
ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Embedded Systems
WS 08/09

Maritta Heisel
Maritta.Heisel(AT)uni-duisburg-essen.de

Denis.Hatebur(AT)uni-duisburg-essen.de

University Duisburg-Essen – Faculty of Engineering
Department of Computer Science
Workgroup Software Engineering

1 / 341

file:Maritta.Heisel(AT)uni-duisburg-essen.de

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Content of lecture

Lecture

Characteristics of embedded systems

Development process for embedded systems

Notations to be used in the development process

If we have time: safety and security aspects of embedded
systems, fault tolerance

Practical part of the course

Development of a simple embedded system according to
the development process

2 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Organizational issues of the course

Lecture: Tuesday 12–14, room BA 143

Exercises and practical training: Tuesday, 14–16, room BA
143
beginning: Oct. 21, 2008

Course material will be published under
http://swe.uni-duisburg-essen.de/

3 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Organizational issues of the lab I

Set up groups of at least 3 and at most 5 students.

Announce your group until 2008-10-19⇒ 1 email per
group with names and matr.-numbers
(denis.hatebur@uni-due.de)!

Work on tasks and submit the group solution and all
previous solutions in one .pdf-file until following Sunday
23:59. The email must include names and matr.-no of all
members. The .pdf-file should include only the number of
the group.

If more than two solutions are submitted too late, the
whole group will not pass the lab.

All tasks must be processed.

4 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Organizational issues of the lab II

To pass you have to attend all labs and submit all
solutions in time (max. 2 exceptions).

Everyone has to present the group solution at least (!)
once.

It must be indicated in the mail who performed the tasks
and who performed the validation.

All solutions will be published on the web.

5 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Literature I

Alan Burns and Andy Wellings: Real-Time Systems and
Programming Languages.
Pearson Education, 2001.

Denis Hatebur: A Pattern- and Component-Based Process
for Embedded Systems Development.
University Duisburg–Essen, 2006,
http://swe.uni-duisburg-essen.de/intern/dpes.pdf

David E. Simon: An Embedded Software Primer.
Addison-Wesley 2004.

Ahmad Ibrahim: Fuzzy Logic for Embedded Systems
Applications (Embedded Technology), 2003

6 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Literature II

Manfred Broy and Wolfgang Pree: Ein Wegweiser für
Forschung und Lehre im Software-Engineering
eingebetteter Systeme,
Informatik Spektrum, 18/2003, Volume 18.

Michael Jackson: Problem Frames. Analyzing and
structuring software development problems.
Addison Wesley, 2001.

Michael Jackson. Problems and requirements. In
Proceedings of the IEEE Second International Symposium
on Requirements Engineering. ACM Press, 1995.

Michael Jackson and Pamela Zave. Deriving specifications
from requirements: an example. In Proceedings 17th Int.
Conf. on Software Engineering, Seattle, USA, S. 15–24.
ACM Press, 1995.

7 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Literature III

Pamela Zave and Michael Jackson. Four dark corners of
requirements engineering. ACM Transactions on Software
Engineering and Methodology, 6(1):1–30, January 1997.
Available at
http://www.research.att.com/˜pamela/ori.html#fre

UML Superstructure Specification, v2.0 (709 Pages, 5.4
MB)
http://www.omg.org/docs/formal/05-07-04.pdf

Laurent Doldi: UML 2.0 Illustrated.
TMSO, 2003.
http://www.tmso-systems.com

M. Jeckle, C. Rupp, J. Hahn, B. Zengler, S. Queins: UML
2 glasklar.
Hanser, 2004.

8 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Some definitions of embedded systems

Embedded systems are computer-based systems being part
of products other than a computer (Broy and Pree, after
Simon)

Embedded systems are information technology systems
embedded in an electro-mechanical environment.
(Borusan and Weber)

. . . applications whose prime function is not that of
information processing, but which nevertheless require
information processing in order to carry out their prime
function. (Ahmad Ibrahim)

About 99% of the worldwide production of microprocessors is
used in embedded systems (Burns and Wellings).

9 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Typical tasks of embedded systems (Burns and
Wellings)

Process Control The computer interacts with its environment
using sensors and actuators.
It controls the operation of the sensors and actuators to
ensure that correct plant operations are performed at
appropriate times.
Where necessary, analogue to digital (and vice versa)
converters must be inserted between the controlled process
and the computer.

Manufacturing The physical system consists of a variety of
mechanical devices – such as machine tools, manipulators
and conveyor belts – all of which need to be controlled and
coordinated by the computer.

10 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Application domains of embedded systems

automotive

aviation and space technology

medical technology

traffic guidance technology

industrial automation

telecommunications

business

entertainment

household

11 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Examples for embedded systems

anti-lock braking system (ABS)

smartcard

washing machine

traffic light

temperature control unit

elevator control unit

. . .

12 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Characteristics of embedded systems I

specialized for a particular purpose

limited amount of resources (memory, power)

high number of copies

combination of hardware and software

often security or safety critical

connected via bus systems to other information technology
systems

larger embedded systems are often configurable

faults in embedded software are expensive

13 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Characteristics of embedded systems II

Embedded Software ...

is usually reactive or continuous

works on hardware with limited resources

often has to fulfill safety or security requirements

often fulfills timing requirements

performs several tasks on one hardware

14 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Embedded vs. real-time systems

Often used synonymously.
In contrast, we consider real-time systems to be a special kind
of embedded systems:

A real-time system is any information processing
activity of a system which has to respond to
externally generated input stimuli within a finite and
specified delay. (Burns and Wellings)

Real-time does not mean to be very fast. But if a real-time
system does not react within the specified delay, this is
considered to be a system fault.
Hard real-time system: delay in reaction may cause danger to
life of people or assets.

15 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Overview of development process (DePES)

16 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Overview of development process (DePES) I

1. Describe system in use

2. Describe system to be built

3. Decompose problem

4. Derive a machine behavior specification for each
subproblem

5. Design global system architecture

6. Derive specifications for all components of the global
system architecture

7. Design an architecture for all programmable components
of the global system architecture that will be implemented
in software

17 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Overview of development process (DePES) II

8. Specify the behavior of all components of all software
architectures, using sequence diagrams

9. Specify the software components of all software
architectures as state machines

10. Implement software components and test environment

11. Integrate and test software components

12. Integrate and test hardware and software

18 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Phase 1: Describe system in use

input: informal description of the task natural language

output: context diagram of system in use Jackson without machine
domain

shortcomings natural language
domain knowledge D (F ∧ A) natural language, (HTA,

state machines)
glossary with definitions and designa-
tions

natural language

list of possible development alternatives natural language

validation: all domains and phenomena in the con-
text diagram must be described.
the context diagram must contain all
domains necessary to describe the short-
comings.
shortcomings must be stated using ele-
ments of the domain knowledge descrip-
tion.
the glossary contains the notions used
in D.
each entry in the list of possible develop-
ment alternatives must consider at least
one of the shortcomings.

19 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Phase 2: Describe system to be built

input: all results of Phase 1 Jackson/ natural lan-
guage

output: system mission statement natural language
selected development alternatives natural language
context diagram of system to be built ext. Jackson
changed domain knowledge D (F ∧ A) natural language, (HTA,

state machines)
initial set of requirements Rinit natural language
requirements R to be implemented natural language

validation: only the limited set of operators is applied
on the context diagram of system in use
to derive the context diagram of system to
be built
system mission statement must address
the shortcomings or refer to domain knowl-
edge of the system in use
domains and phenomena in the context di-
agram and in R and D must be consistent
R must be a subset of Rinit

changes in the domain knowledge must be
justified by the requirements
D ∧ R are non-contradictory

20 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Phase 3: Decompose problem

input: requirements R to be imple-
mented of Phase 2

natural lan-
guage

domain knowledge D of
Phase 2

natural lan-
guage

context diagram of Phase 2 ext. Jackson

output: set of problem diagrams with
associated set of requirements

Jackson with
dot-notation

expression of the subproblem
relationships

grammar

validation: consistent with context dia-
gram of Phase 2
requirements R of Phase 2
must be treated in at least one
subproblem

21 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Phase 4: Derive a machine behavior specification
for each subproblem Pi

input: requirements R from Phase 2 natural language
domain knowledge D from Phase 2 natural language
problem diagram for Pi from Phase 3 Jackson with dot-

notation

output: specification SPi
of machine to construct natural language

sequences of interactions with annotated states
for the domains in the environment, expressing
RPi

and DPi

sequence diagrams
with annotated
states

sequences of interactions on initialization sequence diagram
with annotated
states

validation: D ∧ SPi
are non-contradictory

D ∧ SPi
=⇒ RPi

all requirements must be captured
in the sequence diagrams refined phenomena of
the problem diagrams are used as signals
direction of signals must be consistent with con-
trol of shared phenomena
signals must connect domains as connected in
problem diagram
the relationships of Phase 3 must be consistent
with the states

22 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Phase 5: Design global system architecture I

input: context diagram from Phase 2 ext. Jackson
problem diagrams from Phase 3 Jackson with dot-

notation
sequences of interactions between machine
and environment of all subproblems from
Phase 4

sequence diagrams

expression of the subproblem relationships
from Phase 3

grammar

output: system architecture composite struc-
ture diagram

perhaps subcomponents (recursively) composite struc-
ture diagrams

purpose of each component natural language
specification of external interfaces interface classes
specification of interfaces between the com-
ponents

interface classes

technical description of hardware interfaces natural language,
figures

expression of the subproblem relationships
for all components

grammars

23 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Phase 5: Design global system architecture II

validation: all machine interfaces of the problem dia-
grams must be captured
the signals in the sequence diagrams must
be the same as the signals in the external
interfaces
to each programmable component at least
one problem diagram must be associated
each problem diagram must be associated
to at least one component
all domains in the problem diagrams being
part of the machine must be associated to
a component
each machine domain in the context dia-
gram must occur in the architecture
purpose must be consistent with the asso-
ciated requirements
the grammar for each component must de-
scribe a subset of the grammar in Phase 3

24 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Phase 6: Derive specifications for all components
of the global system architecture

For each subproblem:
input: architecture from Phase 5 composite structure

diagrams
interface specifications from Phase 5 interface classes
subcomponents (if defined) from Phase 5 composite structure

diagrams
sequences of interactions from Phase 4 sequence diagrams

with annotated states
or existing technical
documentation

output: interface behavior of all components (test spec-
ification)

sequence diagrams
with annotated states

validation: sequence diagrams together must describe the
same interface behavior as in Phase 4
all signals in the interface classes of Phase 5
must be used in at least one sequence diagram
direction of signals must be consistent with the
required and provided interfaces of Phase 5
signals must connect components as connected
in the system architecture of Phase 5
it must be possible to map the new states to the
states of Phase 4

25 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Phase 7: Design a software architecture for all
components of the global system architecture

input: global system architecture from Phase 5 composite structure dia-
gram

problem diagrams from Phase 3 Jackson with dot-
notation

interface specifications from Phase 5 interfaces classes
relationships between subproblems specified in Phase 5 grammars
possibly reusable components from other projects
(Phase 9)

active or passive classes
with interface classes

machine behavior specifications from Phase 4 sequence diagrams with
annotated states

output: layered software architecture for each subproblem composite structure dia-
grams

merged layered software architecture (with subcompo-
nents)

composite structure dia-
grams

purpose of each software component natural language
specification of interfaces between software components interface classes

validation: if no instantiation of architectural patterns: consistent
with problem diagram
signals of Phase 4 sequence diagrams are interfaces of
the application layer
direction of all signals consistent to each other and input
external interfaces must be consistent with the interfaces
of the system architecture developed in Phase 5

26 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Phase 8: Specify the behavior of all components of
all software architectures, using sequence diagrams

For each subproblem:
input: software architectures from Phase 7 composite structure

diagrams
interface specifications from Phase 7 interface classes
system behavior from Phase 4 sequence diagrams

with annotated states
interface behavior of all programmable compo-
nents from Phase 6

sequence diagrams
with annotated states

output: interface behavior of all software components
(test specification)

sequence diagrams
with annotated states

validation: all sequence diagrams together must describe
the same interface behavior as in Phase 6
all signals in the interfaces classes of Phase 7
must be used in at least one sequence diagram
direction of signals must be consistent with the
required and provided interfaces of Phase 7
signals must connect components as connected
in the software architecture of Phase 7
it must be possible to map any new states to the
states of Phase 6

27 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Phase 9: Specify the software components of all
software architectures as state machines

input: interface behavior from Phase 8 sequence diagrams
with annotated
states

relationships between subproblems speci-
fied in Phase 5

grammars

output: component overview description with refer-
ences to interface classes

class diagram with
ports, sockets and
lollipops

data types and operations class diagrams
defined using pre- and postconditions formulas or natu-

ral language
state machines state machine dia-

grams
invariants formulas or natu-

ral language

validation: consistent with interface behavior from
Phase 8
completeness of state machines (implies
error-cases for user-interaction)
a class must be active if it contains an ac-
tive class or a timer

28 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Phase 10: Implement software components and
test environment

input: software component behavior from
Phase 8

sequence diagrams
with annotated states

specification of merged components of
Phase 9

different notations

output: test software for software components programming lan-
guage or test lan-
guage

implemented software components programming lan-
guage

validation: run tests test results

29 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Phase 11: Integrate and test software components

input: global software architecture from
Phase 7

composite structure dia-
grams

software behavior from Phase 6 sequence diagrams with an-
notated states

implemented software compo-
nents from Phase 10

programming language

output: implemented software programming language
test software for integrated soft-
ware

programming language or
test language

validation: run tests test results

30 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Phase 12: Integrate and test hardware and software

input: system architecture from Phase 5 composite structure dia-
gram

system specifications from
Phase 4

sequence diagrams with an-
notated states

expression of the subproblem re-
lationships from Phase 3

grammar

implemented software from
Phase 11

programming language

output: integrated system machine
acceptance test cases test system and/or test

plans

validation: run tests test results

31 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Phase 1: Describe system in use

1. Describe system in use

2. Describe system to be built

3. Decompose problem

4. Derive machine behavior specification for each subproblem

5. Design global system architecture

6. Derive specifications for all components of the global
system architecture

7. Design a software architecture for all components of the
global system architecture that should be implemented in
software

8. Specify the behavior of all components of all software
architectures, using sequence diagrams

...

32 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Phase 1: Describe system in use

input: informal description of the task natural language

output: context diagram of system in use Jackson without machine
domain

shortcomings natural language
domain knowledge D (F ∧ A) natural language, (HTA,

state machines)
glossary with definitions and designa-
tions

natural language

list of possible development alternatives natural language

validation: all domains and phenomena in the con-
text diagram must be described.
the context diagram must contain all
domains necessary to describe the short-
comings.
shortcomings must be stated using ele-
ments of the domain knowledge descrip-
tion.
the glossary contains the notions used
in D.
each entry in the list of possible develop-
ment alternatives must consider at least
one of the shortcomings.

33 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Notations and concepts

Terminology

Context diagrams

Requirements

Domain knowledge

Glossary

Specification

34 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Terminology: System, machine and environment I

A system consists of a machine and its environment.

System is a recursive term: A system can consist of other
systems.

The machine is the system to be built.

Each machine acts in an environment

35 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Terminology: System, machine and environment II

Goal: Design of a system with specified characteristics
Example: An elevator should enable persons in a building to
get from one floor to another.
Components of the system:

environment: part of “real world” relevant for the problem
Example: floors, persons, cage, doors, engine,
buttons, sensors, ...

machine: controlling software and suitable hardware

Properties of the environment are fixed. We have to build the
machine, so that it realizes the desired properties of the system.

36 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Terminology: Phenomena I

State and behavior of the environment can be described by
phenomena. Examples:

Elevator
Person presses button, expects, that the elevator arrives.

Bank
Client gives withdrawal instruction, expects a withdrawal.

Machine can interact with the environment by

observing certain phenomena (input) (→ sensors)

causing certain phenomena (output) (→ actuators)

37 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Terminology: Phenomena II

Phenomena

are actions/events/operations that occur in the
environment

are important for expressing statements

can be observed or controlled by the environment or the
machine, respectively

Examples:

waiting in front of the elevator

pressing the button inside the elevator

elevator door closes

38 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Terminology: Control of phenomena

1. Controlled by the environment, not observable by the
machine
Example: waiting in front of the elevator

2. Controlled by the environment, observable by the machine
Example: pressing the button inside the elevator

3. Controlled by the machine, observable by the environment
Example: elevator door closes

The category “controlled by the machine, not observable by the
environment” is not considered in this phase, since internal
phenomena of the machine do not belong to the requirements.

39 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Context diagrams

Distinction between environment and machine

Representation of the connections between environment
and machine

Structuring the environment into a machine and (usually
several) problem domains

Connections between domains

Represent the world, when the machine is in operation

40 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Context diagrams – Notation

Domains =̂ Rectangles
Interfaces =̂ Lines

Types of domains:

given domain designed domain machine domain

Interfaces between domains =̂ shared phenomena
e.g., driving a nail with a hammer

41 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Context diagram example: patient monitoring
system

A patient monitoring program is required for the intensive-care
unit of a hospital. Each patient is monitored by an analog
device which measures factors such as pulse, temperature,
blood pressure, and skin resistance.
The program reads these factors on a periodic basis (specified
for each patient) and stores the factors in a database. For each
patient, safe ranges for each factor are also specified by medical
staff.
If a factor falls outside a patient’s safe range, or if an analog
device fails, then the nurses’ station is notified.

42 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Related (provisional) Context Diagram

staff

Medical

Nurses’
station

Factors
database

Periods &

Ranges

Monitor

Analog

devices patients

ICU

machine

43 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Context Diagram of a Problem

forms the basis for structuring and analyzing the problem

shows all domains that need to be taken into consideration

everything that does not appear in the context diagram, is
not considered

=⇒ careful selection of domains necessary!

44 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Example: different possibilities for the database
domain

Factor database as given domain
=⇒ it already exists, does not have to be designed

If it were part of the task:

Monitor Factors

databasemachine

Only sensible, if the database is also used by other
systems.

Otherwise: Database as part of the machine that is to be
constructed, no separate domain in the context diagram

45 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Context Diagram – Complete Notation

Write down shared phenomena at the connecting lines

staff

Medical

Nurses’
station

Factors
database

Periods &

Ranges

Monitor

Analog

devices patients

ICU

a: Period, Range, PatientName, Factor

EnterPatientName, EnterFactor
b: EnterPeriod, EnterRange,

c: Notify
d: Factors

f: FactorEvidence

a

b

c

d

e

f

e: RegisterValue

machine

46 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Extended Context Diagrams

Systems with more than one machine are necessary, when the
machines are physically distributed (e.g., Client-Server
Systems). Therefore, Jackson’s context diagrams are extended
to allow more than one machine domain.

Client

A

Server

requests NetworkUser edit

configAdministrator Client

B

settings

change_

requests,
config

47 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Context Diagram – Connection Domains I

Patients and the machine are not directly connected, but
indirectly through a causality chain:

Heart beatRegister value

Monitor Analog

devices

ICU

Patients

Sound pulse

machine

48 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Context Diagram – Connection Domains II

Shared phenomena in context diagrams are abstractions of real
phenomena, e.g. by

omitting properties that are not relevant for the purpose
at hand at that moment
e.g., the event Notify surely has arguments

treat complex episode of interaction as an instantaneous
event

Care must be taken in the latter abstraction, as the following
example taken from retail shows:

a

a: Bill, Pay

Accounts

Department

Retail

customers

49 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Context Diagram – Connection Domains III

If issuing an invoice and payment are carried out via postal
mail, then the above mentioned context diagram would
represent a (too great) abstraction of what actually happens :

cbAccounts

Department

Post

Office

b: SendBill, ReceivePayment

c: SendPayment, ReceiveBill

Retail

customers

The phenomena Bill and Pay are in fact no shared phenomena
of AccountsDepartment and RetailCustomers, since the mail
acts as intermediary, which causes delays and uncertainties.
⇒ We need the Post Office as a connection domain.

50 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Context Diagram – Connection Domains IV

Connection domains are necessary, if

they are explicitly mentioned in the requirements, such as
analog devices in the patient monitoring system

may cause delays, that cannot be ignored, as shown in the
retail example

the transmission via the connection domain is unreliable,
e.g., failure of an analog device.

51 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Setting up Context Diagrams

Problem: circularity:

It can only be decided on the context, if an overview of
the problem is available.

A problem is only properly known, if its embedding in
environment is known.

=⇒ Iterative analysis of problem context and requirements

52 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

R, D & S – Requirements and specification I

Known:
(1) Fixed characteristics of the environment (domain
knowledge)
(2) Desired characteristics of the system (requirements)

Clear: Machine must close the “gap” between (1) and (2)

Searched: specification of the machine
“How should the machine act, so that the system fulfills
the requirements?”

Requirements describe the environment, the
way it should be, after the machine is inte-
grated.

53 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

R, D & S – Functional vs. non-functional
requirements

Functional requirements: state how the system should act

Non-functional requirements: concern quality
characteristics such as efficiency or user-friendliness

fulfillment of functional requirements =̂ correctness
fulfillment of non-functional requirements =̂ ???

Decisions on fulfillment of non-functional requirements need
the definition of separate criteria!
In the following: only functional requirements

54 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

R & D – Types of statements

Indicative Statements describe the environment irrespective of
how the machine is built.
Other notion: domain knowledge.
Example: a door cannot be open and closed at the same
time.

Optative statements describe the environment, in the way we
would expect it after the machine is integrated.
Example: After the button was pressed, the elevator stops
at the corresponding floor.

Note: Statements are characterized by being
true or false.

Requirements are thus optative statements.
55 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

D – Types of domain knowledge

Facts describe conditions that are always fulfilled.
Example: When the motor turns right, the elevator moves
to a higher floor
(This fact is needed to transform the requirement “Move
to another floor” into a specification with phenomena
visible to the machine (turn motor right).)

