phase 10: Implement software components and
test environment

ES
Heisel
Overview
R input: software component behavior from | sequence diagrams
ase .
et Phase 8 with annotated states
Notations specification of merged components of | different notations
Java
Implementation Phase 9
of modules tout: test soft f ft t - |
oie Tocte output: est software for software components programming an-
Procedure guage or test lan-
Example - TLC
Example - SBC guage
e 111 implemented software components programming lan-
uage
Phase 12 - - guag
validation: run tests test results
Summary

39/92

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Executing Phase 10

In general, the procedure to implement and test software
components using an object oriented programming languages
can be described as follows:

1. Create interface classes for all internal interfaces (also for
subcomponents).

Implement test drivers and cases for all components
(except HAL) according to the sequence diagrams of

2.

Phase 8.
Create classes for all (sub-)components and implement
them.

m Implement actions as private methods.

Implement the state machine.

Implement the active classes with threads.

Check all classes if there is a concurrent access to complex
variables and resolve this problem with the synchronized
statement.

Run test cases. 40/92

Remarks |

ES

Heisel

Overview m Only the software components are implemented in this
Phase 10 phase. They will be connected / integrated in the next
Introduction

i phase.

Java

et m The validation of this phase is performed by running the
Provedure test cases (unit test).

Example - TLC i .

Example - SBC m The HAL is difficult to test because the hardware is

Fhase 1 directly connected to the HAL. Therefore, manual tests

using measurement equipment and debugging tools should
be performed.

Phase 12

Summary

m Real-time functionality must be tested in an emulator.

41/92

Remarks Il

ES

Heisel

Oueniew m The software components are implemented using some
e simple heuristics. For embedded systems, usually a static
e connection between components is established. The
i connectors in the composite structure diagrams can be
ot implemented e.g. as data streams, method calls,

Exampl - SBC asynchronous messages, or hardware access.

e m This development process allows developing statically
Phase 12 . . eyt

S linked software components with the possibility of reuse.

Example 1: traffic light control

43/92

Create interface classes

ES

Heisel
it package tlc;
Phase 10 —<interface >> public 1nterfa.tce 1:'Lghts_state_1f {
Introduction lights_state_if public void main_red();
Notations — — . . .
o main_red public void sec_red();
Implementation sec_red () public void main_yellow();
of modules ; . .
Moo Tocte rsneé(l:lnge'ﬁ(l)lm)() public void sec_yellow();
Procedure maiﬁiqreen 0 public void main_red_yellow();
Ezz:zl‘:gég sec_green () public void sec_red_yellow();
S main_yellow_red () public void main_green();

= sec_yellow_red () public void sec_green();

Phase 12 all_off public void all_off();
Summary }

44 /92

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure
Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Implement test environment

m The test environment consists of the test drivers for all
required interfaces and the test cases.

m The test drivers stores the called methods and their
parameters.

m The test drivers provides an interface to check the stored
methods and parameters.

m Tests should be performed for all components, except
HAL.

m The Hardware Abstraction Layer should be tested
manually, because you need hardware to test them.

45 /92

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Test environment for LightsinterfaceAbstraction

‘TestTrafficLightsControllAL)

‘TestCases

a)
glightsfstatefif

: LightsInterface
Abstraction
1

o

“lights_on_off_if

: Lights
TestDriver

(™
\\,
check_lights_if

Test cases according Phase 8.

46

92

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Implementation of LightsTestDriver for
lights_on_off_if’

class Light
private
private
private
private
private
private

public
public
public
public
[...]

public
ret

sTestDriver implements lights_on_off_if_ {

boolean _m_red = false;

boolean _s_red = false;

boolean _m_yellow = false;

boolean _s_yellow = false;

boolean _m_green = false;

boolean _s_green = false;

void m_red (boolean x) { _m_red = x;}
void s_red (boolean x) { _s_red = x;}

1]
Lallla]

void m_yellow (boolean x) { _m_yellow
void s_yellow (boolean x) { _s_yellow

boolean checkColor(boolean mr, sr, my, sy, mg, sg) {
urn ((_m_red mr) && (_s_red == sr) &&
(_m_yellow == my) && (_s_yellow == sy) &&
(_m_green == mg) && (_s_green == sg)) ;