Assumptions describe conditions that are needed, so that the
requirements are satisfiable.
Example: When the elevator reaches my floor, I enter
(This assumption is needed for fulfilling the requirement
that the elevator carries all waiting persons to their
destination.)

56 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

D – Types of domain knowledge: Facts

When it rains, the sensor gets wet.

A wet sensor has an impedance below 100 Ω, and a dry
sensor has an impedance above 200 Ω.

When a airplane is on the ground and it is not stopped the
wheels are turning. (?)

When a car passes the sensor a pulse is generated.

57 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

D – Types of domain knowledge: Assumptions

In case of fire the user presses the emergency button.

The cars passing the sensor have a height of more than
one meter.

The button is pressed for more than 0.5 seconds.

58 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

R & S – Specifications

are descriptions that are sufficient for building the machine

are implementable requirements

correctness condition:

If the machine fulfills the specification, the sys-
tem fulfills the requirements.

S ∧ D ⇒ R

59 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

R & S – Specifications vs. requirements

Requirements are NOT implementable, if they

constrain actions that are controlled by the environment
Example: The elevator is not be overloaded.

refer to actions that are not observable by the machine
Example: The elevator should go to a floor where people
are waiting.

express conditions that can only be decided in the future
Example: As soon as a user has dialed the last digit, he
receives the dial tone, the busy signal, or the
announcement “number not assigned”.

60 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Glossary – Designations

System descriptions require designations as basic
vocabulary

Each designation has
(1) a name
(2) a (detailed) explanation
Example.: A student is somebody who is enrolled at a
university.

With designations, we can form statements, e.g.

∀ s : student • ∃ l : lecture • enrolled(s, l)

(assuming that designations of lecture and enrolled are
available)

61 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Glossary – Definitions

expand the available vocabulary, but not its expressiveness

can be absurd or useless, but not false

A defined notion can always be replaced by its definition.

Example:

student(s) =̂ ∃ l : lecture • enrolled(s, l)

62 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Summary of the terminology

You should have learned the following notions:

machine

environment

designation

definition

indicative statement

optative statement

assumption

fact

shared phenomenon (action /
event / operation)

requirement

specification

63 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Phase 1: Describe system in use

input: informal description of the task natural language

output: context diagram of system in use Jackson without machine
domain

shortcomings natural language
domain knowledge D (F ∧ A) natural language, (HTA,

state machines)
glossary with definitions and designa-
tions

natural language

list of possible development alternatives natural language

validation: all domains and phenomena in the con-
text diagram must be described.
the context diagram must contain all
domains necessary to describe the short-
comings.
shortcomings must be stated using ele-
ments of the domain knowledge descrip-
tion.
the glossary contains the notions used
in D.
each entry in the list of possible develop-
ment alternatives must consider at least
one of the shortcomings.

64 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Executing Phase 1 I

All items of the output can be developed in parallel. The following
points should be considered after we have an initial context diagram
and some initial shortcomings:

A shortcoming usually refers to some domains that must be
introduced.

Each domain requires a description of its domain knowledge.

Each domain controls or observes some phenomena that must
be decribed in the context diagram and may need a description
in the glossary.

For a shortcoming a new development alternative can be
identified.

A new development alternative may also address other
shortcomings.

65 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Executing Phase 1 II

An assumption may show us that there are additional
shortcomings.

66 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Remarks I

Only the actual state is described.

Possible solutions are discussed.

Problem: Which domains should be described.

Solution: Those domains, that are relevant for describing
the shortcomings.

For users in the environment a Hierarchical Task Analysis
(HTA) can be performed, see
www.hfidtc.com/pdf/reports/HTA%20Literature%20Review.pdf .

Other systems in the environment can be described by
state machines (the notation is introduced in Phase 9).

Do not forget to include the existing solution in the list of
alternatives (even if it addresses no shortcoming).

67 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Example 1: traffic light control

68 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Informal description of the task

A

A

B

B

F

C

We should build a system
that prevent accidents on
the crossing. It should
also help the fire brigade
(on the left) to pass the
crossing and arrange for a
fair and adapted flow of
traffic between the main
road (horizontal) and the
secondary road (vertical).

69 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Context diagram of system in use

see_red
see_green
see_yellow

see_red
see_green
see_yellowlights

waiting area

of secondary road

on lanes

vehicle_waiting

enter,

enter,
leave

leave

on, off

road users

crossing

traffic light

old and broken

control

broken

fire brigade

70 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Shortcomings

SC1: The old traffic light control is broken and cannot be
repaired and improved.

SC2: Vehicles of the fire brigade are disturbed by cars on the
secondary road when the secondary road is not allowed to
pass. This causes delays in case of fire.

SC3: The amount of traffic has increased on both roads.

SC4: Too many accidents happened without working traffic
lights.

71 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Domain knowledge: Facts I

F1 : Traffic rule: stop if red (see red).

F2 : Traffic rule: cross if green. (see green)

F3 : Traffic rule: leave crossing as fast as possible.

F4 : Fair means (for this crossing) that vehicles on the main
road are allowed to pass the crossing for more than twice
the time vehicles of the secondary road are allowed.

F5 : Traffic rule: if yellow (see yellow): stop if possible.

F6 : Vehicles cannot stop immediately.

F7 : A broken light bulb can be detected by measurement of
the electric current (no current = no light).

F8 : There are tunnels for pedestrians.

F9 : Induction loops can be used for monitoring the waiting
area of secondary road.

72 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Domain knowledge: Facts II

F10 : The lights operate with a power supply of 24 V.

F11: The fire brigade is allowed to ignore the red light (but
must be careful).

F12 : If the red phase is more than 30 s, some car drivers
ignore the red light.

F13 : The old traffic light control is broken and cannot be
repaired. Before, the vehicles on the main road were
allowed to pass until a vehicle on the secondary road was
detected. Cars in the secondary road were allowed to
pass for 5 seconds.

73 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Domain knowledge: Assumptions

A1 : All vehicles follow the traffic rules.

A2 : Pedestrians use the pedestrian tunnels.

74 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Glossary for crossing

A

A

B

B

F

C

lane / waiting area of main road: A
lane / waiting area of secondary road: B
traffic lights: device containing colored
light bulbs to signal “stop” or “go”
fire brigade: F
crossing: critical section: C
vehicle waiting: sensor detecting if a
vehicle is in the waiting area of the
secondary road
accident: 2 or more vehicles at the same
time at the same place

75 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

List of development alternatives

ALT1: Remove old traffic lights and use signs (addresses
shortcoming SC1)

ALT2: Replace old traffic lights by a roundabout/rotary
(addresses shortcomings SC1, SC3, and SC4)

ALT3: Replace the broken traffic lights control by a new traffic
lights control (addresses shortcomings SC1, SC2, SC3
and SC4)

ALT4: Leave everything as it is

76 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Validation I

All domains domains and phenomena in the context diagram
are described:

crossing: F4

road users on lanes: F1, F2, F3, F5, F6, F12,
A1

waiting area of secondary road: F9

old and broken traffic light control: F13

lights: F10, F7

fire brigade: F11

The pedestrians are not considered in the context diagram,
since pedestrian tunnels exists and are used (F8, A2). The

77 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Validation II

context diagram contains all domains necessary to describe the
shortcomings and the shortcomings are stated using elements
of the domain knowledge description.

SC1: old and broken traffic light control

SC2: fire brigade, waiting area of secondary road, road users on
lanes

SC3: old and broken traffic light control

SC4: old and broken traffic light control

The glossary shoud contain the notions used in D. The given
TLC glossary is just an example and not complete. Each entry
in the list of possible solutions considers at least one of the
shortcomings. This is directly stated on the corresponding slide.

78 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Example 2: sun blind control

79 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Informal description of the task

A building is equipped with sun blinds made up of metallic fins
which are attached to the outer side of the window. The sun
blinds are controlled manually. Unfortunately, the sunblinds can
be destroyed by heavy wind if they are not pulled up. The
system should be improved to achieve a comfortable working
ambiance by not disturbing the users by sunshine.

80 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Context diagram of system in use

sun wind

sun blind

with fins

be

c

d

user

b: heavy wind, no heavy wind

c: lower sun blind, pull up sun blind, stop sun blind, sun blind
is lowered, sun blind is pulled up, rotate fins with positive
degree, rotate fins with negative degree

d: destroy sun blind

e: sunshine, no sunshine

81 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Shortcomings

SC1: Users forget to pull up the sunblind when there is no
sunshine what may have an influence on the well-being
and health of users.

SC2: Users forget to pull up the sunblind when there is heavy
wind or even do no recognize that there is heavy wind.

SC3: Users have to stop their work to lower the sunblind if
there is sunshine with high intensity and the users cannot
read their monitor content.

SC4: Sometimes users destroy the sunblind accidentally by
pulling heavily at the wires.

82 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Facts

F1: Interface between user and sun blind are the control wires.

F2: The intensity of sunshine on a sunny day ranges from 32
000 lux to 100 000 lux. More than 32 000 lux makes it
hard to read content of a standard monitor.

F3: The fins are turnable from 80◦ to 0◦ and to -80◦. If a user
tries to rotate more (with normal power), nothing happens.

F4: Heavy wind has a speed of more than 80 kilometers per
hour. No heavy wind has a speed of less than 80 kilometer
per hour.

F5: The sun blind is destroyed by heavy wind.

F6: The sun blind is destroyed if the user pulls too heavily at
the wires (especially if the sunblind is lowered or pulled up).

F7: The fins have an interface that can be directly connected
to a microcontroller.

83 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Assumptions

Assumptions, description of user:

A1: Users usually lower the sunblind when the sun is shining.

A2: Users pull up the sunblind when the sun is not directly
shining

A3: Users pull up the sunblind when there is heavy wind.

A4: Users adjust the fins as convenient.

A5: User recognize if the wind is blowing heavily (heavy wind).

A6: Users pull up the sunblind when they want to look out of
the window.

A7: Users lower the Sunblind when they do not want to be
seen.

84 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Glossary for sun blind (example)

Designations:

metallic fins: metallic plates rotating on a horizontal axis.

outer side: not inside the building.

windows: part of a building made of glass.

sun blind: is made up of metallic fins which are attached to
the outer side of the window.

sinshine: . . .

wind: . . .

wire: . . .

microcontroller: . . .

monitor: . . .

85 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

List of development alternatives

ALT1: Hire an employee who pulls up all sunblinds in case of
heavy wind. (addresses shortcoming SC1)

ALT2: Replace sunblinds by drapes or other types of sunblinds.
(addresses shortcomings SC2 and SC4)

ALT3: Replace the display units by monitors with higher
intensity and let the sunblind pulled up. (addresses
shortcomings SC1, SC2, SC3, and SC4)

ALT4: Automatic sunblind control (addresses shortcomings
SC1, SC2, SC3, and SC4)

ALT5: Leave everything as it is

86 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Validation I

All domains domains and phenomena in the context diagram
are described:

User: A1 - A7, F1

Wind: F4, F5

Sunblind with fins: F1, F3, F5, F6, F7

Sun: F2

87 / 341

ES

Heisel

Introduction

DePES

Phase 1

Introduction

Notations

Terminology

Context
diagrams

R, D & S

Summary

Procedure

Example - TLC

Example - SBC

Phase 2

Phase 3

Phase 4

Phase 5

Validation II

The context diagram contains all domains necessary to describe
the shortcomings and the shortcomings are stated using
elements of the domain knowledge description.

SC1: User, Sun, and Sunblind

SC2: User, Wind, and Sunblind

SC3: User, Sunblind (monitor intentionally left out, seen as
part of user domain)

SC4: User, Sunblind (wires intentionally left out, seen as part
of Sunblind domain)

The glossary contains exactly the notions used in D, but is not
complete. Each entry in the list of possible solutions considers
at least one of the shortcomings. This is directly stated on the
corresponding slide.

88 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Introduction

Procedure

Example - TLC

Example - SBC

Phase 3

Phase 4

Phase 5

Phase 2: Describe system to be built

1. Describe system in use

2. Describe system to be built

3. Decompose problem

4. Derive machine behavior specification for each subproblem

5. Design global system architecture

6. Derive specifications for all components of the global
system architecture

7. Design a software architecture for all components of the
global system architecture that should be implemented in
software

8. Specify the behavior of all components of all software
architectures, using sequence diagrams

...

89 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Introduction

Procedure

Example - TLC

Example - SBC

Phase 3

Phase 4

Phase 5

Phase 2: Describe system to be built

input: all results of Phase 1 Jackson/ natural lan-
guage

output: system mission statement natural language
selected development alternatives natural language
context diagram of system to be built ext. Jackson
changed domain knowledge D (F ∧ A) natural language, (HTA,

state machines)
initial set of requirements Rinit natural language
requirements R to be implemented natural language

validation: only the limited set of operators is applied
on the context diagram of system in use
to derive the context diagram of system to
be built
system mission statement must address
the shortcomings or refer to domain knowl-
edge of the system in use
domains and phenomena in the context di-
agram and in R and D must be consistent
R must be a subset of Rinit

changes in the domain knowledge must be
justified by the requirements
D ∧ R are non-contradictory

90 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Introduction

Procedure

Example - TLC

Example - SBC

Phase 3

Phase 4

Phase 5

Executing Phase 2 I

The system mission statements have to be defined. The
system mission statements can be derived from good
properties and from the shortcomings of the system in use.

The development alternatives can be compared according
to their estimated costs and addressed shortcomings.

The context diagram of the system to be built is created
by applying the following rules:

Introduce domain
Split domain
Remove domain with connected interfaces
Replace/change domain
Add or remove interfaces and phenomena for introduced,
changed or replaced domains and between split domains
Connect interfaces to other domains

91 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Introduction

Procedure

Example - TLC

Example - SBC

Phase 3

Phase 4

Phase 5

Executing Phase 2 II

State the requirements in terms of domains and
phenomena of the context diagram.

Give the condition for each requirement explicitly.
Requirements consist of a precondtion and a
postcondition. (when / if ... happens, do ...)

State the domain knowledge for all introduced and
replaced domains.

Verify and update existing domain knowledge.

For each system mission statement:

Determine all requirements that are necessary to achieve
it.

Determine if the necessary requirements (together with
the domain knowledge) are also sufficient to achieve the
mission statement. If not, more requirements are needed.

92 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Introduction

Procedure

Example - TLC

Example - SBC

Phase 3

Phase 4

Phase 5

Executing Phase 2 III

The requirements obtained in this way are the “need-to-have”
(mission-critical) requirements.
All other requirements are “nice-to-have” requirements or the
system mission must be adjusted. The “nice-to-have”
requirements should be prioritized, and a return-on-investment
analysis should be performed.
Result: Consolidated set of requirements to be achieved (all of
the mission-critical plus selection of the “nice-to-have”
requirements).

93 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Introduction

Procedure

Example - TLC

Example - SBC

Phase 3

Phase 4

Phase 5

Remarks I

Only the desired state is described.

One of the possible solutions is chosen.

94 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Introduction

Procedure

Example - TLC

Example - SBC

Phase 3

Phase 4

Phase 5

Example 1: traffic light control

95 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Introduction

Procedure

Example - TLC

Example - SBC

Phase 3

Phase 4

Phase 5

System mission

SM1 : The system should prevent accidents on the crossing.

SM2 : The system should help the fire brigade to pass the
crossing with priority.

SM3 : The system should arrange for a fair and adapted flow
of traffic between the main and the secondary road (and
maximize the flow of traffic).

96 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Introduction

Procedure

Example - TLC

Example - SBC

Phase 3

Phase 4

Phase 5

Select development alternative

ALT1: Using signs will not improve the fair flow of traffic.

ALT2: A parcel of land must be bought to build a
roundabout/rotary big enough for the vehicles of the
fire brigade. The owner does not want to sell his parcel
of land for an acceptable price. Estimated costs:

Parcel: EUR 5.000
Build the roundabout: EUR 20.000

ALT3: For a new traffic lights control the old lights and
induction loops can be reused. Estimated costs:

New control: EUR 5.000
Maintanance: EUR 500 / year

ALT4: Costs of accidents are much higher

The roundabout charges off after 40 years
⇒ new traffic lights control

97 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Introduction

Procedure

Example - TLC

Example - SBC

Phase 3

Phase 4

Phase 5

New context diagram for traffic lights

see_red
see_green
see_yellow

see_red
see_green
see_yellow

control

lights

waiting area

of secondary road

on lanes

vehicle_waiting

enter,

enter,
leave

leave

on, off
broken

road users traffic light

crossing

fire brigade

emergency_request

the old and broken traffic light control is replaced (replace domain)

the fire bridage can send an emergency request (add interfaces with
phenomena, change domain)

98 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Introduction

Procedure

Example - TLC

Example - SBC

Phase 3

Phase 4

Phase 5

Changed/added/removed domain knowledge

A1 and A2 are still true

F1 – F12 are still applicable.

F13 is removed (because domain is removed)

The following assumption is added:

A3 : In case of emergency the emergency switch is activated
and deactivated emergency request after crossing.

99 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Introduction

Procedure

Example - TLC

Example - SBC

Phase 3

Phase 4

Phase 5

Initial requirements for traffic lights I

R1 : When there is a car waiting (vehicle waiting) on the
secondary road, the traffic lights should stop (see red)
the flow of traffic on the main road for a period of time
and allow (see green) the traffic flow on the secondary
road.

R2 : When the emergency switch is activated
(emergency request), the flow of traffic on the main road
should be stopped (see red) after a reasonable time and
the flow of traffic on the secondary road should be
allowed (see green) after a reasonable time.

R3 : Vehicles on the main road should be allowed to pass the
crossing for a longer period of time than from the
secondary road (if not emergency-case1).

100 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Introduction

Procedure

Example - TLC

Example - SBC

Phase 3

Phase 4

Phase 5

Initial requirements for traffic lights II

R4 : While vehicles on one road are allowed to pass
(see green), the others should be stopped (see red).

R5 : The lights should switch in the following order: red -
red+yellow - green - yellow - red. Other combinations
(except “all off”, yellow blinking, and green - yellow -
green in emergency case2) are not allowed (see red,
see yellow, see green).

R6 : In case of a broken light bulb the traffic lights should
blink in yellow (see yellow) for the secondary road, after
all red lights have been switched on for a period of time
(see red).

R7 : After switching to red (see red), the traffic flow of both
roads should be stopped (see red) for a period of time *3.

1Added later to eliminate contradictions
2Added later to eliminate contradictions
3A star (*) denotes: added later

101 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Introduction

Procedure

Example - TLC

Example - SBC

Phase 3

Phase 4

Phase 5

Consolidate traffic light requirements I

R ∧ F ∧ A =⇒ SM

SM1: avoid accidents
Accidents will not occur if at most one road gets the “go”
signal and cars have time to leave the crossing when the
signal is changed to “stop”, provided drivers obey to the
rules.

necessary: R4 (at most one road may pass), R5 (yellow
before red, red/yellow before green), R7 (both roads get
“stop” signal for some time)

102 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Introduction

Procedure

Example - TLC

Example - SBC

Phase 3

Phase 4

Phase 5

Consolidate traffic light requirements II

sufficient:

(R4∧ F 1∧A1)∧ (F 6∧R5∧R7∧ F 3∧ F 5∧A1) =⇒ SM1

(only one road may pass, stop if red, vehicles follow rules)
(vehicles cannot stop immediately, correct order of
signalling, period with red for all, leave critical section as
fast as possible, stop on yellow if possible, vehicles follow
rules)

SM2: priority for fire brigade
This mission statement is achieved by the emergency
button.

necessary: R2 (emergency button yields “go” signal for
secondary road)

103 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Introduction

Procedure

Example - TLC

Example - SBC

Phase 3

Phase 4

Phase 5

Consolidate traffic light requirements III

sufficient: R2 ∧ F 1 ∧ F 2 ∧ A3 ∧ A1 =⇒ SM2
(emergency button stops main road, stop if red, drive if
green, button is pressed on emergency, vehicles follow
rules)

SM3: fair traffic flow
Requests from the secondary road must be taken into
account, but main road should be allowed to pass twice as
long as secondary road.

necessary: R1, R3
sufficient: R1 ∧ R3 ∧ F 4 ∧ A3 =⇒ SM3
(secondary road request leads to “go”, longer period for
main road, definition of fairness, emergency button is
released)

104 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Introduction

Procedure

Example - TLC

Example - SBC

Phase 3

Phase 4

Phase 5

Consolidate traffic light requirements IV

Summary:
R ′ = {R1, R2, R3, R4, R5, R7} (mission critical requirements)
Rinit \ R ′ = {R6}
but R6 required for safety
=⇒ All requirements will be implemented, R = Rinit .

105 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Introduction

Procedure

Example - TLC

Example - SBC

Phase 3

Phase 4

Phase 5

Validation I

The applied operators for the context diagram are given
directly below the diagram.

The system mission statement addresses the shortcomings
or refer to domain knowledge of the system in use:

SM1 (prevent accidents) addresses shortcomings SC4
SM2 (help the fire brigade) addresses shortcoming SC2
SM3 (fair and adapted flow of traffic) addresses
shortcomings SC3

The phenomena and the domains of the context diagram
are printed emphasized in the requirements and in the
domain knowledge.

106 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Introduction

Procedure

Example - TLC

Example - SBC

Phase 3

Phase 4

Phase 5

Validation II

All given and designed domains are referenced in the
requirements and the domain knowledge:

The crossing is referenced in F 4 and F 6.
The waiting area of main road is referenced in R3.
The waiting area of secondary road is referenced in R1 and
F 9.
The road users on lanes is referenced in
R1, R2, R3, R4, R7, F 1, F 2, F 3, F 5, F 6, A1.
The fire brigade with its emergency button is referenced in
R2, R3, A3.
The lights are referenced in R5, R6, F 7.