47 /92

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure
Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Implementation of test cases for
LightsInterfaceAbstraction

package tlc;

import junit.framework.TestCase;

public class LightsInterfaceAbstractionTest extends
TestCase {

LightsInterfaceAbstraction lia;

LightsTestDriver 1td;

public void testInit() {

// Initialize the test environment and the SU
1td = new LightsTestDriver();
[sd LightslA 1] lia = new LightsInterfaceAbstraction(1ldt);

[LightsinterfacaAbstraction_| // check that all lights are off ofter init
main_red () assertTrue("one light is on", 1ltd.checkColor
(false, false, false, false, false, false));
m_red (on)

; ¥

i m_yellow (off) | public void test_lightsia_1() {

E m_green (off) // send input signal

] lia.main_red();

: // checks result using the test driver

assertTrue("not only m_red on", 1ltd.checkColor
(true, false, false, false, false, false));

48 /92

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Test environment for the application component

‘TestAppTrafficLightsControl)

‘TestCases
Application

: TrafficLightBehavior

: LightsApp

TestDriver

(]

2/

timeout |set_timeout

@)
J

: Timer
TestDriver

Test cases according to Phase 8.

49

92

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Implementation of test driver for set_timeout

package tlc;
class TimerTestDriver implements set_timeout {

int sec = -1;
public void SetTimeOut(int seconds) {
sec = seconds;

}

public boolean checkSetTimeOut(int second) {
boolean ret = (sec == second); sec = -1;
return ret;

}

}

Reset of sec to enable two consecutive checks with same value.

Implementation of LightsTestDriver for
lights_state_if

ES
s class LightsAppTestDriver implements lights_state_if {
eise int color = 0;
Overvi public final static int M_R = 1;
verview
public final static int S_R = 2;
Pligsa 10 public final static int M_RY = 3;
Introduction
Notations [°]
Java public final static int ALL_OFF = 9;
Inplementtio
Module Tests public void main_red(){ color = M_R; }
:zi;ffTLc public void sec_red(){color = S_R; }
Example - SBC public void main_yellow(){color = M_Y; }
Phase 11 [...]
public void all_off(){color = ALL_OFF;}
Phase 12
Summary public boolean checkColor(int colorNr) {

boolean ret = (colorNr == color);
color = 0;
return ret;

Implementation of test cases for
TrafficLightBehavior |

ES —
sd Initialization J
. crossing, road TLC, lights control,
Heisel users on lanes ‘ ‘ lights
1 H
| H
Overview i :Howerfon()
| H
j sec_red () 1
Phase 10 T 1
i d () H
Introduction ' mén_fe
; H
Notations H
Java 1 H
Implementation | H
of modules H H
Module Tests
Procedure
Example - TLC
Example - SBC package tlc;
Phase 11 import junit.framework.TestCase;
Phase 12 public class TrafficLightBehaviorTest extends TestCase {
TrafficLightBehavior tlb;
Summary

LightsAppTestDriver lia;
TimerTestDriver tot;

public void testInitialization() {
// Initialize the test environment and the SUT
(System unter test).

o1
0
N

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Implementation of test cases for
TrafficLightBehavior |l

tlb = new TrafficLightBehavior();
lia = new LightsAppTestDriver();
tot = new TimerTestDriver();
tlb.ConnectTo(tot, lia);
// checks lights using the test driver
assertTrue("main_red not set", lia.checkColor(lia.M_R));

Only main_red is checked due to limitation of the test driver since only the last
called is stored.

53

Implementation of test cases for
TrafficLightBehavior 111

ES
sd Main Road Pas: 2
Heisel crossing, road users waiting area of TLC main phase,
ogvlanes secongary road lights control, lights,
induction loop control
Overview
Phase 10 t=now —.
Introduction ALL WAIT M
Notations
Java “;3591'{ main_yellow_red ()

Implementation

of modules MAIN PASSING
Module Tests WILL START

Procedure
Example - TLC (|+(i.191.{ main_green ()
Example - SBC d
MAIN PASSING
Phase 11
{>t+24) s ()
Phase 12 {t=now} main_yellow ()
MAIN PASSING
Summary WILL END
t+0.9 ..
{ 1.4} main_red ()

ALL WAIT S

Implementation of test cases for
TrafficLightBehavior 1V

= package tlc;

Heisel import junit.framework.TestCase;
public class TrafficLightBehaviorTest extends TestCase {

Overview N
Phase 10 public void testMainRoadPassing2() {
Introduction // ALL_WAIT_M
Notations // simulate elapsed timer
Iﬁﬁmmmnmn tlb.Timeout () ;
a;xtﬁ;m // checks result using the test driver
EN assertTrue("main_red_yellow not set", lia.checkColor(lia.M_RY))
Example - TLC // checks timer setting using the test driver
Bxample - SBC assertTrue("timeout wrong", tot.checkSetTimeOut(1));
Phase 11 // simulate elapsed timer
Phase 12 tlb.Timeout () ;
// checks result using the test driver
Summary

assertTrue("main_green not set", lia.checkColor(lia.M_G));
// checks timer setting using the test driver
assertTrue("timeout wrong", tot.checkSetTimeOut(20));

// MAIN_PASSING

// simulate elapsed timer

tlb.Timeout () ;

Implementation of test cases for
TrafficLightBehavior V

ES
Heisel // sends directly a signals to the provided interfaces
_ tlb.srr()
Overview // checks result using the test driver
Phase 10 assertTrue("main_yellow not set", lia.checkColor(lia.M_Y));
:\T;:Z?‘f:on // checks timer setting using the test driver
Java assertTrue("timeout wrong", tot.checkSetTimeOut(1));
21(15;T\|zy:!1‘e“|liatlon // MAIN_PASSING_WILL_END
Module Tests // simulate elapsed timer
;:;:sluerc e tlb.Timeout();
Example - SBC // checks result using the test driver
e 11 assertTrue("main_RED not set", lia.checkColor(lia.M_r));
// ALL_WAIT_S
Phase 12 }
Summary

The test runs faster than reality.

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure
Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Create classes for all (sub-)components

ms_clock C_TimeOutTimer
—remainingTime: Long

— SetTime (Time: Long)
— IsZero (): Boolean

— DecTime ()
J jl‘
set_timeout timeout

package tlc;
public class TimeOutTimer implements

ms_clock, set_timeout {
private timeout to;
private long remaining_time = 0;

public TimeOutTimer (timeout timeout_par)
{

to = timeout_par;
}
public void SetTimeOut(int seconds) {}
public void MsClock() {}
private void SetTime(long time) {}
private boolean IsZero() {}
private void DecTime() {}

}
All methods of all provided interfaces have to be implemented

(here: SetTimeOut, MsClock). An empty function body ({}) is
used to avoid error messages of the compiler.

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Implement actions as private methods

package tlc;
public class TimeOutTimer implements

IsZero()

pre true
post Result = true &
remaining-time = 0
SetTime(time)
pre time > 0
post remaining_time = time
DecTime()
pre remaining_time # 0

post remaining_time =
remaining_time@pre —1

ms_clock, set_timeout {

private long remaining_time = 0;

private boolean IsZero() {
return (remaining_time == 0);

}

private void SetTime(long time) {
assert (time >= 0): "PRE: SetTime";
remaining_time = time;

}

private void DecTime() {
assert remaining_time!=0:

"PRE: DecTime";

remaining_time = remaining_time - 1

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Implement the

state machine as public methods |

TimeOutTimer)

/ SetTime(0)

Stopped

MsClock ()

SetTimeOut (seconds)
/ SetTime (seconds * 1000)
SetTimeOut (seconds)
/ SetTime (seconds * 1000)

Running

[IsZero()] / TimeOut ()

[ELSE] MsClock () / DecTime()

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Implement the state machine as public methods I

package tlc;

public class TimeOutTimer implements ms_clock, set_timeout {
static final int STOPPED = O;
static final int RUNNING = 1;
private int state;

public TimeOutTimer (timeout timeout_par) {

SetTime(0); state = STOPPED;
}
public void SetTimeOut(int seconds) {
switch (state) {
case STOPPED:
SetTime (seconds*1000); state = RUNNING; break;
case RUNNING:
SetTime (seconds*1000); break;
default:
assert false: "FSM error TimeOutTimer.SetTimeOut";