107 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Introduction

Procedure

Example - TLC

Example - SBC

Phase 3

Phase 4

Phase 5

Validation III

Usually, in all requirements and domain knowledge only
elements of the context diagram are referenced.
Pedestrians are referenced in F 8 and A2. A domain
pedestrian is not included in the context diagram since
there are no shared phenomena with the machine or other
domains being relevant for the problem.

In D ∧ R no contradictions were found.

108 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Introduction

Procedure

Example - TLC

Example - SBC

Phase 3

Phase 4

Phase 5

Example 2: sun blind control

109 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Introduction

Procedure

Example - TLC

Example - SBC

Phase 3

Phase 4

Phase 5

System mission

SM1: Achieve a comfortable working ambiance by not beeing
disturbed by sunshine.

SM2: Achieve a comfortable working ambiance according to
user wishes.

110 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Introduction

Procedure

Example - TLC

Example - SBC

Phase 3

Phase 4

Phase 5

Select development alternative

For the SunBlind problem, we only consider the development
alternatives addressing all shortcomings.

ALT3: Replace the display units by monitors with higher
intensity and let the sunblind pulled up. (estimated costs
for each PC 4000 EUR)

ALT4: Automatic sunblind control. (estimated costs for each
window 1000 EUR)

Ratio PCs and Windows: 1 PC : 2 Windows
⇒ Automatic sunblind control

111 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Introduction

Procedure

Example - TLC

Example - SBC

Phase 3

Phase 4

Phase 5

New context diagram for sun blind I

sun wind

user

sun blind
with fins

control
sun blind be

a

c
d

112 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Introduction

Procedure

Example - TLC

Example - SBC

Phase 3

Phase 4

Phase 5

New context diagram for sun blind II

a: manually adjust fins with negative degree, manually adjust
fins with positive degree, manually open sun blind, manually
close sun blind, stop closing sun blind, stop opening sun
blind (introduced with machine domain)

b: heavy wind, no heavy wind now connected to machine, not
to user

c: lower sun blind, pull up sun blind, stop sun blind, sun blind
is lowered, sun blind is pulled up, rotate fins with positive
degree, rotate fins with negative degree now connected to
machine, not to user

d: destroy sun blind

e: sunshine, no sunshine now connected to machine, not to
user

113 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Introduction

Procedure

Example - TLC

Example - SBC

Phase 3

Phase 4

Phase 5

Initial requirements for sun blind I

R1 If there is sunshine for more than one minute but no heavy
wind, the sun blind will be lowered (lower sun blind).
(Negation of precondition of R3 is included to prevent
contradictions. R8 has priority!)

R2 If there is no sun shine for more than 5 minutes, the sun
blind will be pulled up (pull up sun blind). (R8 has
priority!)

R3 The sun blind should not be destroyed: If there is heavy
wind, the sun blind will be pulled up (pull up sun blind).

114 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Introduction

Procedure

Example - TLC

Example - SBC

Phase 3

Phase 4

Phase 5

Initial requirements for sun blind II

R4 If there is no heavy wind and the user manually adjusts the
fins with positive degree the fins are rotated with positive
degree (rotate fins with positive degree).
If there is no heavy wind and the user manually adjusts the
fins with negative degree the fins are rotated with negative
degree (rotate fins with negative degree).

R5 If the user manually opens the sun blind, the sun blind will
be pulled up (pull up sun blind).

R6 If the user manually closes the sun blind and there is no
heavy wind, the sun blind will be lowered (lower sun
blind). (Negation of precondition of R3 is included to
prevent contradictions.)

115 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Introduction

Procedure

Example - TLC

Example - SBC

Phase 3

Phase 4

Phase 5

Initial requirements for sun blind III

R7 The sun blind should not be destroyed: When the sun
blind is in its lowest position (sun blind is lowered) or in it
highest position (sun blind is pulled up) the sun blind
should stop (stop sun blind).

R8 If the user interacts with the sun blind (manually opens
the sun blind, manually closes the sun blind, manually
rotate fins with positive degree or manually rotate fins with
negative degree), then sun shine and no sun shine are
ignored for the next 4 hours.

116 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Introduction

Procedure

Example - TLC

Example - SBC

Phase 3

Phase 4

Phase 5

Revised domain knowledge I

A1, A2, A3, A5 are removed

A4, A6, A7 are still true

F2, F3, F4, F5, and F7 are still applicable.

F1 is changed to: The control wires are connected to the
motor of the machine to be built. When the motor turns
right, the sun blind is lowered (lower sun blind). When
the motor turns left, the sun blind is pulled up (pull up
sun blind). When the motor stops, the sun blind is
stopped (stop sun blind).

F6 is changed to: The wires are protected from the user.
The sun blind is destroyed if the Sun Blind Control does
not stop pulling or releasing the wires (within 0.2 s) when
the sunblind is pulled up or lowered.

117 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Introduction

Procedure

Example - TLC

Example - SBC

Phase 3

Phase 4

Phase 5

Consolidate sun blind control requirements

The system mission can be split into the following parts:

SM1: react to sun shine (R1, R2, F1, F2, F3, F4)

SM2: react to user needs (R4, R5, R6, R8, F3, F4, F5, A1, A2,
A3)

All contradictions are eliminated. (R3)
Requirements R1, R2, R4, R5, R6, R8 are “need to have”.
R3 and R7 (together with F4, F6, F7, A4) prevent sun blind
from taking damage, thus contributing to the system mission
SM1 and SM2.
=⇒ Rinit = R

118 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Introduction

Procedure

Example - TLC

Example - SBC

Phase 3

Phase 4

Phase 5

Validation I

The applied operators for the context diagram are given
with the diagram.

The system mission statement addresses the shortcomings
or refer to domain knowledge of the system in use:

SM1 (react to sunshine to achieve a comfortable working
ambiance) address shortcomings SC1 and SC3.
SM2 (react to user needs) is included to do not make
things worse, and addresses the assumption A3, A6, A7
but also the shortcoming SC4 since there is no direct user
interaction.

The phenomena and the domains of the context diagram
are printed emphasized in the requirements and in the
domain knowledge.

All given and designed domains are referenced in the
requirements and the domain knowledge.

119 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Phase 3: Decompose problem

1. Describe problem

2. Consolidate requirements

3. Decompose problem

4. Derive machine behavior specification for each subproblem

5. Design global system architecture

6. Derive specifications for all components of the global
system architecture

7. Design a software architecture for all components of the
global system architecture that should be implemented in
software

8. Specify the behavior of all components of all software
architectures, using sequence diagrams

...

120 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Phase 3: Decompose problem

input: requirements R to be imple-
mented of Phase 2

natural lan-
guage

domain knowledge D of
Phase 2

natural lan-
guage

context diagram of Phase 2 ext. Jackson

output: set of problem diagrams with
associated set of requirements

Jackson with
dot-notation

expression of the subproblem
relationships

grammar

validation: consistent with context dia-
gram of Phase 2
requirements R of Phase 2
must be treated in at least one
subproblem

121 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Notations and concepts

Terminology

Problem diagrams, simple problems

Problem decomposition

Problem frames

Decomposition operations

Subproblem relationships

122 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Terminology: Context Diagrams vs. Problem
Diagrams vs. Problem Frames

Context Diagram: “Where is the problem located?”

Problem Diagram: “What is the problem?”

contains requirements (that refer to / constrain the
problem domains)
contains information on who controls shared phenomena

Problem Frame: Pattern for a Problem Diagram

describes classes of simple problems.

123 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Simple Problem Example: odometer display
problem

A microchip computer is required to control a digital electronic
speedometer and odometer in a car. One of the car’s rear
wheels generates pulses as it rotates. The computer can detect
these pulses and must use them to set the current speed and
total number of miles traveled in the two visible counters on
the car fascia. The underlying registers of the counters are
shared by the computer and the visible display.

124 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Corresponding problem diagram

Counters
~
Travel

a
c

d
b

mirochip
Odometer

road
Car on

a: CR!{WheelPulse}

d: FD!{SpeedCount, DistCount}

c: CR!{Speed, CumDist}

display

Fascia

b: OM!{IncSpeed, DecSpeed, IncDist}

125 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Simple problems are characterized by

Simple requirements, i.e., the purpose of the machine is
intuitively comprehensible.

Simple interfaces, i.e., it is easy to characterize the way
the parts interact at each interface.

Simple roles of the domains, i.e., it is clearly defined,
which domain should be constrained and which should
only be observed, etc.

126 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Decomposition of realistic problems into simpler
subproblems

Necessary for solving the problems.

Also necessary for capturing, describing and understanding
realistic problems.

Questions:

How can a good decomposition be made?
How do you know, that solving subproblems is easier than
solving the initial problem?

Desirable: subproblems that belong to known classes
(Problem frames as “problem patterns”)

127 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Approaches to decomposition I

Top-Down-Decomposition (“oldest and worst approach”)

Arrange functions in a hierarchy of several levels
At each level, decompose each function into a number of
functions at the next level.
Stop when a level is reached where all functions are
regarded as elementary.
Disadvantages

Approach takes no explicit account of the problem to be
decomposed.
Unlikely to achieve a good decomposition if not already
familiar with the problem.
Example: Reduce enumerating all prime numbers up to a
certain limit to determining the next prime number
greater than a given number. Subproblem is not simpler
than original problem.

128 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Approaches to decomposition II

Use-Case-Decomposition

Known through object-oriented analysis.
Works well when it makes sense to think of the machine as
a facility offering discrete services that are used in clearly
defined episodes.
Not suitable for continuing interaction between machine
and problem domains, as often needed for embedded
systems, e.g. in patient monitoring problem.

“Knowledge-based” decomposition through projection.

Decomposition into “parallel” (not hierarchical)
subproblems.
Knowledge of problem classes and their solutions are used
for decomposition.

129 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Characteristics of subproblems

Subproblems treat sets of related requirements.

Subproblems are complete, independent problems with
their own problem diagrams.

When analyzing a subproblem, the other subproblems are
considered as solved (separation of concerns).

Subproblems are related to each other.

Subproblems are projections of the overall problem, i.e.,
some aspects are ignored.

130 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Problem frames

are patterns that characterize frequently occurring
problems

simple subproblems resulting from problem decomposition
should fit to a problem frame

are represented with frame diagrams

concrete problems are “fitted to problem frames”

six fundamental problem frames and variants exist

Literature: Jackson, Chapter 4

131 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Problem frame: Required Behaviour

Informal Description
There is some part of the physical world whose behaviour is to
be controlled so that it satisfies certain conditions. The
problem is to build a machine that will impose that control.

Frame Diagram

Control
CD!C2
CM!C1

domain
Controlled

C

C3
machine behaviour

Required

C: Causal domain, reacts to events in a predictable way
C1–C3: indicate causal relations, C2: Feedback

132 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Example: Sluice Gate Control I

A small sluice is used in a simple irrigation system. The sluice
gate can rise and fall. A computer system should control the
sluice gate. The requirement is that the gate should be held in
the fully open position for ten minutes in every three hours and
otherwise kept in the fully closed position.
The gate is opened and closed by rotating vertical screws. The
screws are driven by a small motor, which can be controlled by
clockwise, anticlockwise, on and off pulses. There are sensors
at the top and bottom of the gate travel. At the top it’s fully
open, at the bottom it’s fully shut. The connection to the
computer consists of four pulse lines for motor control and two
status lines for the gate sensor. Sluice Gate Control fitted to

133 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Example: Sluice Gate Control II

Required Behaviour frame

Sluice
Controller

Control Controlled

domain

Required
behaviour

a b

machine

[C1]
[C2]
[C3]

Motor

Gate & Sluice
regime

a: SC!{Clockw, Anti, On, Off}

t
 GM! {Top, Bottom}

b: {Open, Shut}

Fitting problems to problem frames is achieved by instantiation
of the variables contained in the frame diagram.

134 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Problem frame: Commanded Behaviour I

Informal Description
There is some part of the physical world whose behaviour is to
be controlled with commands issued by an operator. The
problem is to build a machine that will accept the operator’s
commands and impose the control accordingly.

Difference to “required behaviour”: An operator can issue
commands that influence the behaviour of the controlled
domain. Usually operator knows that he/she is an operator

135 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Problem frame: Commanded Behaviour II

Frame Diagram

behaviour

Commanded

Operator

machine

E4

C3

B

domain

Controlled

Control

OP!E4

CM!C1

C
CD!C2

B: A biddable domain cannot be influenced through a machine
E4: operator commands
Determine how and when the machine should – or should not –
cause C1-phenomena in response to E4 commands.

136 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Example: Occasional Sluice Gate Control I

A small sluice is used in a simple irrigation system. The sluice
gate can rise and fall. A computer system is needed to raise
and lower the sluice gate in response to the commands of the
operator.
The gate is open and closed by rotating vertical screws. The
screws are driven by a small motor, which can be controlled by
clockwise, anticlockwise, on and off pulses. There are sensors
at the top and bottom of the gate travel; at the top it’s fully
open, at the bottom it’s fully shut. The connection to the
computer consists of four pulse lines for the gate sensor, a
status line for each class of operator command.

137 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Example: Occasional Sluice Gate Control II

Fitting the Occasional Sluice Gate Control to the Commanded
Behaviour frame

Control

machine

Controlled

Commanded
behaviour

Sluice
control

Gate
&
Motor

Sluice
operator

a
b

c c

Operator

[E4]

[C3]

[C2]

[C1]

GM!{Top, Bottom}

domain

a: SC!{Clockw, Anti, On, Off}

c: SO!{Raise, Lower, Stop}

lower gate
Raise and

b: {Open, Shut, Rising, Falling}

138 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Problems in introducing an operator

possible that commands cannot be obeyed
Example: two stop-commands in succession

possible that commands should not be obeyed
Example: raise-command when the gate is already at the
top of its travel.

These situations must be taken into account when elicitating
the requirements!

139 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Problem frame: Information Display I

Informal Description
There is some part of the physical world about whose states
and behaviour certain information is continually needed. The
problem is to build a machine that will obtain this information
from the world and present it at the required place in the
required form.

Frame diagram

~

RW!C1

Display

Display
C

C
C3

Y4

Real world

world
Real

IM!E2

machine
Information

140 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Problem frame: Information Display II

~

RW!C1

Display

Display
C

C
C3

Y4

Real world

world
Real

IM!E2

machine
Information

The real world is entirely autonomous, nothing in the
problem context can affect its behaviour.

The machine must satisfy the requirements by diagnosing
phenomena C3 from the phenomena C1.

It must cause events E2, in order to generate phenomena
Y4.

141 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Example: Odometer display

Odometer display fitted to information display frame

a

b

c

d

[E2]

[C3]

[Y4]

~

~

[C1]

Car on

Odometer

microchip

road

Fascia
Display

Counters

Travel

Information
machine

Display

Real world

a: CR! {WheelPulse}

b: OM! {IncSpeed, IncDist, DecSpeed}

Display

Real world

c: {Speed, CumDist}

d: {SpeedCount, DistCount}

142 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Problem frame: Commanded Information (Simple
Information Systems) I

Informal description
A machine is to be built, which answers questions about a
domain of the real world.

Frame diagram

RW!C1

AM!E3 Y4
rules

EnquiryEO!E5 E5
operator

B

C
Display

C

Real
world

Answer

C2

machine
Answering

143 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Problem frame: Commanded Information (Simple
Information Systems) II

RW!C1

AM!E3 Y4
rules

EnquiryEO!E5 E5
operator

B

C
Display

C

Real
world

Answer

C2

machine
Answering

Enquiries E5 are regarded as commands, shared with the
machine

The requirements stipulate the answers to be produced for
each combination of a real world state C2 with an E5
enquiry

Answers are symbolic phenomena Y4.

144 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Example: Mail Order Company I

Customers can order products from a mail order company. The
mail order company can introduce new products and
discontinue products that do not sell well. A machine is to be
built that provides information to the management on the sales
that have taken place. It should be possible to e.g. retrieve
information about the goods in stock, how much of a product
has been sold in a certain time period, as well as information
about the last order placed by a customer.

145 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Example: Mail Order Company II

Mail order company fitted to commanded information frame.

a

e

c

information

system
information

Information
~

Reality

c

b

d

d: MIS!{OrderDisplComm, StockDisplComm, CustomerDisplComm}

Real world

Management

Mail order
company

Business

b: MOC!{StoredOrders, StoredStock, StoredCustomers}

[C2]

[C1]

[E5]

[E3]

[Y4]

Answering−

machine
Display

Enquiry operator

Answer rules

Management

c: M!{AvailableAmount, SoldAmount, LastOrder}

a: {Order, Stock, Customers}

e: {OrderDispl, StockDispl, CustomerDispl}

146 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Problem frame: Simple Workpieces I

Informal Description
A tool is needed to allow a user to create and edit a certain
class of computer-processable text or graphic objects, or similar
structures, so that they can be subsequently copied, printed,
analysed or used in other ways. The problem is to build a
machine that can act as this tool.

Workpieces:
Normally a piece of material worked on by a machine, e.g.
wood blocks, metal castings, etc.

Here: things that are worked on by a computer.

147 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Problem frame: Simple Workpieces II

Frame Diagram

User
B

X
Workpieces Y4

E3

effects
Command

E!E1
WP!Y2

Editor

U!E3

X: Lexical Domain, i.e. data type
Phenomena E1: Operations on workpieces
Phenomena Y2: allow the machine to examine the current
state and values of the workpiece.
Workpieces domain is contained in the machine, indicated by
“•”.

148 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Problem frame: Simple Workpieces III

User
B

X
Workpieces Y4

E3

effects
Command

E!E1
WP!Y2

Editor

U!E3

Phenomena E3: user commands
Requirements: describe effects, commands E3 should have on
phenomena Y4.
Y4 often differs from Y2: Phenomena Y4 can have some
meaning to the user that is insignificant for editing.
Simple workpieces does not deal with printing, representing or
further processing the workpieces.

149 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Example: Party plan I

Lucy and John need a system to keep track of the many parties
they give and the many guests they invite. They want a simple
editor to maintain the information, which they call their party
plan. Essentially the party plan is just a list of parties, a list of
guests, and a note of who is invited to each party. The editor
will accept command-line text input.

150 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Example: Party plan II

Party

a

b

c

bJohn & Lucy

[E1]
[Y2]

editor

Party
plan

Correct
editing

Workpieces

Editing tool

User

Command

effects

a: PE!{PlanOperations}

[Y4]

[E3]b: JL!{Commands}

PP!{PlanStates}

c:{PlanEffects}

151 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Remark

The structure of the problem frames simple workpieces and
commanded behaviour are very similar!
Differences:

The Workpieces domain is lexical and formal, but the
Controlled domain is causal and informal

In the Controlled domain, approximations must be taken
into account, which is unnecessary for the Workpieces
domain

The requirements in the simple workpieces frame relate
only to the user’s commands, while in the commanded
behaviour frame other requirements can occur, e.g. that
the sluice gate is not driven beyond the limits of its
vertical travel.

152 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Problem frame: Transformation I

Informal Description

There are some given computer-readable input files whose data
must be transformed to give certain required output files. The
output data must be in a particular format, and it must be
derived from the input data according to certain rules. The
problem is to build a machine that will produce the required
outputs from the inputs.

153 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Problem frame: Transformation II

Frame diagram

IO
relation

IN!Y1

Y4

Inputs

Outputs

machine
Transform

TM!Y2

X

X

Y3

The input cannot be changed, and is not restricted through
requirements.
Y1 and Y3, as well as Y2 and Y4 may differ, but do not have
to.

154 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Example: Mailfiles analysis I

John wants to analyse his email-correspondence. He is
interested in the average number of messages he receives and
sends in a week, the average and maximum message length,
and similar things. After some thought he has worked out that
he wants a report that looks like this:

Name # In Max.Length ∅ Length # Out Max.Length ∅ Length

Albert 19 52136 6027 17 21941 2123
Anna 31 13248 1736 37 34763 2918
. .

The report contains a line for each of his correspondents.

155 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Example: Mailfiles analysis II

Mailfiles analysis fitted into transformation frame diagram

analyser

Inputs

Outputs

Mailfiles

Report

relation

Analysis

rules

a

b

c

d

[Y1]

[Y2]

[Y3]

[Y4]

a:MF! {MsgDir, File, Line, Char}

Mail

b: MA! {ReportLine, Char}

IOTransform
machine

c: {Msg, From, To, Date, Lenght}

d: {LineData}

156 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Summary

Simple problems that occur during problem decomposition
should belong to known problem classes, which have
common solution methods.

These kinds of problem classes are characterized through
problem frames. Problem frames contain patterns for the
domains involved and their shared phenomena. They also
define which domains the requirements refer to and which
domains they restrict.

In order to solve a subproblem with a method that is
associated with a problem frame, the subproblem needs to
be ”fitted” to the frame by instantiating the frame
diagram.

157 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Decomposition

Realistic problems must be divided into (simple)
subproblems.
A useful way of decomposition is projection, i.e., ignoring
certain aspects.
This kind of decomposition adds to other types of
decomposition, such as top-down or Use Cases.

The problem frames help to find suitable subproblems.

If a problem does not fit into one of the problem frames, a
new problem diagram can be developed.

158 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Decomposition operations

To fit a subproblem into a problem frame, the following
operations can be applied on the context diagram:

Leave out domains (with corresponding interfaces)

Combine several domains into one domain

Divide a domain

Introduce a connection domain

Reduce interface between domains

Refine phenomena

Combine (i.e., abstract) phenomena

159 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Subproblem relationships

The following relationships between subproblems can be
identified and help to compose the solution:

Parallel subproblems are largely independent of each other,
and the global machine will have to treat the problems in
parallel. If the same domain is contrained in parallel
subproblems, priorities should be assigned. These priorities
must be consistant with the priorities in the requirements.
They must be updated if necessary.

Sequential subproblems have to be treated one after
another.

Alternative problems are exclusive. Only one of them will
have to be treated at a given time.

Subproblem relationships can be expressed using a context-free
grammar in in so-called Backus-Naur Form (BNF). The BNF
can be extended with a symbol for parallel subproblems.

160 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Context-free grammars, Backus-Naur-Form

A context-free defines a language, i.e., a set sequences of
(terminal) symbols.

A BNF specification is a set of production rules, written as
< NTS >::=< expression with symbols >.

< NTS > is a nonterminal symbol.

The expression consists of sequences of symbols, where
“|” indicates alternatives.

The expression describes possible substitution for the
symbol on the left.

The language consists of all sequences of terminal symbols
that can be derived using the production rules, starting
from a specified start symbol.

161 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Subproblem relationship notation example

The dependencies between the subproblems can be summarized
using a context-free grammar describing the possible
sequences. In the following grammar, “||” denotes parallel
problems and “|” denotes an alternative.

< start > ::= < main passing >||< fire >||< broken light >
< main passing > ::= MainRoadPassing < sec passing >
< sec passing > ::= SecondaryRoadPassing < main passing >
< fire > ::= EmergencyRequest < main passing >
< broken light > ::= BrokenLightSafeState

In this grammar, the terminal symbols MainRoadPassing,
SecondaryRoadPassing,
EmergencyRequestSecondaryRoadPassing and
BrokenLightSafeState are all the subproblems of the traffic
light control problem.

162 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Subproblem relationship notation remarks

We always start with the nonterminal < start >.

The subproblems correspond to terminal symbols of the
grammar.

The nonterminals (< main passing >, < sec passing >,
< fire >, and < broken light >) may correspond to states.
These states form the conditions the the previous
subproblem establishes and the succeeding subproblem
requires.

163 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Phase 3: Decompose problem

input: requirements R to be imple-
mented of Phase 2

natural lan-
guage

domain knowledge D of
Phase 2

natural lan-
guage

context diagram of Phase 2 ext. Jackson

output: set of problem diagrams with
associated set of requirements

Jackson with
dot-notation

expression of the subproblem
relationships

grammar

validation: consistent with context dia-
gram of Phase 2
requirements R of Phase 2
must be treated in at least one
subproblem

164 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Executing Phase 3

To decompose the problem the following steps have to be
performed:

Identify subproblems that should fit to problem frames.

Set up the correspondig problem diagrams. Try to assign
each requirement to exactly one subproblem.

Add connection domains (possibly part of the machine)
according to facts and assumptions.

Introduce domain knowledge for connection domains.

Describe the relationships between the subproblems.

165 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Example 1: traffic light control

166 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Requirements for traffic lights I

R1 : When there is a car waiting on the secondary road, the
traffic lights should stop the flow of traffic on the main
road for a period of time and allow the traffic flow on the
secondary road.

R2 : As long as the emergency button is activated, the flow of
traffic on the main road should be stopped and the flow
of traffic on the secondary road should be allowed.

R3 : Vehicles on the main road should be allowed to pass the
crossing for a longer period of time than from the
secondary road (if not emergency-case4).

R4 : While vehicles on one road are allowed to pass, the others
should be stopped.

167 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Requirements for traffic lights II

R5 : The lights should switch in the following order: red -
red+yellow - green - yellow - red. Other combinations
(except “all off”, yellow blinking, and green - yellow -
green in emergency case5) are not allowed.

R6 : In case of a broken light bulb the traffic lights should
blink in yellow for the secondary road, after all red lights
have been switched on for a period of time.

R7 : After switching to red, the traffic flow of both roads
should be stopped for a period of time *6.

4Added later to eliminate contradictions
5Added later to eliminate contradictions
6A star (*) denotes: added later

168 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Context diagram for traffic lights

see_red
see_green
see_yellow

see_red
see_green
see_yellow

control

lights

waiting area

of secondary road

on lanes

vehicle_waiting

enter,

enter,
leave

leave

on, off
broken

road users traffic light

crossing

fire brigade

emergency_request

169 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

SecondaryRoadPassing Problem Diagram I

Variant of the required behavior problem frame. (no operator, lights
domain is controlled, additional domains without a direct connection
to the machine exist)

Because of F10 it is not possible to connect lights and the machine
directly (different voltage). Therefore, the connection domain lights
control (being part of the machine) must be introduced.

lights

control

crossing

sec_green,

sec_red}

sec_yellow,

l!{sec_yellow_red,

lights

light settings

TLC
secondary
phase

tlc!{on,off}

ruol!{enter,leave}

road users on

lanes
vehicles on crossing

vehicles on crossing

R3, R4, R5

R7

lc!{24V, 0V}

170 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

SecondaryRoadPassing Problem Diagram II

In this diagram only the parts of the requirements concerning
the secondary phase are considered.
The following projection operators have been applied:

The domains waiting area of secondary road, fire brigade,
and the corresponding interfaces are left out.

The connection domain light control is introduced. The
phenomena of the context diagram (on, off) are used
between the machine TLC secondary phase and the
connection domain.

The interface between machine and lights domain is
reduced (dropping the phenomenon broken).

171 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

SecondaryRoadPassing Problem Diagram III

The interface between road users on lanes and lights
domain is refined (e.g., see green ⇒ sec green or
main green) and reduced (e.g., dropping main green; it
only contains the phenomena relevant for the secondary
road passing phase).

172 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

MainRoadPassing Problem Diagram I

Variant of the required behavior problem frame.

To detect if a road user is on the waiting area an additional
connection domain is necessary (F9). The connection domain
induction loop control is introduced.

Lights control is introduced (see SecondaryRoadPassing).

lc!{24V, 0V}

road users on

lanes vehicles on crossing

lights

control

light settings

lights

l!{main_yellow_red,
main_green,
main_yellow,

main_red}

waiting area of

secondary road

induction loop

control

waosr!{srr}

phase
main
TLC

vehicle_waiting

tlc!{on,off}

ilc!{vehicle_waiting}

ruol!{enter,leave}

R1, R3, R4,
R5, R7

In this diagram only the parts of the requirements for the
secondary phase are considered.

173 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

MainRoadPassing Problem Diagram II

The following projection operators have been applied:

The domains crossing, and fire brigade, and the
corresponding interfaces are left out.

The interface between machine and lights domain is
reduced (dropping the phenomenon broken).

The interface between road users on lanes and lights
domain is refined (e.g., see red ⇒ sec red or main red)
and reduced (e.g., dropping sec green; it only contains the
phenomena relevant for the main road passing phase).

174 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

EmergencyRequest Problem Diagram I

Variant of the commanded behavior problem frame. The domain fire
brigade is the operator (biddable domain) in the problem frame.

Lights control is introduced (see SecondaryRoadPassing).

lights

control

crossing

lights

light settings

TLC

tlc!{on,off}

ruol!{enter,leave}

road users on

lanes

sec_red}
sec_yellow,
sec_green,
sec_yellow_red,

fire brigade

l!{main_yellow, main_red,

vehicles on crossing

fire brigade

fb!{emergency_request_start,

emergency_request_end}

emergency_request

vehicles on crossing

R2, R5, R7

lc!{24V, 0V}

175 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

EmergencyRequest Problem Diagram II

The following projection operators have been applied:

Lights control is introduced (see SecondaryRoadPassing).

The interface between machine and lights domain is
reduced (dropping the phenomenon broken).

The interface between road users on lanes and lights
domain is refined (e.g., see green ⇒ sec green or
main green) and reduced (e.g., dropping main green; it
only contains the phenomena relevant for the emergency
phase).

The phenomenon emergency request is refined into
emergency request start and emergency request stop.

176 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

BrokenLightSafeState Problem Diagram I

Variant of the required behavior problem frame.

The connection domain lights control is also necessary to detect
broken lights by measurement of the power consumption (F 7).

lights R6
lights

control

TLC

fault tolerance

tlc!{on,off}
lc!{broken_light}

l!{current}

vehicles on lanes

road users on

lanes

l!{sec_red,
main_red,
sec_yellow, all_off}

light settings

broken light bulb
lc!{0V,24V}

177 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

BrokenLightSafeState Problem Diagram II

The following projection operators have been applied:

The domains crossing, waiting area of secondary road, fire
brigade, and the corresponding interfaces are left out.

The interface between road users on lanes and lights
domain is refined (e.g., see yellow ⇒ sec yellow or
main yellow) and reduced (e.g., dropping main green; it
only contains the phenomena relevant for the broken
phase).

The domain lights control with its phenomena (0V, 24V,
current) is introduced. The electric current is used to
detect a broken light bulb (F 7).

178 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Problem Diagram relationships

< start > ::= < main passing >||< fire >||< broken light >
< main passing > ::= MainRoadPassing < sec passing >
< sec passing > ::= SecondaryRoadPassing < main passing >
< fire > ::= EmergencyRequest < main passing >
< broken light > ::= BrokenLightSafeState

Once activated, the subproblem EmergencyRequest has priority. That
implies, only the machine for EmergencyRequest is allowed to control
the lights until it gives the control to the machine for
MainRoadPassing.

The subproblem BrokenLightSafeState acts in parallel to the
subproblems EmergencyRequest, MainRoadPassing, and
SecondaryRoadPassing. It has a higher priority than all the other
subproblems: Once activated, only the machine for
BrokenLightSafeState is allowed to control the lights.

179 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Validation

The problem diagrams are consistent with the context diagram:

The problem diagrams were derived from the context
diagram by applying the introduced operators.

All phenomena and all domains of the context diagram are
covered.

180 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Example 2: sun blind control

181 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Requirements for sun blind I

R1 If there is sunshine for more than one minute but no heavy
wind, the sun blind will be lowered (lower sun blind).
(Parts of R3 included to prevent contradictions)

R2 If there is no sun shine for more than 5 minutes, the sun
blind will be pulled up (pull up sun blind).

R3 The sun blind should not be destroyed: If there is heavy
wind, the sun blind will be pulled up (pull up sun blind).

182 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Requirements for sun blind II

R4 If there is no heavy wind and the user manually adjusts the
fins with positive degree the fins are rotated with positive
degree (rotate fins with positive degree).
If there is no heavy wind and the user manually adjusts the
fins with negative degree the fins are rotated with negative
degree (rotate fins with negative degree).

R5 If the user manually opens the sun blind, the sun blind will
be pulled up (pull up sun blind).

R6 If the user manually closes the sun blind and there is no
heavy wind, the sun blind will be lowered (lower sun blind).
(Parts of R3 included to prevent contradictions.)

183 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Requirements for sun blind III

R7 The sun blind should not be destroyed: When the sun blind
is in its lowest position (sun blind is lowered) or in it
highest position (sun blind is pulled up) the sun blind
should stop (stop sun blind).

R8 If the user interacts with the sun blind (manually opens the
sun blind, manually closes the sun blind, rotate fins with
positive degree or rotate fins with negative degree), sun
shine and no sun shine are ignored within the next 4 hours.

184 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Context Diagram for sun blind I

sun wind

user

sun blind
with fins

control
sun blind be

a

c
d

a: manually adjust fins with negative degree, manually adjust
fins with positive degree, manually open sun blind, manually
close sun blind, stop closing sun blind, stop opening sun blind

185 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Context Diagram for sun blind II

b: heavy wind, no heavy wind

c: lower sun blind, pull up sun blind, stop sun blind, sun blind
is lowered, sun blind is pulled up, rotate fins with positive
degree, rotate fins with negative degree

d: destroy sun blind

e: sunshine, no sunshine

186 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

SunControl Problem Diagram I

Variant of the commanded behavior problem frame. The
domain user is the operator (biddable domain). The
domains wind, sun, and sun blind are the the controlled
domains.

Because of A1, A2, and A3 (description of the user
interactions) the connection domain button (being part of
the machine) must be introduced.

F 1 and F 2 show that a sun sensor is necessary to measure
the intensity.

187 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

SunControl Problem Diagram II

buttons

sun sensor sun

user

sun blind

wind

c

d

R1, R2, R8

control
sun

g

h

k

l

wind sensor

motor
e

a

b
f j

i

a: SC!{turn motor right,
turn motor left}

b: WS!{intensity of wind}
c: B!{up-button pushed,

down-button pushed}
d: SS!{intensity of sun

shine}
e: M!{lower sun blind, pull

up sun blind}
f: W!{heavy wind, no

heavy wind}

g: U!{manually open sun blind, stop closing sun
blind, manually close sun blind, stop opening
sun blind, manually adjust fins with negative
degree, manually adjust fins with positive
degree}

h: S!{sunshine, no sunshine}
i: ”heavy wind”
j: ”user input”
k: ”weather conditions”
l: ”position of sun blind”

188 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

SunControl Problem Diagram III

The following projection operators have been applied:

The domain sun blind with fins is split and the domain fins
is left out with the corresponding phenomena.

The connection domains motor, wind sensor, buttons and
sun sensor are introduced with additional phenomena.

The phenomena rotate fins with positive degree, rotate
fins with negative degree are dropped.

The phenomena dealing with pulled up or lowered sunblind
and blocked motor are dropped.

All phenomena of the user are included since sun shine and
no sunshine are ignored for 4 hours in if one of the user
phenomena occurs.

189 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

UserControl Problem Diagram I

Variant of the commanded behavior problem frame. The
domain user is the biddable domain. The domains wind
and sun blind are controlled domains.

Because of A1, A2, and A3 (description of the user
interactions) the connection domain button (being part of
the machine) must be introduced.

F 3, F 4, F 11, and F 13 show that a motor is necessary to
control the sun blind (conection domain). (domin
knowledge added in Phase 1)

190 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

UserControl Problem Diagram II

motor sun blind

userbuttons

R5,R6wind
control

user

a

d

c

e

f

g

h

i

wind sensor
b

a: UC!{turn motor right, turn motor
left}

b: WS!{intensity of wind}
c: B!{up-button pushed, up-button

released, down-button pushed,
down-button released}

d: M!{lower sun blind, pull up sun
blind}

e: W!{heavy wind, no heavy wind}

f: U!{manually open sun
blind, stop closing sun
blind, manually close sun
blind, stop opening sun
blind}

g: ”position of sun blind”

h: ”heavy wind”

i: ”user input”

191 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

UserControl Problem Diagram III

The following projection operators have been applied:

The domain sun blind with fins is split and the domain fins
is left out with the corresponding phenomena.

The domain sun is left out with the corresponding
phenomena.

The connection domains buttons and motor and necessary
phenomena are introduced.

The phenomena concerning the fins are dropped in the
user interface.

The phenomena dealing with pulled up or lowered sunblind
and blocked motor are dropped.

192 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

FinsControl Problem Diagram I

Variant of the commanded behavior problem frame. The
domain user is the biddable domain. The domains wind
and fins are controlled domains.

Because of A1, A2, and A3 (description of the user
interactions) the connection domain button (being part of
the machine) must be introduced.

F 6 shows that a wind sensor is necessary to measure the
speed of the wind.

The fins have an interface that can be directly connected
to a microcontroller (F 12 added).

193 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

FinsControl Problem Diagram II

a

wind sensor wind

control

fin

b

fins

buttons user

c

d

e

f

g

h

R4

a: B!{up-button pushed, up-button
released, down-button pushed,
down-button released}

b: U!{manually adjust fins with
negative degree, manually adjust
fins with positive degree}

c: FC!{rotate fins with positive
degree, rotate fins with negative
degree}

d: WS!{intensity of wind}
e: W!{heavy wind, no heavy

wind}
f: ”user input”

g: ”fins position”

h: ”wind strength”

The following projection operators have been applied:

194 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

FinsControl Problem Diagram III

The domain sun blind with fins is split and the domain sun
blind is left out with the corresponding phenomena.

The domain sun is left out with the corresponding
phenomena.

The connection domains buttons and wind sensor and
necessary phenomena are introduced.

The phenomena manually open sun blind, stop closing sun
blind, manually close sun blind, stop opening sun blind,
manually adjust fins with negative degree, manually adjust
fins with positive degree are dropped.

195 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

NoDestruct Problem Diagram I

Variant of the required behavior problem frame. The
domains wind and sun blind are controlled domain.

F 6 shows, that a wind sensor is necessary to measure the
speed of the wind.

F 3, F 4 and F 11 show, that a motor is necessary to
control the sun blind. Additionally, the motor must be
able to inform the machine that the sun blind is blocked
(F 10). When the sun blind is pulled up or the sun blind is
lowered, the motor is blocked.

196 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

NoDestruct Problem Diagram II

motor sun blind

wind sensor wind

c
d

b

a

e

f

control

no destruct R3,R7g

a: W!{heavy wind, no heavy wind}
b: WS!{intensity of wind}
c: NDC!{turn motor right, turn motor left, stop motor},

M!{turn right is blocked, turn left is blocked}
d: M!{lower sun blind, pull up sun blind, stop sun blind},

SB!{sun blind is lowered, sun blind is pulled up}
e: ”position of sun blind”

f: ”heavy wind”

g: W!{detroy sunblind}

197 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

NoDestruct Problem Diagram III

The following projection operators have been applied:

The domain sun blind with fins is split and the domain fins
is left out with the corresponding phenomena.

The domains sun and user are left outwith the
corresponding phenomena.

The connection domains motor and wind sensor and
necessary phenomena are introduced.

198 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Problem Diagram relationships

All supproblems are parallel.
¡start¿ ::= SunControl || NoDestructControl || FinsControl ||

UserControl

NoDestructControl should have the highest priority.

UserControl should have a higher priority than SunControl.

No priority must be assigned to FinsControl since a
different domain (fins, not sun blind) is contrained.

199 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Introduction

Notations

Terminology

Problem
Diagrams

Problem
decomposition

Problem frames

Decomposition
operations

Subproblem
relationships

Procedure

Example - TLC

Example - SBC

Phase 4

Phase 5

Validation

Usually, the phenomena in the problem diagrams the same
as in the context diagram. Only when connection domains
are introduced, new phenomena have been introduced.

Usually, the domains in the problem diagrams the same as
in the context diagram. Only connection domains are
introduced.

All requirements of Phase 2 are captured.

200 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Phase 4: Derive machine behavior specification for
each subproblem Pi

...

3. Decompose problem

4. Derive machine behavior specification for each subproblem

5. Design global system architecture

6. Derive specifications for all components of the global
system architecture

7. Design a software architecture for all components of the
global system architecture that should be implemented in
software

...

201 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Phase 4: Derive machine behavior specification for
each subproblem Pi

input: requirements R from Phase 2 natural language
domain knowledge D from Phase 2 natural language
problem diagram for Pi from Phase 3 Jackson with dot-

notation

output: specification SPi
of machine to construct natural language

sequences of interactions with annotated states
for the domains in the environment, expressing
RPi

and DPi

sequence diagrams
with annotated
states

sequences of interactions on initialization sequence diagram
with annotated
states

validation: D ∧ SPi
are non-contradictory

D ∧ SPi
=⇒ RPi

all requirements must be captured
in the sequence diagrams refined phenomena of
the problem diagrams are used as signals
direction of signals must be consistent with con-
trol of shared phenomena
signals must connect domains as connected in
problem diagram
the relationships of Phase 3 must be consistent
with the states

202 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Notations and concepts

Terminology

Specifications

UML sequence diagrams

203 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Terminology

environment−controlled phenomena
machine−controlled phenomena

environment

part of
environment
relevant for problem part of

environment
visible to machine

machine to be
constructed

204 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Deriving specifications from requirements I

Searched: specification of the machine

Known: facts F , assumptions A and requirements R

F 1

F 2

F 3

F 4

A2

?
R1

R3

R7

R4

R6R5

R2

A3

A1

Question: How do you get the specification S , such that
F ∧ A ∧ S ⇒ R (correctness of the specification)

205 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Deriving specifications from requirements II

S1

S3S2

S4

F 1

F 2

F 3

F 4

A2

A3

A1

206 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Specifications vs. requirements

In contrast to the requirements, the specification of the
machine gives an answer to the question: “How should the
machine act, so that the system fulfills the requirements?”
Specifications are descriptions that are sufficient for building
the machine. Specifications are implementable requirements.
To derive the specification:

Replace phenomena not observable / controlled by the
machine by observable / machine controlled phenomena
that are related to the requirements phenomena.

207 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

A negative Example: Airbus Accident in Warsaw

Requirement: reverse thrust allowed ⇔ plane landed
Reasoning:

plane landed ⇔ wheels turn fast ∈ F

wheels turn fast ⇔ pulses ∈ F

Conclusion:

reverse thrust allowed ⇔ pulses ∈ S

Problem: aquaplaning!
Result: plane refused reverse thrust during landing when
raining

208 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Correctness criteria

Consider requirements R, facts F , assumptions A,
specifications S .

1. Each element of R is considered acceptable by the client,
and R contains all customer preferences concerning the
software development project.

2. Each element of F was checked for correctness.

3. Each element of A was checked for plausibility.

4. All elements of S are implementable.

5. F ∧ A ∧ S ⇒ R is demonstrated.

6. It is proved that F , A and S are consistent.

When these criteria are fulfilled, then the construction of a
machine that fulfills S can be started.

209 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Sequence diagrams

UML Superstructures Specification:

A sequence diagram describes an Interaction by
focusing on the sequence of Messages that are
exchanged, along with their corresponding
OccurrenceSpecifications on the Lifelines. An
OccurrenceSpecification is the basic semantic unit of
Interactions. The sequences of occurrences specified
by them are the meanings of Interactions.
OccurrenceSpecifications are ordered along a Lifeline.

Literature:

Laurent Doldi: UML 2.0 Illustrated.
TMSO, 2003. http://www.tmso-systems.com
M. Jeckle, C. Rupp, J. Hahn, B. Zengler, S. Queins: UML
2 glasklar.
Hanser, 2004.

210 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Basic Elements

Each sequence diagram has a name and a bounding box.