}

Do not forget the break-statement. Otherwise, the next case will also be

executed.
60

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Implement the state machine as public methods IlI

public void MsClock() {
switch (state) {
case STOPPED: // do nothing
break;
case RUNNING:
DecTime();
if (IsZero()) {
state = STOPPED;
to.Timeout(); // external interface
} // else: do nothing
break;
default:

assert false: "FSM error TimeOutTimer.MsClock";

61 /92

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Implement the active classes with threads

package tlc;
import java.lang.*;
public class Clock extends Thread{
private ms_clock clk;
public Clock(ms_clock call) {
clk = call;
this.start();
}
C_Clock ms_clock public void run () {
| while (true) {
clk.MsClock();
try {
Thread.sleep(1);
} catch (Exception e) {

System.out.println(e);

}

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java

Implementation
of modules

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

Check for concurrent access

For all classes: Check what methods of one class are called
from different threads.

m No synchronized statement is necessary because no
complex attributes are shared between methods called by
different threads.

63 /92

Validation: run tests

ES

Heisel
Overview Output of JUnit test environment:
Phase 10 m Test result with one error:

Introduction
Testsuite: tlc.TrafficLightBehaviorTest

Notations

IEvE Tests run: 33, Failures: 1, Errors: O, Time elapsed: 0,217 sec

Implementation Testcase: testInit(tlc.TrafficLightBehaviorTest): FAILED

of modules main_red not set

Module Tests junit.framework.AssertionFailedError: main_red not set

Procedure at tlc.TrafficLightBehaviorTest.testInit(TrafficLightBehaviorTest.java:103)
Example - TLC at sun.reflect.NativeMethodAccessorImpl.invokeO(Native Method)

Example - SBC at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
Phase 11 at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:

Test tlc.TrafficLightBehaviorTest FAILED

Phase 12

m Test result with no errors:

Summary Testsuite: tlc.TrafficLightBehaviorTest
Tests run: 33, Failures: 0, Errors: 0, Time elapsed: 0,213 sec

64 /92

Example 2: sun blind control

65/92

Implementation of SunBlindContoller

ES

Heisel

Overview

Phase 10
Introduction
Notations

Java
Implementation

o modiles See Netbeans-Project on http://swe.uni-due.de.

Module Tests
Procedure

Example - TLC
Example - SBC

Phase 11
Phase 12

Summary

66 /92

ES

Heisel

Overview
Phase 10

Phase 11

Introduction
Procedure
Example - TLC
Example - SBC

Phase 12

Summary

Phase 11: Implement software components and
test environment

7. Design a software architecture for all components of the
global system architecture that should be implemented in
software

8. Specify the behavior of all components of all software
architectures, using sequence diagrams

9. Specify the software components of all software
architectures as state machines

10. Implement software components and test environment
11. Integrate and test software components

12. Integrate and test hardware and software

ES

Heisel

Overview
Phase 10

Phase 11

Introduction
Procedure
Example - TLC
Example - SBC

Phase 12

Summary

Phase 11: Integrate and test

software components

input: global software architecture from | composite structure dia-
Phase 7 grams
software behavior from Phase 6 | sequence diagrams with an-

notated states

implemented software compo- | programming language
nents from Phase 10

output: implemented software programming language
test software for integrated soft- | programming language or
ware test language

validation: run tests test results

68 /92

ES

Heisel

Overview
Phase 10

Phase 11
Introduction
Procedure
Example - TLC
Example - SBC

Phase 12

Summary

Executing Phase 11

In general, the procedure to compose the software out of
components using an object oriented programming languages
can be described as follows:

1. Create a class for each subcomponent containing other
components to initialize all objects according to the
subcomponent-architecture.