Objects are not underlined.
(This and the following pictures are taken from Doldi, 2003.)

211 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Asynchronous vs. synchronous messages

Asynchronous messages First, the sending of the message
occurs, and after a certain (variable) amount of
time, the message is consumed by the receiver.
The sender does not wait for the receiver’s reply
but continues its process. Example: mailbox.

Synchronous messages Sending and reception of the message
take place at (almost) the same time. The sender
waits for reply message before resuming its
process. Example: function call.

212 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Synchronous messages

Gray box represents execution of actions.
The different kinds of messages are indicated by different
arrowheads.

213 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Co-region

Messages can be received in any order.

214 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Reference

Enables reuse of diagrams. Semantics: replace reference by its
contents.

215 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Combined Fragments

Operators for combining different sequence diagrams:

alt alternatives; more than two alternatives are
possible.

opt option
loop repetition

break description of behavior expected after a break
par parallel independent execution of several operands

ignore to define messages to be ignored in the execution
consider to define messages to be considered in the

execution
seq weak sequencing (default)

strict strict sequencing
neg to define forbidden behavior

critical critical region, non-interruptible behavior
assert assertion, to define a message sequence that must

occur

216 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Alt operator, non-deterministic

We will use non-determinism, although not allowed in standard.
217 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Alt operator with guards

Guards specify what alternative will be taken.

More than two possibilities may be specified (case
construct).

The guards must be exclusive, and their disjunction must
be true.

218 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Opt operator

Corresponds to “Alt” with only one alternative. Standard
requires interaction condition (conditions not given are
considered to be true).

219 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Loop operator

Fragment can be repeated a number of times.

220 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Loop operator variants

221 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Nested operators

Combined fragments can be nested (e.g., alt fragment inside a
loop fragment).

222 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Par operator

Describes the parallel merge between the behaviors of the
operands (interleaving).

223 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Expanded behavior of par operator

224 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Consider operator (1)

Filter for relevant messages, noted in “headline” after the name
of the interaction.

Further (“irrelevant”) messages, here RR, may occur.

225 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Consider operator (2)

If RR is considered, too, then the execution trace does not
conform to the sequence diagram tB.

226 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Ignore operator

Dual to consider operator. All messages that are not ignored
are considered.

227 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Local attributes

Like classes, sequence diagrams may have local attributes that
may be public or private.

Local attributes can be used as parameters of messages.

228 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

State invariants

Express conditions for interactions. Interactions where the
condition does not hold do not conform to the given diagram.

Invariants can be expressed as constraints, state symbols or
notes.

229 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Time constraints

The used time unit must be specified, e.g., using a note.

Points in time and durations may be specified.

Durations may be specified as time intervals, e.g.,
{t..t + 3}
Pre-defined: now for actual time, duration for duration
between sending and reception of a message.

230 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Example

The time between transmission and reception of signal
L EstabReq(0) is measured and stored in d .
Signal L EstabConf (0) must occur between d and d + 2
time units after L EstabReq(0).
The duration of signal L DataReq must be between 2 and
8 time units.
The date of transmission of L EstabReq(1) is stored into t,
and the reception of L EstabConf (1) must occur at t + 23.

231 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Lost and found messages

Notation: large dot.

Lost message: reception event not modeled.

Found message: sender not known.
Will be used for initialization of machine.

232 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Messages from and to gates

Used for messages with unknown source or destination.
L EstabReq(0) is a message from a gate and SABME(0) is a
message to a gate.

233 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Phase 4: Derive machine behavior specification for
each subproblem Pi

input: requirements R from Phase 2 natural language
domain knowledge D from Phase 2 natural language
problem diagram for Pi from Phase 3 Jackson with dot-

notation

output: specification SPi
of machine to construct natural language

sequences of interactions with annotated states
for the domains in the environment, expressing
RPi

and DPi

sequence diagrams
with annotated
states

sequences of interactions on initialization sequence diagram
with annotated
states

validation: D ∧ SPi
are non-contradictory

D ∧ SPi
=⇒ RPi

all requirements must be captured
in the sequence diagrams refined phenomena of
the problem diagrams are used as signals
direction of signals must be consistent with con-
trol of shared phenomena
signals must connect domains as connected in
problem diagram
the relationships of Phase 3 must be consistent
with the states

234 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Executing Phase 4

1. Derive a specification of the machine.

2. Express requirements and domain knowledge as sequence
diagrams.

3. Check the correctness of the developed specification.

235 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Executing Phase 4 – Sequence diagrams I

To create the sequence diagrams the following steps have to be
performed:

For each domain which is directly connected to the
machine in a problem diagram, a lifeline is drawn.

Domains can be merged in the sequence diagram to
simplify the description.

The machine to be built (together with all domains that
belong to the machine) can be represented by one lifeline
in the sequence diagrams.

The phenomena are represented by asynchronous signals
between lifelines.

It should be assumed that an asynchronous signal occurs
when the state in the environment changes.

236 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Executing Phase 4 – Sequence diagrams II

To express the coherence between the sequences states for
the domains in the environment should be included.

Appropriate case distinctions according to these states
should be introduced.

For the case distinctions new diagrams should be created
instead of using the alt operator.

The sequence diagrams can be split at appropriate states,
if necessary.

Specify the initialization of the machine. A found signal or
a signal from a gate can be used to specify a power on
signal.

Refine events by adding parameters to phenomena or
define rules for the refinement.

Add timing constraints.

237 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Remarks I

The relationships of Phase 3 should be consistent with the
states, e.g., if for two sequential sequence diagrams the
last state of the first diagram is the same as the first state
of the second diagram.

Sequence diagrams can be used to discuss important
aspects with the customers, and they are the outline for
the test in Phase 12.

Each diagram represents one concrete interaction
sequence. Do not try to make your diagrams too general.
It is better to draw further diagrams. The sequence
diagrams should express typical cases with example values.
Loops, states, references, and co-regions do not cause any
problems, while e.g., parallelism and considered signals
should be used with care.

238 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Remarks II

To reuse these diagrams later, the requirements and the
domain knowledge should be expressed as separate
sequence diagrams instead of expressing the specification
directly.

For all connection domains (being not part of the
machine) the domain knowledge should be described by
separate sequence diagrams.

To express the requirements, the separately described
domains should be merged with the machine.

239 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Remarks III

The relationships between subproblems must be
considered for validation:

If two subproblems are sequential the sequence diagrams of
the first subproblem end with the same states as the
second subproblem sequence diagrams start.
All sequence diagrams of one subproblem end with the
initial states of succeeding diagrams (all alternatives can
be considered).
Sequences for parallel subproblems must start with states
that can be reached in some parallel subproblem.

240 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Example 1: traffic light control

241 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Domain Knowledge of lights domain (Sequence
diagram) I

It is difficult (many signals)
to express the specification
directly, therefore D and R
are expressed as separate se-
quence diagrams.

sd lights 1

lights

unit = V

m_red (24)

m_yellow (0)

m_green (0)

main_red ()

242 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Domain Knowledge of lights domain (Sequence
diagram) II

sd lights 2

lights

unit = V

m_red (0)

m_yellow (24)

m_green (0)

main_yellow ()

sd lights 3

lights

unit = V

m_red (0)

m_yellow (0)

m_green (24)

main_green ()

243 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Domain Knowledge of lights domain (Sequence
diagram) III

sd lights 4

lights

unit = V

m_red (24)

m_yellow (24)

m_green (0)

main_yellow_red
()

sd lights 5

lights

unit = V

s_red (24)

s_yellow (0)

s_green (0)

sec_red ()

244 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Domain Knowledge of lights domain (Sequence
diagram) IV

sd lights 6

lights

unit = V

s_red (0)

s_yellow (24)

s_green (0)

sec_yellow ()

sd lights 7

lights

unit = V

s_red (0)

s_yellow (0)

s_green (24)

sec_green ()

245 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Domain Knowledge of lights domain (Sequence
diagram) V

sd lights 8

lights

unit = V

s_red (24)

s_yellow (24)

s_green (0)

sec_yellow_red
()

sd lights 1

lights

unit = V

m_red (0)

m_yellow (0)

m_green (0)

s_red (0)

s_yellow (0)

s_green (0)

all_off ()

246 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

SecondaryRoadPassing Problem Diagram I

lights

control

crossing

sec_green,

sec_red}

sec_yellow,

l!{sec_yellow_red,

lights

light settings

TLC
secondary
phase

tlc!{on,off}

ruol!{enter,leave}

road users on

lanes
vehicles on crossing

vehicles on crossing

R3, R4, R5

R7

lc!{24V, 0V}

R3 : Vehicles on the main road should be allowed to pass the crossing for
a longer period of time than from the secondary road (if not
emergency-case).

R4 : While vehicles on one road are allowed to pass, the others should be
stopped.

247 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

SecondaryRoadPassing Problem Diagram II

R5 : The lights should switch in the following order: red - red+yellow -
green - yellow - red. Other combinations (except “all off”, yellow
blinking, and green - yellow - green in emergency case7) are not
allowed.

R7 : After switching to red, the traffic flow of both roads should be
stopped for a period of time

7Added later to eliminate contradictions
248 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

SecondaryRoadPassing – Derive Specification I

allowed to pass the crossing is no interface phenomenon of the machine
(controlled by the environment, not observable by the machine). ⇒
Transformed into s green(24) or m green(24) followed by s green(0) or
m green(0) using F 2 and A1.
should be stopped is no interface phenomenon of the machine (controlled
by the environment, not observable by the machine). ⇒ Transformed into
s red(24) or m red(24) followed by s red(0) or m red(0) using F 1 and A1.
longer period of time should be refined into concrete values using F 4 and
F 12 (definition of fairness, maximum time for waiting).

S3 The traffic light should switch on the green light bulb for the main
road (m green(24), m green(0)) for at least 20 s and for the secondary
road (s green(24), s green(0)) 10 s (if not emergency-case).

S4a While green is shown for the main road (m green(24)), the secondary
road lights should show red (s red(24)).

S4b While green is shown for the secondary road (s green(24)), the main
road lights should show red (m red(24)).

249 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

SecondaryRoadPassing – Derive Specification II

S5a The lights should be switched in the following order:
red (m red(24), m yellow(0), m green(0)) –
red/yellow (m red(24), m yellow(24), m green(0)) –
green (m red(0), m yellow(0), m green(24)) –
yellow (m red(0), m yellow(24), m green(0)) –
red (m red(24), m yellow(0), m green(0)).
Other combinations (except “all off”
(m red(0), m yellow(0), m green(0)) and yellow blinking
(m red(0), m yellow(24/0), m green(0)) are not allowed.

S5b The lights should be switched in the following order:
red (s red(24), s yellow(0), s green(0)) –
red/yellow (s red(24), s yellow(24), s green(0)) –
green (s red(0), s yellow(0), s green(24)) –
yellow (s red(0), s yellow(24), s green(0)) –
red (s red(24), s yellow(0), s green(0)) .
Other combinations (except “all off”
(s red(0), s yellow(0), s green(0)) and yellow blinking
(s red(0), s yellow(24/0), s green(0)) are not allowed.

250 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

SecondaryRoadPassing – Derive Specification III

S7 After switching to red (s red(24) or m red(24)) the lights traffic show
red for both roads for 3 s (s red(24) and m red(24)) before (s red(0)
or m red(0)).

251 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Sequence diagram for SecondaryRoadPassing I

For the TLC instead of the specification, the requirements are
expressed as sequence diagrams:

The domains crossing and road users on lanes are merged.

The domains TLC secondary phase, lights control, and
lights are also merged to express requirements.

In this step the requirement is refined by adding timing
constraints, e.g., the state SECONDARY PASSING should take
10 seconds (see F 4 and F 12).

252 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Sequence diagram for SecondaryRoadPassing II

sd Secondary Road Passing 1

crossing, road users on
lanes

TLC secondary phase,
lights control, lights

unit =
secondt=now

ALL WAIT S

sec_yellow_red ()
{t+2.9 ..

t+3.1}

SEC PASSING WILL
START

sec_green ()
{t+3.9 ..

t+4.1}

SEC PASSING

sec_yellow ()
{t+13.9 ..

t+14.1}

SEC PASSING WILL
END

sec_red ()
{t+14.9 ..

t+15.1}

ALL WAIT M

253 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

MainRoadPassing Problem Diagram I

lc!{24V, 0V}

road users on

lanes vehicles on crossing

lights

control

light settings

lights

l!{main_yellow_red,
main_green,
main_yellow,

main_red}

waiting area of

secondary road

induction loop

control

waosr!{srr}

phase
main
TLC

vehicle_waiting

tlc!{on,off}

ilc!{vehicle_waiting}

ruol!{enter,leave}

R1, R3, R4,
R5, R7

R1 : When there is a car waiting on the secondary road, the traffic lights
should stop the flow of traffic on the main road for a period of time
and allow the traffic flow on the secondary road.

R3 : Vehicles on the main road should be allowed to pass the crossing for
a longer period of time than from the secondary road (if not
emergency-case).

254 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

MainRoadPassing Problem Diagram II

R4 : While vehicles on one road are allowed to pass, the others should be
stopped.

R5 : The lights should switch in the following order: red - red+yellow -
green - yellow - red. Other combinations (except “all off”, yellow
blinking, and green - yellow - green in emergency case8) are not
allowed.

R7 : After switching to red, the traffic flow of both roads should be
stopped for a period of time

8Added later to eliminate contradictions
255 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

MainRoadPassing – Derive Specification I

allowed to pass the crossing is no interface phenomenon of the machine
(controlled by the environment, not observable by the machine). ⇒
Transformed into s green(24) or m green(24) followed by s green(0) or
m green(0) using F 2 and A1.
should be stopped and allow the traffic flow are no interface phenomena of
the machine (controlled by the environment, not observable by the
machine). ⇒ Transformed into s red(24) or m red(24) followed by
s red(0) or m red(0) using F 1 and A1.
car waiting on the secondary road is no interface phenomenon of the
machine (controlled by the environment, not observable by the machine).
⇒ Transformed into (srr) using F 9 and A4.

S1 When a secondary road request occurs (srr), the traffic lights should
should switch on the red light for the main road for a period of time
(m red(24) followed by m red(0)) and switch on the green light for
the secondary road for a period of time (s green(24) followed by
s green(0)).

S3 see SecondaryRoadPassing.

256 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

MainRoadPassing – Derive Specification II

S4a/b see SecondaryRoadPassing.

S5a/b see SecondaryRoadPassing.

S7 see SecondaryRoadPassing.

257 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Sequence diagrams for MainRoadPassing I

sd Main Road Passing 1

crossing, road users
on lanes

waiting area of
secondary road

TLC main phase,
lights control, lights,

induction loop control

unit =
secondt=now

ALL WAIT M

main_yellow_red ()
{t+2.9 ..

t+3.1}

MAIN PASSING
WILL START

main_green ()
{t+3.9 ..

t+4.1}

MAIN PASSING

{t+3 ..
t+24} srr ()

main_yellow ()
{t+23.9 ..

t+24.1}

MAIN PASSING
WILL END

main_red ()
{t+24.9 ..

t+25.1}

ALL WAIT S

258 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Sequence diagrams for MainRoadPassing II

sd Main Road Passing 2

crossing, road users
on lanes

waiting area of
secondary road

TLC main phase,
lights control, lights,

induction loop control

unit =
secondt=now

ALL WAIT M

main_yellow_red ()
{t+2.9 ..

t+3.1}

MAIN PASSING
WILL START

main_green ()
{t+3.9 ..

t+4.1}

MAIN PASSING

{>t+24} srr ()

main_yellow (){t=now}

MAIN PASSING
WILL END

main_red ()
{t+0.9 ..

t+1.1}

ALL WAIT S

259 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Sequence diagrams for MainRoadPassing III

The first sequence diagram expresses that the state MAIN
PASSING takes at least 20 seconds, and therefore the
requirement R3 is considered.

The domains crossing and road users on lanes are merged.

The domains induction loop control, TLC main phase,
lights control, and lights are merged to express
requirements.

260 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

EmergencyRequestSecondaryRoadPassing Problem
Diagram I

lights

control

crossing

lights

light settings

TLC

tlc!{on,off}

ruol!{enter,leave}

road users on

lanes

sec_red}
sec_yellow,
sec_green,
sec_yellow_red,

fire brigade

l!{main_yellow, main_red,

vehicles on crossing

fire brigade

fb!{emergency_request_start,

emergency_request_end}

emergency_request

vehicles on crossing

R2, R5, R7

lc!{24V, 0V}

R2 : As long as the emergency button is activated, the flow of traffic on
the main road should be stopped and the flow of traffic on the
secondary road should be allowed.

261 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

EmergencyRequestSecondaryRoadPassing Problem
Diagram II

R5 : The lights should switch in the following order: red - red+yellow -
green - yellow - red. Other combinations (except “all off”, yellow
blinking, and green - yellow - green in emergency case9) are not
allowed.

R7 : After switching to red, the traffic flow of both roads should be
stopped for a period of time

9Added later to eliminate contradictions
262 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

EmergencyRequestSecondaryRoadPassing – Derive
Specification I

should be allowed is no interface phenomenon of the machine (controlled
by the environment, not observable by the machine). ⇒ Transformed into
s green(24) or m green(24) followed by s green(0) or m green(0) using F 2
and A1.
should be stopped is no interface phenomenon of the machine (controlled
by the environment, not observable by the machine). ⇒ Transformed into
s red(24) or m red(24) followed by s red(0) or m red(0) using F 1 and A1.

S2 As long as the emergency button is activated
(emergency request start, emergency request end), the lights for the
main road should be red (m red(24)) and the lights for the secondary
road should be green (s green(24)).

S5a see SecondaryRoadPassing.

S5b see SecondaryRoadPassing.

S7 see SecondaryRoadPassing.

263 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Sequence diagrams for
EmergencyRequestSecondaryRoadPassing I

sd Emergency Request 1

crossing, road users
on lanes

fire brigade
TLC fire brigade, lights

control, lights

unit =
second

MAIN PASSING *

emergency_request_start

main_yellow ()t=now

FIRE MAIN
PASSING WILL END

main_red ()
{t+0.9 ..

t+1.1}

FIRE ALL WAIT

sec_yellow_red ()
{t+3.9 ..

t+4.1}

FIRE SEC PASSING
WILL START

sec_green ()
{t+4.9 ..

t+5.1}

FIRE SEC PASSING

264 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Sequence diagrams for
EmergencyRequestSecondaryRoadPassing II

sd Emergency Request 2

crossing, road users
on lanes

fire brigade
TLC fire brigade, lights

control, lights

unit =
second

ALL WAIT *

emergency_request_start

FIRE ALL WAIT

sec_yellow_red ()t=now

FIRE SEC PASSING
WILL START

sec_green ()
{t+0.9 ..

t+1.1}

FIRE SEC PASSING

265 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Sequence diagrams for
EmergencyRequestSecondaryRoadPassing III

sd Emergency Request 3

crossing, road users
on lanes

fire brigade
TLC fire brigade,

lights control, lights

unit =
secondt=now

SEC PASSING WILL
START emergency_request_start

FIRE SEC PASSING
WILL START

sec_green ()
{t+0.9 ..

t+1.1}

FIRE SEC PASSING

266 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Sequence diagrams for
EmergencyRequestSecondaryRoadPassing IV

sd Emergency Request 4

crossing, road users on
lanes

fire brigade
TLC fire brigade, lights

control, lights

unit =
second

SEC PASSING WILL
END

emergency_request_start

sec_green ()

FIRE SEC PASSING

267 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Sequence diagrams for
EmergencyRequestSecondaryRoadPassing V

sd Emergency Request 5

crossing, road users on
lanes

fire brigade
TLC fire brigade, lights

control, lights

unit =
second

FIRE *

emergency_request_end

sec_yellow_red ()t=now

FIRE SEC PASSING
WILL END

sec_red ()
{t+0.9 ..

t+1.1}

ALL WAIT M

268 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Sequence diagrams for
EmergencyRequestSecondaryRoadPassing VI

The emergency request can occur at any time; therefore
all possible starting states have to be considered.

The star (*) indicates that the diagram can be applied for
all states, whose name begins with the given string.

The domains crossing and road users on lanes are merged.

The domains TLC fire brigade, lights control, and lights
are merged to express requirements.

269 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

BrokenLightSafeState Problem Diagram I

lights R6
lights

control

TLC

fault tolerance

tlc!{on,off}
lc!{broken_light}

l!{current}

vehicles on lanes

road users on

lanes

l!{sec_red,
main_red,
sec_yellow, all_off}

light settings

broken light bulb
lc!{0V,24V}

R6 : In case of a broken light bulb the traffic lights should blink in yellow
for the secondary road, after all red lights have been switched on for
a period of time.

270 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

BrokenLightSafeState – Derive Specification I

broken light bulb is no interface phenomenon of the machine (controlled by
the environment, not observable by the machine). ⇒ Transformed into
current not beween 300 mA and 1 A using F 7.

S6 In case of a current below 300 mA or above 1 A for a light bulb that
is switched on, the traffic lights should blink in yellow for the
secondary road (s yellow(24), s yellow(0)), after all red lights have
been switched on (s red(24) or m red(24)) for a period of time.

271 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Domain knowledge about broken light()

sd Lights Control Broken consider {current, broken_light}

lights
+ vLight: eLight

lights control

unit = mA

loop (0,*)

{vCurrent of vLight
changed}

current (vLight, vCurrent)

{vCurrent<300 or
vCurrent>1000}

broken_light ()

272 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Sequence diagrams for BrokenLightSafeState I

sd Broken 1 Seite 1/2

crossing, road
users on lanes

lights control, lights TLC fault tolerance

unit =
secondbroken_light ()

ref

set_all_red

main_red ()

sec_red ()
t=now

BROKEN ALL
WAIT

273 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Sequence diagrams for BrokenLightSafeState II

sd Broken 1 Seite 2/2

crossing, road
users on lanes

TLC fault tolerancelights control, lights

loop

ref

set_all_off

all_off (){t+0.9 ..
t+1.1}

BROKEN BLINK
OFF

ref

set_sec_yellow

sec_yellow ()

{t+1.9 ..
t+2.1}
t=now

BROKEN BLINK
ON

274 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Sequence diagrams for BrokenLightSafeState III

The phenomenon broken light can occur in every state. It
is detected by a very high or very low current for one light
bulb.

Although the domain lights control is part of the machine,
it is included in this diagram because the phenomenon
broken light is more abstract. A diagram using the more
technical phenomenon current is hard to understand.

The references set all red and set sec yellow are not
specified here since the behavior is described in Phase 6.

The safe state is realized by periodically switching on and
off the yellow light of the secondary road. It is not
specified how to repair the traffic lights, i.e., how to leave
the safe state.

275 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Sequence diagrams for Initialization

sd Initialization

crossing, road
users on lanes

TLC, lights control,
lights

power_on()

sec_red ()

main_red ()

ALL WAIT M

276 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Validation I

no contradictions found in F ∧ A ∧ S

F ∧ A ∧ S =⇒ R ′

S1 ∧ F 1 ∧ F 9 ∧ A1 ∧ A4 =⇒ R1
S2 ∧ F 1 ∧ F 2 ∧ A1 =⇒ R2
S3 ∧ F 2 ∧ A1 ∧ F 4 ∧ F 12 =⇒ R3
S4a ∧ S4b ∧ F 1 ∧ F 2 ∧ A1 =⇒ R4
S5a ∧ S5b ∧ A1 =⇒ R5
S6 ∧ F 7 ∧ A1 =⇒ R6
S7 ∧ F 1 ∧ A1 =⇒ R7

All requirements are captured. They are assigned to the
subproblems as described in Phase 3 and therefore also
assigned to the corresponding sequence diagrams.

277 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Validation II

In the sequence diagrams, exactly the phenomena of the
problem diagrams are used, and the direction of signals is
consistent with the control of the shared phenomena.

The signals connect domains as connected in the problem
diagram.

The specification can be easily derived from the
requirements and the domain knowledge expressed as
sequence diagrams.

The relationships of Phase 3 are consistent with the state
invariants:

Subproblem Start State End State

MainRoadPassing ALL WAIT M ALL WAIT S

SecondaryRoadPassing ALL WAIT S ALL WAIT M

EmergencyRequest all ALL WAIT M
SecondaryRoadPassing

BrokenLightSafeState all none

278 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Example 2: sun blind control

279 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

SunControl Problem Diagram

buttons

sun sensor sun

user

sun blind

wind

c

d

R1, R2, R8

control
sun

g

h

k

l

wind sensor

motor
e

a

b
f j

i

R1 If there is sunshine for more than one minute but no heavy wind, the
sun blind will be lowered (lower sun blind). (Parts of R3 included to
prevent contradictions. R8 has priority!)

R2 If there is no sun shine for more than 5 minutes, the sun blind will be
pulled up (pull up sun blind). (R8 has priority!)

R8 If the user interacts with the sun blind (manually opens the sun blind,
manually closes the sun blind, manually rotate fins with positive
degree or manually rotate fins with negative degree), sun shine and no
sun shine are ignored within the next 4 hours.

280 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

SunControl – Derive Specification

SunShine, noSunShine, heavyWind, noHeavyWind,
manuallyOpenSunBlind, manuallyCloseSunBlind,
manuallyRotateFinsWithPositiveDegree and
manuallyRotateFinsWithNegativeDegree are controlled by the environment
and observable by the machine.
lowerSunBlind, pullUpSunBlind are controlled by the machine and
observable by the environment.
R8 expresses conditions that can only be decided in the future.

S1 = R1

S1 = R2

S8 The sunblind should not be lowered or pulled up (lowerSunBlind,
pullUpSunBlind) when the user interacted with the sun blind
(manually opens the sun blind, manually closes the sun blind, rotate
fins with positive degree or rotate fins with negative degree) within the
last 4 hours.

281 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

SunControl Sequence Diagrams I

sd S1 and S8 Seite 1/2

SunControl Wind Sun SunBlind User

HEAVY_WIND NO_SUN no interaction within
the last 4 hours

UP

unit =
secondsunShine

t=now

SUN

noSunShine
{t+99}

NEG lowerSunBlind

HEAVY_WIND NO_SUN no interaction within
the last 4 hours

UP

noHeavyWind

WEAK_WIND NO_SUN no interaction within
the last 4 hours

UP

282 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

SunControl Sequence Diagrams II

sd S1 and S8 Seite 2/2

SunControl Wind Sun SunBlind User

sunShine
t=now

SUN

noSunShine
{t..t+ 59}

NEG lowerSunBlind

WEAK_WIND NO_SUN no interaction within
the last 4 hours

UP

SunShine
t=now

lowerSunBlind
{t+61}

WEAK_WIND SUN no interaction within
the last 4 hours

DOWN

10

283 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

SunControl Sequence Diagrams III

sd S2 and S8

SunControl Wind Sun SunBlind User

SUN no interaction
within the last 4

hours

DOWN

uinit =
secondnoSunShine

t=now

sunShine{t..t+
300}

SUN no interaction
within the last 4

hours

DOWN

noSunShine
t=now

pullUpSunBlind{t..t+
301}

NO_SUN no interaction
within the last 4

hours

UP

284 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

SunControl Sequence Diagrams IV

sd S8

SunControl Wind Sun SunBlind User

UP

unit =
second

IGNORE
lowerSunBlind,
pullUpSunBlind

ALT

manuallyOpenSunblind
bt=now

manuallyCloseSunblind
bt=now

manuallyAdjustFinsWithNegativeDegree
bt=now

manuallyAdjustFinsWithPositiveDegree
bt=now

user interaction within
the last 4 hourssunShine

t=now

noSunShine
{t+99}

NEG lowerSunBlind

{bt+ 3600
*4}

no interaction within
the last 4 hours

UP

10First the exceptions are specified.
285 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

UserControl Problem Diagram

motor sun blind

userbuttons

R5,R6wind
control

user

a

d

c

e

f

g

h

i

wind sensor
b

R5 If the user manually opens the sun blind, the sun blind will be pulled
up (pull up sun blind).

R6 If the user manually closes the sun blind and there is no heavy wind,
the sun blind will be lowered (lower sun blind). (Parts of R3 included
to prevent contradictions.)

286 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

UserControl - Derive Specification I

heavyWind, noHeavyWind, manuallyOpenSunBlind, and
manuallyCloseSunBlind are controlled by the environment and observable
by the machine.
lowerSunBlind, pullUpSunBlind are controlled by the machine and
observable by the environment.

S5 = R5

S6 = R6

287 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

UserControl Sequence Diagrams I

sd S5

UserControl Wind SunBlind User

DOWN

manuallyOpenSunBlind

pullUpSunBlind

UP

288 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

UserControl Sequence Diagrams II

sd S6

UserControl Wind SunBlind User

HEAVY_WIND UP

manuallyCloseSunBlind

NEG lowerSunBlind

noHeavyWind

WEAK_WIND UP

manuallyCloseSunBlind

lowerSunBlind

WEAK_WIND DOWN

289 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

FinsControl Problem Diagram

a

wind sensor wind

control

fin

b

fins

buttons user

c

d

e

f

g

h

R4

R4 If there is no heavy wind and the user manually adjusts the fins with
positive degree the fins are rotated with positive degree (rotate fins
with positive degree).
If there is no heavy wind and the user manually adjusts the fins with
negative degree the fins are rotated with negative degree (rotate fins
with negative degree).

290 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

FinsControl - Derive Specification

heavyWind, noHeavyWind, manuallyRotateFinsWithPositiveDegree and
manuallyRotateFinsWithNegativeDegree are controlled by the environment
and observable by the machine.
rotateFinsWithPositiveDegree and rotateFinsWithNegativeDegree are
controlled by the machine and observable by the environment.

S4a If there is no heavy wind and the user manually adjusts the fins with
positive degree the fins are rotated with positive degree (rotate fins
with positive degree).

S4b If there is no heavy wind and the user manually adjusts the fins with
negative degree the fins are rotated with negative degree (rotate fins
with negative degree).

291 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

FinsControl Sequence Diagram I

sd S4a/b

FinsControl Wind Fins User

HEAVY_WIND

manuallyAdjustFinsWithNegativeDegree

NEG rotateFinesWithNegativeDegree

noHeavyWind

WEAK_WIND

manuallyAdjustFinsWithNegativeDegree

rotateFinesWithNegativeDegree

WEAK_WIND

manuallyAdjustFinsWithPositiveDegree

rotateFinesWithPositiveDegree

WEAK_WIND

292 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

NoDestructControl Problem Diagram

motor sun blind

wind sensor wind

c
d

b

a

e

f

control

no destruct R3,R7g

R3 The sun blind should not be destroyed: If there is heavy wind, the sun
blind will be pulled up (pull up sun blind).

R7 The sun blind should not be destroyed: When the sun blind is in its
lowest position (sun blind is lowered) or in it highest position (sun
blind is pulled up) the sun blind should stop (stop sun blind).

293 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

NoDestructControl - Derive Specification

heavyWind, noHeavyWind, sunBlindIsLowered, and sunBlindIsPulledUp are
controlled by the environment and observable by the machine.
rotateFinsWithPositiveDegree and rotateFinsWithNegativeDegree are
controlled by the machine and observable by the environment.

S3 = R3

S7 = R7

294 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

NoDestructControl Sequence Diagram

sd S3 and S7

NoDestructControl Wind SunBlind

unit =
seconds

WEAK_WIND

lowerSunBlind

sunBlindIsLowered
t= now

stopSunBlind
{t..t+0.2}

WEAK_WIND DOWN

heavyWind

pullUpSunBlind

sunBlindIsPulledUp
t= now

stopSunBlind
{t..t+0.2}

HEAVY_WIND UP

noHeavyWind

WEAK_WIND UP

295 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Initialization Sequence Diagram

sd Initialization Seite 1/2

SBC Wind Sun SunBlind User

powerOn

pullUpSunBlind

turnLef tIsBlocked

stopSunBlind

UP

296 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Validation I

no contradictions found in D ∧ S

D ∧ S =⇒ R

S1⇐⇒ R1
S2⇐⇒ R2
S3⇐⇒ R3
S4a ∧ S4b ⇐⇒ R4
S5⇐⇒ R5
S6⇐⇒ R6
S8 =⇒ R8 (other time reference)
S7⇐⇒ R7

all requirements are captured

in the sequence diagrams exactly the phenomena of the
problem diagrams are used (space + letter converted to
capital letters)

297 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Introduction

Notations

Terminology

Specifications

UML sequence
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5

Validation II

direction of signals is consistent with control of shared
phenomena

signals connect domains as connected in problem diagram

all phases are parallel, and therefore it is not checked that
the relationships are consistent with the state invariants

298 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5: Design global system architecture
subproblem

...

4. Derive machine behavior specification for each subproblem

5. Design global system architecture

6. Derive specifications for all components of the global
system architecture

7. Design a software architecture for all components of the
global system architecture that should be implemented in
software

8. Specify the behavior of all components of all software

...

299 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5: Design global system architecture I

input: context diagram from Phase 2 ext. Jackson
problem diagrams from Phase 3 Jackson with dot-

notation
sequences of interactions between machine
and environment of all subproblems from
Phase 4

sequence diagrams

expression of the subproblem relationships
from Phase 3

grammar

output: system architecture composite struc-
ture diagram

perhaps subcomponents (recursively) composite struc-
ture diagrams

purpose of each component natural language
specification of external interfaces interface classes
specification of interfaces between the com-
ponents

interface classes

technical description of hardware interfaces natural language,
figures

expression of the subproblem relationships
for all components

grammars

300 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5: Design global system architecture II

validation: all machine interfaces of the problem dia-
grams must be captured
the signals in the sequence diagrams must
be the same as the signals in the external
interfaces
to each programmable component at least
one problem diagram must be associated
each problem diagram must be associated
to at least one component
all domains in the problem diagrams being
part of the machine must be associated to
a component
each machine domain in the context dia-
gram must occur in the architecture
purpose must be consistent with the asso-
ciated requirements
the grammar for each component must de-
scribe a subset of the grammar in Phase 3

301 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

Notations and concepts

UML composite structure diagrams

302 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

Composite structure diagrams

Represent internal structure of a component

Also called architecture diagrams

Answers question ”How are components structured and
how do they work together”?

303 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

Basic elements

parts: named rectangles, denote architectural components
ports: small rectangles, denote interaction points of a part
with its environment; may have names
connectors: lines between two ports; may have names

304 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

Part multiplicity

There is exactly one instance of part dispatch and between 0
and maxDLC + 1 instances of part dlc.

305 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

Interfaces

May be associated to ports

required interface: ”socket” notation

provided interface: ”lollipop” notation

Stereo

required interface

provided interface
ControlButtons

Loudspeaker

306 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

Interface classes

Serve to describe interfaces

Notation: class diagrams, with stereotype
”<<interface>>”

Contain no attributes

interface name

operations, signals

start()

stop()

volume_up()

volume_down()

ControlButtons

<<interface>>

307 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

Notation for architectures

Machine

Part

Domain (P1)

<<interface>>

P1_if

phen1()

phen2()

Machine

Part

P1_if

Domain (P1)

P1_if

=>

Parts = Components = Objects or Classes (Classifiers)

308 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

Notation for interfaces

Machine

P1_if

^
=

PartA

PartA

<<provides>>

<<requires>> <<interface>>

P1_if

phen1()

phen2()

<<interface>>

P1_if

phen1()

phen2()

PartB
PartB

Composite structure diagrams can be transformed into class
diagrams.

309 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

Problem diagrams with phenomena vs. composite
structure diagrams with interface classes I

Phenomena controlled by the machine become part of a
required interface of the machine.

P1: {phen1, phen2}

Machine

Domain
M!P1

<<interface>>

P1_if

phen1()

phen2()

Machine

Part

P1_if

Domain (P1)

P1_if

310 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

Problem diagrams with phenomena vs. composite
structure diagrams with interface classes II

Phenomena controlled by lexical domains in the environment
can become part of a required interface of the machine, if the
lexical domain returns a value.

Machine

Part

P1_if

P1_if

Machine

Lexical Domain

P1: {property}

getProperty(): propertyLD!P1

Lexical Domain

<<interface>>
P1_if

311 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

Problem diagrams with phenomena vs. composite
structure diagrams with interface classes III

Phenomena controlled by the environment become part of a
provided interface of the machine.

<<interface>>

P1_if

phen1()

phen2()

Machine

Part

P1_if

Domain (P1)

P1_if

Machine

Domain
D!P1

P1: {phen1, phen2}

312 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5: Design global system architecture I

input: context diagram from Phase 2 ext. Jackson
problem diagrams from Phase 3 Jackson with dot-

notation
sequences of interactions between machine
and environment of all subproblems from
Phase 4

sequence diagrams

expression of the subproblem relationships
from Phase 3

grammar

output: system architecture composite struc-
ture diagram

perhaps subcomponents (recursively) composite struc-
ture diagrams

purpose of each component natural language
specification of external interfaces interface classes
specification of interfaces between the com-
ponents

interface classes

technical description of hardware interfaces natural language,
figures

expression of the subproblem relationships
for all components

grammars

313 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

Phase 5: Design global system architecture II

validation: all machine interfaces of the problem dia-
grams must be captured
the signals in the sequence diagrams must
be the same as the signals in the external
interfaces
to each programmable component at least
one problem diagram must be associated
each problem diagram must be associated
to at least one component
all domains in the problem diagrams being
part of the machine must be associated to
a component
each machine domain in the context dia-
gram must occur in the architecture
purpose must be consistent with the asso-
ciated requirements
the grammar for each component must de-
scribe a subset of the grammar in Phase 3

314 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

Executing Phase 5 I

Find out which hardware and software components are
necessary.

Existing components can become parts of the machine.
We distinguish between programmable components (e.g.,
Microcontroller, Embedded PC with Operating System)
and hardware components (e.g., Network and
Interconnection Components, Analog-Digital-Converter,
Clocks). (Software components will be considered in Phase
7).
If distributed processing is required, several components
being part of the machine are necessary.
Domains in the problem diagrams that are part of the
machine (marked with a big dot) will become separate
components inside the architectual diagram.

315 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

Executing Phase 5 II

Add ports with their provided and required interfaces.

The signals and parameters of the operations for the
external interfaces can be extracted from the sequence
diagrams.
The other interfaces must be designed according to the
desired functionality of the connected components.

In addition to the interface description using interface
classes, the technical realization of the interfaces must be
described. Natural language or figures from the application
domain can be used for these technical descriptions.

For each component, its purpose should be described in
one or two sentences. This description must be clear
enough to distinguish between the different components.

316 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

Executing Phase 5 III

State for each programmable component which (parts of)
subproblems are solved by the component and what their
relatenships are.

The subproblem relationships are described for each
component with the same notation as introduced in
Phase 3.
Parallel problems constraining different domains can be
easily distributed to different components.
Sequential and alternative problems must be associated to
the same component or a new component must be
introduced that decides which of the machines should be
activated.

317 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

Remarks

For all programable components, the architecture diagram
will be refined in Phase 7.

For hardware components to be developed, the
architecture diagram is the starting point for the hardware
development.

Clock components should only be included if the
programable component does not provide a clock signal or
timer functionality and at least one time-dependent
requirement exists. Operating systems often provide some
kind of timer functionality. In this case, all software
components can use the given functionality, and no
dedicated interface for the clock signal must be described.

318 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

Example 1: traffic light control

319 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

TrafficLightsControl System Architecture

: InductionLoop

 Control

emergency
request button at

lights
: LightsControl

:TrafficLights

 Controller

srr_if

road
on secondary
to detect cars
induction loop

bl_if

fire brigade

lights_on_off

bl

lights_on_off_if

srr

TLC

er

320 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

Purpose of each component

TrafficLightsController Decides on the signaling shown by the
physical traffic lights.

LightsControl Connects the TrafficLightsController to the
physical lights. We buy this component.

InductionLoopControl Connects the TrafficLightsController to
the induction loop. We buy this component.

321 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

Subcomponents

No subcomponents are necessary for this problem.

322 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

TrafficLightsControl System Architecture - External
Interfaces I

〈〈interface〉〉
lights on off

main red (voltage: integer)
sec red (voltage: integer)

main yellow (voltage: integer)
sec yellow (voltage: integer)

main green (voltage: integer)
sec green (voltage: integer)

〈〈interface〉〉
srr

vehicle waiting ()

323 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

TrafficLightsControl System Architecture - External
Interfaces II

〈〈enumeration〉〉
eLight

m red, m yellow, m green
s red, s yellow, s green

〈〈interface〉〉
bl

current (light: eLight,
current of light: integer)

〈〈interface〉〉
er

emergency request start()
emergency request end()

324 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

TrafficLightsControl System Architecture - Internal
Interfaces

〈〈interface〉〉
lights on off if

m red (on: boolean)
s red (on: boolean)

m yellow (on: boolean)
s yellow (on: boolean)
m green (on: boolean)
s green (on: boolean)

〈〈interface〉〉
srr if

srr ()

〈〈interface〉〉
bl if

broken light ()

325 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

TrafficLightsControl System Architecture –
Technical interface description

Example: Interface bl

The signal of the interface bl describes the measurement of the
electric current for each light. If the electric current is not in
the range from 300 mA to 1000 mA, the signal broken light()
of the interface bl is sent to the TrafficLightsController as a
single event.

326 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

Subproblem relationships

We decided to implement all subproblems in the component
TrafficLightsController. The subproblem relationship of the
component TrafficLightsController is therefore the same as for
the overall machine (Step 3).

The other components are hardware components.

327 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

Validation I

The external interfaces of the components cover the
interfaces of all problem diagrams.

The signals in the sequence diagrams are the same as in
the external interfaces.

All subproblems are associated to the component
TrafficLightsController. (At least one must be associated.)

All domains in the problem diagrams being part of the
machine are associated to a component (domain lights
control – component LightsControl, domain induction loop
control – component InductionLoopControl).

LightsControl and InductionLoopControl are hardware
components.

328 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

Validation II

Only one machine domain in the context diagram exists.
Its structure is given by the architecture.

The purpose of each component is consistent with the
associated requirements.

329 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

Example 2: sun blind control

330 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

SunControl System Architecture

Sun

Sun Blind

Buttons Sun

Sensor

Sun Blind

Controller

Wind

Sensor
Motor

Sun Blind Control

Fins

Wind

usr_cmds

wind_speed

button_state

sun_intensity

wind_state

sun_state

User

fin_ctrl

motor_ctrl

sun_blind_state

sun_blind_ctrl

motor_state

331 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

Purpose of each component I

Button Transforms the user commands into a button state.

SunSensor Measures the sun intensity and transforms it into a
lux-value.

WindSensor Measures the speed of the wind and transforms it
into a number of pulses per minute proportional to the speed
of the wind.

Motor Pulls up and lowers the sunblind according to its turning
direction. The direction can be controlled by the
SunBlindController.

SunBlindController Controlls the sun blind and the fins. It
should react to sunshine and user commands, and it prevents
the sun blind from taking damage caused by heavy wind.

332 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

Subcomponents I

No subcomponents are necessary for this problem.