2. Create a class MainInit to initialize all objects according
to the architecture from Phase 7.

3. Implement test cases for the connected components
(except HAL) according to the sequence diagrams of
Phase 6.

4. Run test cases.

69 /92

Example 1: traffic light control

70/92

Create class containing all components of
TrafficLightsApplication |

ES
Heisel

OvERFa TrafficLightApplication)
Phase 10 ms_clock
Phase 11 Clock TimeOutTimer
Introduction il —
Procedure -]
Example - TLC set_timeout timeout
Example - SBC \i g
Phase 12 i | |
Summary TrafficLightBehavior

[1 1 M

lights_state_if
SITy) g H’—J‘ bl_if’ % er_if’
LT LT L LT

ES

Heisel

Overview
Phase 10

Phase 11
Introduction
Procedure
Example - TLC
Example - SBC

Phase 12

Summary

Create class containing all components of
TrafficLightsApplication Il

package tlc;

public class TrafficLightApplication {
// declare all components
private TrafficLightBehavior tlb;
private TimeOutTimer tot;
private Clock clk;

public TrafficLightApplication () { // comnstructor
// create all components, connect where possible
tlb = new TrafficLightBehavior();
tot = new TimeOutTimer (tlb);
clk = new Clock(tot);

}

public void connectTo(lights_state_if 1si) {
// connect remaining interfaces
tlb.connectTo(tot, 1si);

~

N

N

Create main class containing all components |

ES

. TrafficLightsController
Heisel %

Overview TrafficLightApplication
— —

Phase 10

s
Phase 11 L3 0

Lightsinterface

Introduction AL Abstraction
Procedure o
Example - TLC 3

Example - SBC

[}
InductionLoo Emergenc
Phase 12 P gency

Request
Driver

Driver

Summary

irq7
Microcontroller
! !
it
st bl_if er_if
lights_on_off_if E
L}
induction loop LightsControl emergency
to detect cars request button at
on secondary fire brigade
road

73 /92

ES

Heisel

Overview
Phase 10

Phase 11

Introduction
Procedure
Example - TLC
Example - SBC

Phase 12

Summary

Create main class containing all components Il

package tlc;

public class MainInit {
// declare all components

private
private
private
private
private
private

BrokenLightDriver bld;
EmergencyRequestDriver erd;
InductionLoopDriver ild;
LightsInterfaceAbstraction lia;
LightsDriver 1d;
TrafficLightsApplication tla;

public MainInit() {
// create all components, connect all components

1d =

lia
tla
bld
erd
ild

tla.

new LightsDriver(); // Actuators

= new LightsInterfaceAbstraction (1d);

= new TrafficLightApplication(); // Application
= new BrokenLightDriver (tlb); // Sensors

= new EmergencyRequestDriver(tlb);
= new InductionLoopDriver(tlb);
ConnectTo(lia);

// Comnnect components and start Application

ES

Heisel

Overview
Phase 10

Phase 11
Introduction
Procedure
Example - TLC
Example - SBC

Phase 12

Summary

Create main class containing all components Il

public static void main(String[] args) {
MainInit m = new MainInit();

}

Parameters are used to create connections according to the

software architecture. The order of initialisation is important.

Start with objects without required interfaces.

ES

Heisel

Overview
Phase 10

Phase 11
Introduction
Procedure
Example - TLC
Example - SBC

Phase 12

Summary

Test environment for

integrated software

‘TestTrafficLightsController

J

‘TestCases

: TrafficLightApplication

]]]]
) T T
\\rl_‘JS" glightsfstatefif
\._1 LT
* InductionLoop : LightsInterface
IAL Abstraction
1 1 P
bl_if er_if
\—/ “lights_on_off_if
Va : Lights
I\

check_lights_if

TestDriver

Test cases according to Phase 6.

76

92

ES

Heisel

Overview
Phase 10

Phase 11
Introduction
Procedure
Example - TLC
Example - SBC

Phase 12

Summary

Implementation of test cases for

TrafficLightControl |

sd Initialization]
crossing, road TLC, lights control,
users on lanes lights
H H
: 1 power_on()
i H
: sec_red () H
i H
| main_red () 1
i H
ALLWAITM H
1 '
I '
' '

package tlc;

import junit.framework.TestCase;
public class TrafficLightBehaviorTest

// declare components

TrafficLightApplication tla;
LightsInterfaceAbstraction lia;

LightsTestDriver 1td;
InductionLoopIAL il;

public void testInitialization() {

extends TestCase {

~

~

N

ES

Heisel

Overview
Phase 10

Phase 11
Introduction
Procedure
Example - TLC
Example - SBC

Phase 12

Summary

Implementation of test cases for
TrafficLightControl 1l

// Initialize the test environment and the SUT
(System unter test).