333 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

SunControl System Architecture - External
Interfaces I

� interface �
usr cmds

manuallyOpenSunBlind()
manuallyAdjustFinsPositiveDegree()
manuallyCloseSunBlind()
manuallyAdjustFinsNegativeDegree()

� interface �
sun blind state

sunBlindIsPulledUp()
sunBlindIsLowered()

� interface �
sun blind ctrl

stopSunBlind()
lowerSunBlind()
pullUpSunBlind()

334 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

SunControl System Architecture - External
Interfaces II

� interface �
sun state

sunShine()
noSunShine()

� interface �
wind state

heavyWind()
noHeavyWind()

� interface �
fin ctrl

rotateFinsWithPositiveDegree()
rotateFinsWithNegativeDegree()

335 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

SunControl System Architecture - Internal
Interfaces I

� interface �
button state

upButtonPushed()
upButtonReleased()
downButtonPushed()
downButtonReleased()

� interface �
motor state

motorLeftBlocked()
motorRightBlocked()

� interface �
motor ctrl

stopMotor()
turnMotorRight()
turnMotorLeft()

336 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

SunControl System Architecture - Internal
Interfaces II

� interface �
sun intensity

sunIntensity(lux: Integer)

� interface �
wind speed

windPulse()

337 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

SunControl System Architecture - Wind sensor
description

wind speed pulses per minute delay between two pulses

1 km/h 10 6000 ms

2 km/h 20 3000 ms

5 km/h 50 1200 ms

10 km/h 100 600 ms

20 km/h 200 300 ms

50 km/h 500 120 ms

80 km/h 800 75 ms

100 km/h 1000 60 ms

200 km/h 2000 30 ms

338 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

Subproblem relationships I

The component SunBlindController is the only programmable
component.

SunBlindController <Start> ::= SunControl || NoDestructControl ||

FinsControl || UserControl

(R1 – R8)

339 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

Validation I

All machine interfaces of the problem diagrams are
captured (e.g., lower sun blind – lowerSunBlind).

The signals in the sequence diagrams are the same as in
the external interfaces.

To each programmable component at least one problem
diagram is associated (see previous slide).

All problem diagrams are associated to the component
SunBlindController.

All domains in the problem diagrams being part of the
machine are associated to a component (Buttons –
Buttons, SunSensor – SunSensor, WindSensor –
WindSensor, Motor – Motor).

340 / 341

ES

Heisel

Introduction

DePES

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Introduction

Notations

UML
Composite
structure
diagrams

Procedure

Example - TLC

Example - SBC

Validation II

Only one machine domain in the context diagram exists
(Sun Blind Control). Its structure is given by the
architecture.

The purpose of each component is consistent to the
associated requirements.

341 / 341

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Embedded Systems
WS 08/09

Maritta Heisel
Maritta.Heisel(AT)uni-duisburg-essen.de

Denis.Hatebur(AT)uni-duisburg-essen.de

University Duisburg-Essen – Faculty of Engineering
Department of Computer Science
Workgroup Software Engineering

1 / 241

file:Maritta.Heisel(AT)uni-duisburg-essen.de

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Overview of development process (DePES) I

1. Describe system in use

2. Describe system to be built

3. Decompose problem

4. Derive a machine behavior specification for each
subproblem

5. Design global system architecture

6. Derive specifications for all components of the global
system architecture

7. Design an architecture for all programmable components
of the global system architecture that will be implemented
in software

2 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Overview of development process (DePES) II

8. Specify the behavior of all components of all software
architectures, using sequence diagrams

9. Specify the software components of all software
architectures as state machines

10. Implement software components and test environment

11. Integrate and test software components

12. Integrate and test hardware and software

3 / 241

ES

Heisel

Overview

Phase 6

Introduction

Procedure

Example - TLC

Example - SBC

Phase 7

Phase 8

Phase 9

Phase 6: Derive specifications for all components
of the global system architecture I

...

5. Design global system architecture

6. Derive specifications for all components of the global
system architecture

7. Design a software architecture for all components of the
global system architecture that should be implemented in
software

8. Specify the behavior of all components of all software
architectures, using sequence diagrams

9. Specify the software components of all software
architectures as state machines

...

4 / 241

ES

Heisel

Overview

Phase 6

Introduction

Procedure

Example - TLC

Example - SBC

Phase 7

Phase 8

Phase 9

Phase 6: Derive specifications for all components
of the global system architecture

For each subproblem:
input: architecture from Phase 5 composite structure

diagrams
interface specifications from Phase 5 interface classes
subcomponents (if defined) from Phase 5 composite structure

diagrams
sequences of interactions from Phase 4 sequence diagrams

with annotated states
or existing technical
documentation

output: interface behavior of all components (test spec-
ification)

sequence diagrams
with annotated states

validation: sequence diagrams together must describe the
same interface behavior as in Phase 4
all signals in the interface classes of Phase 5
must be used in at least one sequence diagram
direction of signals must be consistent with the
required and provided interfaces of Phase 5
signals must connect components as connected
in the system architecture of Phase 5
it must be possible to map the new states to the
states of Phase 4

5 / 241

ES

Heisel

Overview

Phase 6

Introduction

Procedure

Example - TLC

Example - SBC

Phase 7

Phase 8

Phase 9

Executing Phase 6 I

To create the sequence diagrams, for each subproblem the
following steps have to be performed:

Draw a lifeline for all components of the architecture that
are necessary to describe the interface behavior of the
subproblem and one or more lifelines for the environment.
If the diagram becomes too complex, components can be
merged in the sequence diagram, and the interaction
between these components must be described separately.

Alternatively, for each component the behavior can be
described separately.

Describe the interface behavior of all components using
the signals from the system architecture (Phase 5). The
behavior must refine the behavior described in Phase 4.

6 / 241

ES

Heisel

Overview

Phase 6

Introduction

Procedure

Example - TLC

Example - SBC

Phase 7

Phase 8

Phase 9

Executing Phase 6 II

Add states where they are relevant to describe the
behavior.

Add missing sequence diagrams to describe the behavior
for all relevant states for all components.

Add timing constraints if necessary.

To describe complex interactions between two
components, references to detailed sequence diagrams can
be used.

As for Phase 4: each diagram represents one concrete
interaction sequence. Do not try to make the diagrams
too general. It is better to draw further diagrams.

7 / 241

ES

Heisel

Overview

Phase 6

Introduction

Procedure

Example - TLC

Example - SBC

Phase 7

Phase 8

Phase 9

Remarks

The sequence diagrams together must describe the same
behavior as in Phase 4.

The signals at the external interfaces of this phase must
be the same, have the same direction and the same order
as in Phase 4.

All signals in the interface classes specified in Phase 5
must be used in at least one sequence diagram of one
subproblem, and the direction of signals must be
consistent with the required or provided interfaces.

It must be possible to map the new states to the states in
Phase 4.

8 / 241

ES

Heisel

Overview

Phase 6

Introduction

Procedure

Example - TLC

Example - SBC

Phase 7

Phase 8

Phase 9

Example 1: traffic light control

9 / 241

ES

Heisel

Overview

Phase 6

Introduction

Procedure

Example - TLC

Example - SBC

Phase 7

Phase 8

Phase 9

Interface behavior for TrafficLightsControl,
Subproblem MainRoadPassing 1 I

sd Main Road Passing 1 Seite 1/2

road users on
lanes

crossing, waiting
area of seconday

road
lights lights control

traffic lights
controller

induction loop
control

time unit =
second,
parameter
unit =
voltaget=now

ALL WAIT M

m_red (on)main_red (24)

m_yellow (on)main_yellow (24)

m_green (off)main_green (0)

main_yellow_red ()
{t+2.9 .
. t+3.1}

m_red (off)main_red (0)

m_yellow (off)main_yellow (0)

m_green (on)main_green (24)

main_green ()
{t+3.9 .
. t+4.1}

MAIN PASSING

10 / 241

ES

Heisel

Overview

Phase 6

Introduction

Procedure

Example - TLC

Example - SBC

Phase 7

Phase 8

Phase 9

Interface behavior for TrafficLightsControl,
Subproblem MainRoadPassing 1 II

sd Main Road Passing 1 Seite 2/2

road users on
lanes

crossing, waiting
area of seconday

road
lights lights control

traffic lights
controller

induction loop
control

srr ()
{t+3 ..
t+24}

vehicle_waiting ()

m_red (off)main_red (0)

m_yellow (on)main_yellow (24)

m_green (off)main_green (0)

main_yellow ()

{t+23.9
 ..

t+24.1}

MAIN PASSING
WILL END

m_red (on)main_red (24)

m_yellow (off)main_yellow (0)

m_green (off)main_green (0)

main_red ()

{t+24.9
 ..

t+25.1}

ALL WAIT S

11 / 241

ES

Heisel

Overview

Phase 6

Introduction

Procedure

Example - TLC

Example - SBC

Phase 7

Phase 8

Phase 9

Interface behavior for TrafficLightsControl,
Subproblem MainRoadPassing 1 III

We suggest to use the alternative way of specification:

In this phase, it is also possible to merge the domains
lights, lights control and TLC main phase and express the
interaction between these components separately.

Since the diagrams become very complex in this case and
only little additional information is given in the diagrams
above, the specification of Step 4 can be re-used, and the
behavior of the components LightsControl and
InductionLoopControl can be specified separately on the
next slides.

12 / 241

ES

Heisel

Overview

Phase 6

Introduction

Procedure

Example - TLC

Example - SBC

Phase 7

Phase 8

Phase 9

Interface behavior for LightsControl I

All subproblems
The component lights control con-
verts the digital signals (on/off) into
an analog voltage to control the
lights.

sd LightsControl ignore current

lights lights control

unit = V

alt

s_red (on)sec_red (24)

s_red (off)sec_red (0)

s_yellow (on)sec_yellow (24)

s_yellow (off)sec_yellow (0)

s_green (on)sec_green (24)

s_green (off)sec_green (0)

m_red (on)main_red (24)

m_red (off)main_red (0)

m_yellow (on)main_yellow (24)

m_yellow (off)main_yellow (0)

m_green (on)main_green (24)

m_green (off)main_green (0)

13 / 241

ES

Heisel

Overview

Phase 6

Introduction

Procedure

Example - TLC

Example - SBC

Phase 7

Phase 8

Phase 9

Interface behavior for LightsControl II

Subproblem BrokenLight-
SafeState
When a light bulb is
supplied with 24 V, a
functioning lights bulb
uses a current between
300 mA and 1000 mA.
If another current can be
measured for one light
bulb, the BrokenLight
signal is generated.

sd Lights Control Broken consider {current, broken_light}

lights
+ vLight: eLight

lights control

unit = mA

loop (0,*)

{vCurrent of vLight
changed}

current (vLight, vCurrent)

{vCurrent<300 or
vCurrent>1000}

broken_light ()

14 / 241

ES

Heisel

Overview

Phase 6

Introduction

Procedure

Example - TLC

Example - SBC

Phase 7

Phase 8

Phase 9

Interface behavior for LightsControl III

Subproblem
BrokenLightSafeState
(sample sequence)

sd LightsControl example

lights lights control

unit =
mA

s_red(on)sec_red (24)

{vCurrent>300 and
vCurrent<1000}

current (sred1, vCurrent)

s_red(off)sec_red (0)

{vCurrent=0}

current (sred1, vCurrent)

s_red(on)sec_red (24)

{vCurrent<300 or
vCurrent>1000}

current (sred, vCurrent)
broken_light

()

15 / 241

ES

Heisel

Overview

Phase 6

Introduction

Procedure

Example - TLC

Example - SBC

Phase 7

Phase 8

Phase 9

Interface behavior for InductionLoopControl I

Subproblem MainRoadPassing
The secondary road re-
quest (srr()) is trans-
formed into the signal
vehicle waiting. Since
the abstract signal srr is
used, an additional tech-
nical description is nec-
essary (but not provided
here).

sd InductionLoopControl

waiting area of seconday
road

induction loop control

srr ()

vehicle_waiting ()

16 / 241

ES

Heisel

Overview

Phase 6

Introduction

Procedure

Example - TLC

Example - SBC

Phase 7

Phase 8

Phase 9

Validation

The sequence diagrams together describe the same
behavior as in Phase 4, since all diagrams are re-used.

All signals in the interface classes of Phase 5 are used in at
least one sequence diagram.

The direction of signals is consistent with the required or
provided interfaces of Phase 5.

The signals connect components as connected in the
system architecture of Phase 5.

17 / 241

ES

Heisel

Overview

Phase 6

Introduction

Procedure

Example - TLC

Example - SBC

Phase 7

Phase 8

Phase 9

Example 2: sun blind control

18 / 241

ES

Heisel

Overview

Phase 6

Introduction

Procedure

Example - TLC

Example - SBC

Phase 7

Phase 8

Phase 9

Interface behavior for SunBlindControl

Subproblems SunControl, NoDestructControl, FinsControl,
UserControl
The interface behavior can be directly derived from Phase 4
and the sequence diagrams of the other components.

19 / 241

ES

Heisel

Overview

Phase 6

Introduction

Procedure

Example - TLC

Example - SBC

Phase 7

Phase 8

Phase 9

Interface behavior for Button I

The signals to the Buttons are abstract and represents the
intention of the user.
Subproblem FinsControl

sd ButtonS4

Buttons

unit = s

ALT

manuallyAdjustFinsWith
NegativeDegree

downButtonPushed
t=now

downButtonReleased
{t..t+ 2.9}

manuallyAdjustFinsWith
PositiveDegree

upButtonPushed
t=now

upButtonReleased
{t..t+ 2.9}

20 / 241

ES

Heisel

Overview

Phase 6

Introduction

Procedure

Example - TLC

Example - SBC

Phase 7

Phase 8

Phase 9

Interface behavior for Button II

Subproblem UserControl

sd ButtonS5

Buttons

unit = smanuallyOpenSunBlind

upButtonPushed
t=now

upButtonReleased
{>=t+ 3}

21 / 241

ES

Heisel

Overview

Phase 6

Introduction

Procedure

Example - TLC

Example - SBC

Phase 7

Phase 8

Phase 9

Interface behavior for Button III

Subproblem UserControl

sd ButtonS6

Buttons

unit = smanuallyCloseSunBlind

downButtonPushed
t=now

downButtonReleased
{>=t+ 3}

22 / 241

ES

Heisel

Overview

Phase 6

Introduction

Procedure

Example - TLC

Example - SBC

Phase 7

Phase 8

Phase 9

Interface behavior for Button IV

Subproblem SunControl
All sequence diagrams for Button together cover S8.

23 / 241

ES

Heisel

Overview

Phase 6

Introduction

Procedure

Example - TLC

Example - SBC

Phase 7

Phase 8

Phase 9

Interface behavior for SunSensor

Subproblem SunControl
sd SunSenor S1 S2 S8

SunSenor

ALT

sunShine

intensity(value>32000)

noSunShine

intensity(value<32000)

24 / 241

ES

Heisel

Overview

Phase 6

Introduction

Procedure

Example - TLC

Example - SBC

Phase 7

Phase 8

Phase 9

Interface behavior for WindSensor

Subproblems SunControl, NoDestructControl, FinsControl,
UserControl

sd WindSensor

Wind WindSensor

unit=ms

ALT

noHeavyWind

windPulse
t=now

loop

windPulse
{t .. t+75}

t=now .

heavyWind

windPulse
t=now

loop

windPulse
{>t+75}

t=now .

The phenomena WindSpeed is an abstraction of a signal
sequence consisting of WindPulses.

25 / 241

ES

Heisel

Overview

Phase 6

Introduction

Procedure

Example - TLC

Example - SBC

Phase 7

Phase 8

Phase 9

Interface behavior for Motor

Subproblems SunControl, NoDestructControl, FinsControl,
UserControl

sd Motor

Motor

ALT

turnMotorLeft

pullUpSunBlind

turnMotorRight

lowerSunBlind

stopMotor

stopSunBlind

26 / 241

ES

Heisel

Overview

Phase 6

Introduction

Procedure

Example - TLC

Example - SBC

Phase 7

Phase 8

Phase 9

Validation

The sequence diagrams together describe the same
behavior as in Phase 4, because all digrams are re-used.

All signals in the interface classes of Phase 5 are captured
in at least one sequence diagram. The phenomenon
WindSpeed is an abstraction of a signal sequence
consisting of WindPulses.

The direction of signals is consistent with the required or
provided interfaces of Phase 5.

The signals connect components as connected in the
system architecture of Phase 5.

No new state invariants are introduced.

27 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Phase 7: Software architecture for all programm-
able components of the global system arch. I

...

5. Design global system architecture

6. Derive specifications for all components of the global
system architecture

7. Design a software architecture for all components of the
global system architecture that should be implemented in
software

8. Specify the behavior of all components of all software
architectures, using sequence diagrams

9. Specify the software components of all software
architectures as state machines

10. Implement software components and test environment

...

28 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Phase 7: Software architecture for all programm-
able components of the global system arch.

input: global system architecture from Phase 5 composite structure dia-
gram

problem diagrams from Phase 3 Jackson with dot-
notation

interface specifications from Phase 5 interfaces classes
relationships between subproblems specified in Phase 5 grammars
possibly reusable components from other projects
(Phase 9)

active or passive classes
with interface classes

machine behavior specifications from Phase 4 sequence diagrams with
annotated states

output: layered software architecture for each subproblem composite structure dia-
grams

merged layered software architecture (with subcompo-
nents)

composite structure dia-
grams

purpose of each software component natural language
specification of interfaces between software components interface classes

validation: if no instantiation of architectural patterns: consistent
with problem diagram
signals of Phase 4 sequence diagrams are interfaces of
the application layer
direction of all signals consistent to each other and input
external interfaces must be consistent with the interfaces
of the system architecture developed in Phase 5

29 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Notations and concepts

Notation for connections and interfaces

Four-variable model

Architectural patterns

30 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Notation for connections and interfaces

=̂connection_name ORif_name

port_name1

port_name2

if_name

port_name1

port_name2

OR

port_name2

port_name1

 Component1

 Component2

 Component1

 Component2

 Component1

 Component2

port_name2

port_name1

if_name2

if_name1

 Component1

 Component2

31 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Layered architectures

Application

Hardware Abstraction Layer

Interface Abstraction Layer

Hardware

Hierarchical organization of
software plus hardware
executing the software

“Lower” layers provide
services for “higher” layers

Usually, only adjacent layers
should be connected (no layer
bridging)

Advantage: modifications
only affect adjacent layers

Well-known example:
ISO/OSI reference model for
communication protocols

32 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Four-variable model - basic idea

Divide software into device-dependent and
device-independent parts.

Use (extended) four-variable model

Developed by David Parnas, extension by Connie
Heitmeyer
Four Variables:

1. Monitored variables: measured quantities (i.e., physical
values, measured by sensors)

2. Controlled variables: affected quantities (i.e., physical
values, controlled by actuators)

3. Input data: resources from which the values of monitored
variables must be determined; submitted via a technical
interface (electric signals corresponding to digital values)

4. Output data: resources available to affect controlled
variables; submitted via a technical interface (digital
values corresponding to electric signals)

33 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Four variable model: System architecture, I

Case 1:

physical

values S

measured

by sensors

(monitored
variables)

physical

values A

controlled by

actuators

variables)
(controlled

 Machine

Control

Component

(input and output data)
electrical signals),
(digital values, corresponding to
technical interfaces

 Actuators Sensors
Internal Internal

34 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Four variable model: System architecture, II

Case 2:

physical

values S

measured

by sensors

(monitored
variables)

physical

values A

controlled by

actuators

variables)
(controlled

Control

Component

(input and output data)
electrical signals),
(digital values, corresponding to
technical interfaces

 Actuators Sensors
External External

Machine

35 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Layered system architecture

 Actuators Sensors

 Application

 Sensor IAL Actuator IAL

 Sensor HAL Actuator HAL

Hardware

ControlComponent

Hardware Programmable hardware component

HAL Hardware Abstraction Layer: consists of drivers for
external components; needed for portability

IAL Interface Abstraction Layer: provides input data or
accepts output data, respectively

Application Layer: computes output data from input data

36 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Extended four-variable model: Interfaces

Basic idea: application layer software should have the the
same interfaces as the system, i.e., monitored and
controlled variables
Thus, application layer becomes device-independent,
device dependencies are factored out in IALs and HALs.

 Actuators Sensors

Component Behavior (Phase 6)

^

Application Component Behavior (Phase 8)

^

Application Component Behavior (Phase 8)
System Behavior (Phase 4) =

System Behavior (Phase 4) =

 Application

 Sensor IAL Actuator IAL

 Sensor HAL Actuator HAL

Hardware

ControlComponent

37 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Four-variable model: System vs. Component
behavior I

sd if_TeaTimersd TeaTimer

decSec()
decSec()
decSec()
decSec()
decSec()

incMin()

incMin()
incMin()

: TeaTimer

adjust_time (3,10)

adjust_time (1,05)

: TeaTimer

incSec()

decMin()

: User : env

decMin()

loop (10)

System behavior (Phase 4) Component behavior (Phase 6)

38 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Four-variable model: System vs. Component
behavior II

sdsd Fill if_Fill

: env: Control : Control: WaterContainer

FillState (11)

FillState (42)

FillState (43)

FillState (51)

FillState (52)

FillState (51)

BelowMax()

AboveMax()

AboveMin () FillState (10)

1kg=0.2V^

^

FillState (49)

FillState (11)

FillState (13)

unit = ADC−Value

=10.2 (ADC−Value)

System behavior (Phase 4) Component behavior (Phase 6)

Analog-digital converter (ADV) to transform measured weight of vessel.

(5 V b= 255 b= 25 kg)

39 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Architectural patterns

For the most important problem frames the corresponding
architectural patterns will be proposed.

If a subproblem fits to a known problem frame, then a
simple instantiation of the patterns will suffice.

This architectural pattern is one possible solution and can
be used as a starting point for further development.

40 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Required behaviour frame diagram and
architectural pattern

Control
CD!C2
CM!C1

domain
Controlled

C

C3
machine behaviour

Required

Controlled
Domain (C2)

Controlled
Domain (C1)

Application

Sensor IAL

Sensor HAL

Actuator IAL

Actuator HAL

Hardware

Fully automatic control system, no operator.