tla = new TrafficLightApplication ();
1td = new LightsTestDriver();
lia = new LightsInterfaceAbstraction (1td);

il. = new InductionLoopIAL(tla);
tla.ConnectTo(lia);

// checks lights using the testdriver
assertTrue("main_red and sec_red not set",
1td.checkColor(true, true, false, false, false, false))

B

78

Implementation of test cases for
TrafficLightControl Il

ES
sd Main Road Pas: 2
Heisel crossing, road users waiting area of TLC main phase,
og'|anes secongary road lights control, lights,
induction loop control
Overview
Phase 10 t=now —.
ALL WAIT M
Phase 11
Introduction “;3591'{ main_yellow_red (
Procedure -
Example - TLC MAIN PASSING
Example - SBC CW‘LL DART
Phase 12 “Ef{i main_green ()
}
Summary MAIN PASSING
{>t+24) s ()
{t=now} main_yellow ()
}
MAIN PASSING
WILL END
t+0.9 ..
{ t+1.1} main_red ()
ALL WAIT S

ES

Heisel

Overview
Phase 10

Phase 11

Introduction
Procedure
Example - TLC
Example - SBC

Phase 12

Summary

Implementation of test cases for
TrafficLightControl 1V

package tlc;
import junit.framework.TestCase;
public class TrafficLightBehaviorTest extends TestCase {

public void testTLC_Main_Road_Passing_2() {
// ALL_WAIT_M
// wait 3 seconds
Thread.sleep(3000) ;
// checks lights state using the testdriver
assertTrue("main_red_yellow not set",

lia.checkColor(true, true, true, false, false, false));
// wait 1 second

Thread.sleep(1000) ;
// checks lights state (sec_green) using the testdriver
assertTrue("main_green not set",

lia.checkColor(false, true, false, false, true, false));
// MAIN_PASSING

// wait 21 seconds
Thread.sleep(21000) ;

// sends directly the srr signal to the provided interfaces
il.srr()

80 /92

ES

Heisel

Overview
Phase 10

Phase 11
Introduction
Procedure
Example - TLC
Example - SBC

Phase 12

Summary

Implementation of test cases for
TrafficLightControl V

// checks result using the testdriver
assertTrue("main_yellow not set",

lia.checkColor(false, true, true, false, false, false));
// MAIN_PASSING_WILL_END

// wait 1 second

Thread.sleep(1000) ;

// checks lights state using the testdriver
assertTrue("main_red not set",

lia.checkColor(true, true, false, false, false, false));
// ALL_WAIT_S

81/92

Validation: run tests

ES
Heisel
Overview Output of JUnit test environment:
Phase 10 m Test result with one error:
Phase 11

Testsuite: tlc.TrafficLightBehaviorTest

Introduction Tests run: 24, Failures: 1, Errors: 0, Time elapsed: 3,345 sec

Procedure Testcase: testInit2(tlc.TrafficLightBehaviorTest): FAILED
Example - TLC main_red not set
Example - SBC junit.framework.AssertionFailedError: main_red and sec_red not set
at tlc.TrafficLightBehaviorTest.testInitialization(TrafficLightBehaviorTest.java:103)
Phase 12 at sun.reflect.NativeMethodAccessorImpl.invokeO(Native Method)
Summary at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)

at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:
Test tlc.TrafficLightBehaviorTest FAILED

m Test result with no errors:

Testsuite: tlc.TrafficLightBehaviorTest
Tests run: 24, Failures: 0, Errors: 0, Time elapsed: 103,345 sec

Example 2: sun blind control

83/92

Implementation of SunBlindContoller

ES

Heisel

Overview
Phase 10

Phase 11
Introduction
Procedure

come e See Netbeans-Project on http://swe.uni-due.de.

Example - SBC
Phase 12

Summary

84 /92

ES

Heisel

Overview
Phase 10
Phase 11

Phase 12

Introduction

Procedure

Summary

Phase 12: Integrate and test hardware and software

7. Design a software architecture for all components of the
global system architecture that should be implemented in
software

8. Specify the behavior of all components of all software
architectures, using sequence diagrams

9. Specify the software components of all software
architectures as state machines

10. Implement software components and test environment
11. Integrate and test software components

12. Integrate and test hardware and software

ES

Heisel

Overview
Phase 10
Phase 11

Phase 12

Introduction
Procedure

Summary

Phase 12: Integrate and test hardware and software

input: system architecture from Phase 5 | composite structure dia-
gram
system specifications ~ from | sequence diagrams with an-
Phase 4 notated states
expression of the subproblem re- | grammar
lationships from Phase 3
implemented software from | programming language
Phase 11
output: integrated system machine
acceptance test cases test system and/or test
plans
validation: run tests test results

86

92

ES

Heisel

Overview
Phase 10
Phase 11

Phase 12
Introduction
Procedure

Summary

Executing Phase 12

Load software into target (microcontroller).
Perform manual tests.

Build test environment for automated test.

Implement test cases for the whole machine according to

the sequence diagrams from phase 4.

Run test cases.

ES

Heisel

Overview
Phase 10
Phase 11

Phase 12

Introduction
Procedure

Summary

Remarks

m The acceptance test should not be done by the developer.

m The test environment can be developed in parallel to the
design and implementation phases.

m The test environment has to interact with the external
interfaces of the machine. Hence the technical interfaces
of the test system also consist of hardware.

88 /92

What do we gain by defining such a process? |

ES

Heisel

Overview m Sequence of well-defined steps helps developers to focus
Phase 10 attention on relevant parts of the task (and fake a rational
Phase 11 design process ;-).

e m Developed models and their interrelations can be checked

Summary .
in each step.

m Validation is integral part of the process:

m Validation conditions are defined for each step.
m Systematic test case generation is part of the process.

m Certification according to safety- and security standards
(IEC 61508 and Common Criteria) is supported.

89 /92

What do we gain by defining such a process? Il

& m Various possibilities for tools support:

Heisel m UML tools available.
Overa m Tool for generating sequence diagrams available.
Phase 10 m Model checker for UML state machines available.
e 6L m Other tools conceivable.
Phase 12 m Component-based development is supported.
Summary

m Hardware as well as software components can be part of
the developed system (machine).

m Specific attention is paid to the analysis phase and the
modeling of the environment. (Environment models yield
test cases.)

m Non-functional (quality) characteristics can be taken into
account (in particular, safety and security; by specific
architectures and problem frames).

90 /92

What do we gain by defining such a process? Il

ES
m Systematic evolution of existing systems is supported
(traceability links between different models / documents).

Heisel

Overview

Term i m Problem decomposition is performed explicitly and

Phase 11 systematically. Relations between subproblems are

Phase 12 exploited to compose partial solutions of subproblems.
Summary m Using patterns in various phases support re-use of existing

knowledge and (partial) automation:

m Problem Frames for analysis
m Architectural patterns for software design
m Code patterns for implementing state machines

m Process emerged from industrial practice, uses
well-established languages and techniques. Hence, no
ivory-tower invention.

91/92

ES

Heisel

Overview
Phase 10
Phase 11
Phase 12

Summary

What do we gain by defining such a process? IV

Therefore, we can hope that with DePES, we are able to
develop better products with less effort.

However: DePES is not a light-weight process!

	Introduction
	DePES
	Phase 1
	Introduction
	Notations
	Summary
	Procedure
	Example - TLC
	Example - SBC

	Phase 2
	Introduction
	Procedure
	Example - TLC
	Example - SBC

	Phase 3
	Introduction
	Notations
	Procedure
	Example - TLC
	Example - SBC

	Phase 4
	Introduction
	Notations
	Procedure
	Example - TLC
	Example - SBC

	Phase 5
	Introduction
	Notations
	Procedure
	Example - TLC
	Example - SBC

	Overview
	Phase 6
	Introduction
	Procedure
	Example - TLC
	Example - SBC

	Phase 7
	Introduction
	Concepts
	Procedure
	Example - TLC
	Example - SBC

	Phase 8
	Introduction
	Concepts
	Procedure
	Example - TLC
	Example - SBC

	Phase 9
	Introduction
	Concepts
	Procedure
	Example - TLC
	Example - SBC

	Overview
	Phase 10
	Introduction
	Notations
	Procedure
	Example - TLC
	Example - SBC

	Phase 11
	Introduction
	Procedure
	Example - TLC
	Example - SBC

	Phase 12
	Introduction
	Procedure

	Summary