41 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Commanded behaviour frame diagram and
architectural pattern

behaviour

Commanded

Operator

machine

E4

C3

B

domain

Controlled

Control

OP!E4

CM!C1

C
CD!C2

Application

Actuator IALSensor IAL

Sensor HAL

User

Interface

Operator Controlled
Domain (C2)

Controlled
Domain (C1)

Hardware

Actuator HAL

Control system with operator.

42 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Detailed architectural pattern for user interface

User
Input
Device

Display
Interface

Interface

User Input/Output Interface Note: The architectual pat-
tern contains a display to
give feedback to the user
(in contrast to the problem
frame)

43 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Information display frame diagram and
architectural pattern

~

RW!C1

Display

Display
C

C
C3

Y4

Real world

world
Real

IM!E2

machine
Information

Sensor IAL

Sensor HAL

Application

Display

Interface

Display (E2) Real world (C1)

Hardware

Display machine with application layer to process sensor values.

44 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Commanded information frame diagram and
architectural pattern

RW!C1

AM!E3 Y4
rules

EnquiryEO!E5 E5
operator

B

C
Display

C

Real
world

Answer

C2

machine
Answering

User

Interface

Sensor IAL

Sensor HAL

Display Application Input Application

Display (E3) / Enquiry operator (E5) Real world (C1)

Hardware

Storage IAL

Storage HAL

Display machine with operator. A data storage component
serves to store information that can be queried by operator
commands.

45 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Workpieces frame diagram and architectural
pattern

User
B

X
Workpieces Y4

E3

effects
Command

E!E1
WP!Y2

Editor

U!E3

Storage IAL

Storage HAL

Application

Interface

User

Editor

E3’’ E1, Y2

Workpieces (E1, Y2)User (E3)

Hardware

Note that there is only one interface with the environment.

46 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Transformation frame diagram and architectural
pattern

IO
relation

IN!Y1

Y4

Inputs

Outputs

machine
Transform

TM!Y2

X

X

Y3 Storage IAL

Storage HAL

Storage IAL

Storage HAL

Application

 Y1 Y2

Hardware

OutputsInputs

47 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Phase 7: Software architecture for all programm-
able components of the global system arch.

input: global system architecture from Phase 5 composite structure dia-
gram

problem diagrams from Phase 3 Jackson with dot-
notation

interface specifications from Phase 5 interfaces classes
relationships between subproblems specified in Phase 5 grammars
possibly reusable components from other projects
(Phase 9)

active or passive classes
with interface classes

machine behavior specifications from Phase 4 sequence diagrams with
annotated states

output: layered software architecture for each subproblem composite structure dia-
grams

merged layered software architecture (with subcompo-
nents)

composite structure dia-
grams

purpose of each software component natural language
specification of interfaces between software components interface classes

validation: if no instantiation of architectural patterns: consistent
with problem diagram
signals of Phase 4 sequence diagrams are interfaces of
the application layer
direction of all signals consistent to each other and input
external interfaces must be consistent with the interfaces
of the system architecture developed in Phase 5

48 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Executing Phase 7 I

For each programmable component and each subproblem,
an architecture should be developed. If the component
implements several subproblems, we develop a seperate
architecture for each subproblem:

If a subproblem fits to a known problem frame, then a
simple instantiation of the corresponding pattern suffices.

If the subproblem fits to a variant of some problem frame,
the corresponding architectual pattern can be adjusted.

If a subproblem is unrelated to any problem frame, then a
corresponding architecture has to be developed from
scratch. The following rules can be applied to develop a
layered architecture:

The interfaces of the architecture correspond exactly to
the interfaces of the machine domains as defined in the
different problem diagrams.

49 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Executing Phase 7 II

If the machine has interfaces with causal domains, the
corresponding architecture should contain components for
handling sensors and actuators. This reflects the way in
which software can communicate with and influence the
physical world.
If the frame diagram contains a biddable domain (i.e., an
operator or user), then the corresponding architecture
should contain a user interface component.
If the machine has interfaces with lexical domains, these
domains should be reflected as parts of the corresponding
architecture, because lexical domains can only exist inside
the machine.
Components for data storage should only be included if the
data is stored persistently. Otherwise they can be assumed
to be part of some other component.

50 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Executing Phase 7 III

Merge the architectures to a global architecture:

Decide if two components contained in different
subproblem architectures should occur only once in the
global architecture.

Make use of the information gathered when decomposing
the overall problem into subproblems. Therefore,
distinguish the following cases:

1. The components are hardware (HAL) or interface
abstraction layers (IAL), establishing the connection to
some hardware device.
Such components should be merged if and only if they are
associated to the same hardware device.

2. Two application components belong to subproblems being
related sequentially or by alternative.
Such components should be merged into one application
component.

51 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Executing Phase 7 IV

3. Two application components belong to parallel
subproblems and share some output phenomena.
Such components should be merged, because the output
must be generated in a way satisfying both subproblems.

4. Two application components belong to parallel
subproblems and share some input phenomena.
If the components do not share any output phenomena,
both alternatives (merging the components or keeping
them separate) are possible. If the components are not
merged, then the common input must be duplicated.

5. Two application components belong to parallel
subproblems and do not share any interface phenomena.
Such components should be kept separately.

If a component is too complex, it should be split into
subcomponents.

52 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Executing Phase 7 V

If timing constraints have been specified, include a timer
component with corresponding time-out timer.

53 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Executing Phase 7 VI

Specify interface classes:

The external interfaces are the same as the interfaces in
the system architecture between the components.

Since we use interface classes to describe the hardware
interfaces, the interfaces between IAL and HAL are similar
to the external interfaces of the component. Thereby, the
HAL contains no application-specific functionality. It only
provides easy-to-use software interfaces to access the
hardware (e.g. registers, interrupts, direct memory access).

The interfaces to the application component can be
derived from sequence diagrams that describe the machine
behavior (Phase 4).

54 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Executing Phase 7 VII

If the interface of the application layer is the same as the
interface of the HAL, the IAL can be removed from the
architecture.

As described in Phase 5, for each interface it must be
decided, which component provides the interface and
which component uses the interface. Usually, the
component being in control of a phenomenon uses the
corresponding interface. If an interface contains operations
with return values, then the component providing these
interfaces is in control of a phenomenon.

55 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Remarks I

If reusable components from other projects are used, they
must be integrated into the software architecture.

The already developed architectures of the other
subproblems should be checked for reusable components.

The global architecture must contain all components of all
subproblem architectures. Its external interfaces must be
the same as in the system architecture developed in
Phase 5.

The external interfaces of the software architecture are
usually connected with a microcontroller component. The
software components can access these interfaces using
ports and interrupts.

56 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Remarks II

Ports are provided by the microcontroller, and the software
can use ports to read out input data or to send output
signals.
Interrupts are required interfaces of the microcontroller.
The microcontroller sends the interrupts to the
pre-configured software component when a change of the
state at the interface is detected. Note: An interrupt
cannot have parameters. The parameters must be read out
using ports.
Interrupts are assigned to fixed input pins of the
microcontroller. Each microcontroller has a fixed number
of pins that can send interrupt signals.

57 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Example 1: traffic light control

58 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

TrafficLightsControl System Architecture

: InductionLoop

 Control

emergency
request button at

lights
: LightsControl

:TrafficLights

 Controller

srr_if

road
on secondary
to detect cars
induction loop

bl_if

fire brigade

lights_on_off

bl

lights_on_off_if

srr

TLC

er

59 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

TrafficLightsControl SecondaryRoadPassing
problem diagram

lights

control

crossing

sec_green,

sec_red}

sec_yellow,

l!{sec_yellow_red,

lights

light settings

TLC
secondary
phase

tlc!{on,off}

ruol!{enter,leave}

road users on

lanes
vehicles on crossing

vehicles on crossing

R3, R4, R5

R7

lc!{24V, 0V}

Variant of the required behavior.

60 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

TrafficLightsControl SecondaryRoadPassing
architecture

LightsInterface

Microcontroller

LightsControl

TrafficLightApplicationSRP

AbstractionSRP

LightsDriverSRP

TrafficLightsController
Variant of the

required behavior

architectural pattern.

In the problem

diagram no sensor

is contained. For

this reason, the

components Sensor

IAL and Sensor

HAL are removed

from the software

architecture.

The Microcon-

troller is a reused

component.

61 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

TrafficLightsController MainRoadPassing problem
diagram

lc!{24V, 0V}

road users on

lanes vehicles on crossing

lights

control

light settings

lights

l!{main_yellow_red,
main_green,
main_yellow,

main_red}

waiting area of

secondary road

induction loop

control

waosr!{srr}

phase
main
TLC

vehicle_waiting

tlc!{on,off}

ilc!{vehicle_waiting}

ruol!{enter,leave}

R1, R3, R4,
R5, R7

Variant of the required behavior.

62 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

TrafficLightsController MainRoadPassing
architecture

LightsInterfaceInductionLoop

InductionLoop

Microcontroller

LightsControl

TrafficLightApplicationMRP

AbstractionMRP

LightsDriverMRP

 DriverMRP

IAL_MRP

TrafficLightsController

on secondary

InductionLoopControl
(to detect cars

road)

63 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

EmergencyRequestSecondaryRoadPassing Problem
Diagram

lights

control

crossing

lights

light settings

TLC

tlc!{on,off}

ruol!{enter,leave}

road users on

lanes

sec_red}
sec_yellow,
sec_green,
sec_yellow_red,

fire brigade

l!{main_yellow, main_red,

vehicles on crossing

fire brigade

fb!{emergency_request_start,

emergency_request_end}

emergency_request

vehicles on crossing

R2, R5, R7

lc!{24V, 0V}

Variant of the commanded behavior.

64 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

EmergencyRequestSecondaryRoadPassing
architecture

emergency
request button at

: LightsInterface

: Microcontroller

LightsControl

AbstractionER

: LightsDriverER

: TrafficLightApplicationER

:TrafficLightsController

 Request
 DriverER

: Emergency

fire brigade

A sensor is not neces-

sary and therefore re-

moved. The user in-

terface is just a but-

ton and no feedback

is given to the user.

65 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

TrafficLightsController BrokenLightSafeState
problem diagram

lights R6
lights

control

TLC

fault tolerance

tlc!{on,off}
lc!{broken_light}

l!{current}

vehicles on lanes

road users on

lanes

l!{sec_red,
main_red,
sec_yellow, all_off}

light settings

broken light bulb
lc!{0V,24V}

Variant of the required behavior.

66 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

TrafficLightsController BrokenLightSafeState
Architecture

LightsInterface

BrokenLight

 Microcontroller

TrafficLightApplicationBL

AbstractionBL

 DriverBL
LightsDriverBL

TrafficLightsController

LightsControl

67 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Global Architecture I

 Driver Driver
 Driver
 Request

AbstractionIAL

TrafficLightApplication

InductionLoop LightsInterface

 LightsDriver InductionLoop BrokenLight Emergency

 Microcontroller

emergency
request button at

LightsControl

TrafficLightsController

er_if’bl_if’

lights_on_off_if’

lights_state_if

srr_if’

srr

irq8ports irq9irq7

induction loop
to detect cars
on secondary

road
fire brigade

bl_if

lights_on_off_if

er_if
srr_if

68 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Global Architecture II

The components of the global architecture are merged using the following
components of the subproblem architectures.

TrafficLightApplication TrafficLightApplicationSRP,
TrafficLightApplicationMRP,
TrafficLightApplicationER,
TrafficLightApplicationBL

IndictionLoopIAL IndictionLoopIAL MRP

LightsInterfaceAbstraction LightsInterfaceAbstractionSRP,
LightsInterfaceAbstractionMRP,
LightsInterfaceAbstractionER,
LightsInterfaceAbstractionBL

IndictionLoopDriver IndictionLoopDriverMRP

LightsDriver LightsDriverSRP, LightsDriverMRP,
LightsDriverER, LightsDriverBL

EmergencyRequestDriver EmergencyRequestDriverER

BrokenLightDriver BrokenLightDriverBL

Microcontroller Existing component

69 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Global Architecture III

The components LightsInterfaceAbstractionSRP,
LightsInterfaceAbstractionMRP, LightsInterfaceAbstractionER, and
LightsInterfaceAbstractionBL are merged since they are associated to the
same hardware device (Case 1).
The components LightsDriverSRP, LightsDriverMRP, LightsDriverER, and
LightsDriverBL are merged since they are associated to the same hardware
device (Case 1).

The components TrafficLightApplicationSRP and

TrafficLightApplicationMRP implement sequential subproblems and are

merged into one application component (Case 2). The merged component

and the components TrafficLightApplicationER and

TrafficLightApplicationBL belong to parallel subproblems and share all

output phenomena. They are also merged, because the output must be

generated in a way satisfying all subproblems (Case 3).

70 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Global Architecture – TrafficLightApplication

Since the component is complex, it is split into subcomponents.
A TimeOutTimer and a Clock are introduced to separate the
timers from the logic (in TrafficLightBehavior).

TrafficLightApplication

 Clock TimeOutTimer

 TrafficLightBehavior

srr
lights_state_if

timeoutset_timeout

ms_clock

bl_if’ er_if’

71 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Global Architecture – Purpose of the components

Clock Generates a pulse each millisecond.

TimeOutTimer Sends a timeout message after a predefined
time is elapsed.

TrafficLightBehavior Control of Traffic Lights.

IndictionLoopIAL Detects if a vehicle is waiting (based on a
secondary road request). (More complex in
real machines).

LightsInterfaceAbstractionIAL Transforms lights commands for each road
into commands for each light bulb.

IndictionLoopDriver HAL for induction loop access.

LightsDriver HAL for lights access.

EmergencyRequestDriver HAL for emergency request button.

BrokenLightDriver HAL for lights (broken light detection).

Microcontroller Hardware running the application.

72 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

TrafficLightsControl interfaces I

〈〈interface〉〉
srr

vehicle waiting ()

〈〈interface〉〉
srr if’

see srr if

〈〈interface〉〉
irq7

interrupt request 7 ()

The microcontroller schematic and

databook show that the Induction-

LoopControl is connected to the pin

of the microcontroller that generates

the interrupt request with number 7.

〈〈interface〉〉
srr if

srr ()

73 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

TrafficLightsControl interfaces II

〈〈interface〉〉
lights state if

main red ()
main yellow red ()

main yellow ()
main green ()

sec red ()
sec yellow red ()

sec yellow ()
sec green ()

all off ()

〈〈interface〉〉
ports

see Hardware descriptions

〈〈interface〉〉
lights on off if

s red (on: boolean)
s yellow (on: boolean)
s green (on: boolean)
m red (on: boolean)

m yellow (on: boolean)
m green (on: boolean)

〈〈interface〉〉
lights on off if’

see lights on off if

74 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

TrafficLightsControl interfaces III

〈〈interface〉〉
bl if

broken light ()

〈〈interface〉〉
bl if’

see bl if

〈〈interface〉〉
irq8

interrupt request 8 ()

The microcontroller schematic and

databook show that the broken lights

detection of LightsControl is con-

nected to the pin of the microcon-

troller that generates the interrupt re-

quest with number 8.

75 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

TrafficLightsControl interfaces IV

〈〈interface〉〉
er if

emergency request start()
emergency request end()

〈〈interface〉〉
er if’

see er if

〈〈interface〉〉
irq9

interrupt request 9 ()

The microcontroller schematic and

databook show that the button at the

fire brigade is connected to the pin

of the microcontroller that generates

the interrupt request with number 9.

76 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

TrafficLightsControl interfaces V

〈〈interface〉〉
ms clock

MsClock ()

〈〈interface〉〉
set timeout

SetTimeOut (seconds: Integer)

〈〈interface〉〉
timeout

TimeOut ()

77 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Validation

The subproblem architectures have the same external
interfaces as the problem diagrams.

The signals of sequence diagrams at the external
interfaces are the same as the signals in the interfaces of
the application layer.

The direction of all signals is consistent to each other and
consistent to the input.

The architecture has the same external interfaces as the
traffic lights control component of the system architecture
developed in Phase 5.

The overall architecture contains all components of all
subproblem architectures.

78 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Example 2: sun blind control

79 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

SunBlindControl system architecture

Sun

Sun Blind

Buttons Sun

Sensor

Sun Blind

Controller

Wind

Sensor
Motor

Sun Blind Control

Fins

Wind

usr_cmds

wind_speed

button_state

sun_intensity

wind_state

sun_state

User

fin_ctrl

motor_ctrl

sun_blind_state

sun_blind_ctrl

motor_state

80 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

SunControl Problem Diagram I

buttons

sun sensor sun

user

sun blind

wind

c

d

R1, R2, R8

control
sun

g

h

k

l

wind sensor

motor
e

a

b
f j

i

81 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

SunControl architecture

Button SunSensor WindSensor Motor

WindSensorSunSensor Motor

SunSensor WindSensor Motor

WindPulse

Microcontroller

SunBlindController

SunBlindAppSC

IAL_SC IAL_SC IAL_SC IAL_SC

HAL_SC HAL_SC HAL_SC

ToSpeedIAL_SC

Button

Buttons

HAL_SC

The IAL for the

WindSensor is split-

ted since it has to

perform two differnt

task (transform

pulses to a speed,

calculates if there is

heavy wind).

The Microcon-

troller is a reused

component.

82 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

UserControl problem diagram

motor sun blind

userbuttons

R5,R6wind
control

user

a

d

c

e

f

g

h

i

wind sensor
b

83 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

UserControl architecture

Button WindSensor Motor

WindSensor Motor

WindSensor Motor

WindPulse

Microcontroller

SunBlindController

SunBlindAppUC

IAL_UC IAL_UC

ToSpeedIAL_UC

HAL_UC HAL_UC

IAL_UC

Button

Buttons

HAL_UC

84 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

FinsControl problem diagram

a

wind sensor wind

control

fin

b

fins

buttons user

c

d

e

f

g

h

R4

85 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

FinsControl architecture

Button WindSensor

WindSensor Fin

WindSensor

WindPulse

Microcontroller

SunBlindController

SunBlindAppFC

IAL_FCIAL_FC

HAL_FC

ToSpeedIAL_FC

HAL_FC

Fins

Button

Buttons

HAL_FC

There is no IAL for

the fins since the

requirements for the

fins are the same as

the specification and

no hardware compo-

nent is necessary to

control the fins.

86 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

NoDestructControl problem diagram

motor sun blind

wind sensor wind

c
d

b

a

e

f

control

no destruct R3,R7g

87 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

NoDestructControl architecture

WindSensor Motor

WindSensor Motor

WindSensor Motor

WindPulse

Microcontroller

SunBlindController

SunBlindAppNDC

IAL_NDC

ToSpeedIAL_NDC

HAL_NDC HAL_NDC

IAL_NDC

88 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Global architecture

IALIAL

HAL

ToSpeedIAL

HAL

IAL IAL

Button SunSensor WindSensor Motor

WindSensorSunSensor Motor

HAL

Fin

HAL

SunSensor WindSensor Motor

Mikrocontroller

SunBlindApp

SunBlindController

WindPulse

Fins

usr_cmds sun_state

HAL

wind_kmh

wind_state

wind_speed’sun_intensity’ motor_state’

motor_ctrl’

ctrl

sun_blind_
 state

fin_ctrl’

sun_blind_

Button

button_state’

Buttons

button_state

motor_statesun_intensity wind_speed

motor_ctrl

PortsIrq6Irq7

fin_ctrl

Components with similar names are merged.

89 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Global architecture – SunBlindApp

SunBlindApp

SunBlindAppCtrl

SunDetection

usr_cmds

wind_state
ctrl

sun_blind_
 state

sun_blind_
sun_state_if

fin_ctrl’
sun_state

In this example the timer is an internal class.
The component SunDetection was seperated since the state
machine of the whole component SunBlindApp is too complex.

90 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Global architecture – Purpose of the Components I

SunBlindApp Control of SunBlind according to state of Blind,
Buttons, Sun and Wind. Control of the Fins
according to Buttons and Wind.

SunDetection Calculates if the sun is shining or not shining for a
certain period of time.

SunBlindAppCtrl Control of SunBlind according to Buttons, Sun
and Wind.

ButtonIAL Transforms button state to intended user
commands.

SunSensorIAL Calculates if sun is shining or not based on
intensity.

WindSensorIAL Calculates if there is heavy wind or not based on
speed.

WindPulseToSpeedIAL Calculates wind speed from sequence of pulses.

91 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Global architecture – Purpose of the Components II

MotorIAL Transforms sun blind commands into motor
commands and motor state into sunblind state.

ButtonHAL HAL for button access.

SunSensorHAL HAL for sun sensor access.

WindSensorHAL HAL for wind sensor access.

MotorHAL HAL for motor access.

FinsHAL HAL for fin access.

Microcontroller Hardware running the application.

92 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

SunControl interfaces I

Hardware interfaces:

� interface �
button state

upButtonPushed()
upButtonReleased()
downButtonPushed()
downButtonReleased()

� interface �
sun intensity

sunIntensity(lux: Integer)

� interface �
wind speed

windPulse()

� interface �
motor ctrl

stopMotor()
turnMotorRight()
turnMotorLeft()

93 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

SunControl interfaces II

� interface �
fin ctrl

rotateFinsWithPositiveDegree()
rotateFinsWithNegativeDegree()

Microcontroller interfaces:

� interface �
ports

out(adr, value)
in(adr): value

� interface �
irq7

interrupt req 7()

� interface �
irq7

interrupt req 8()

94 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

SunControl interfaces III

HAL interfaces:

� interface �
button state′

upButtonPushed′()
upButtonReleased′()
downButtonPushed′()
downButtonReleased′()

� interface �
sun intensity′

sunIntensity′(lux: Integer)

� interface �
wind speed′

windPulse()′

� interface �
motor ctrl′

stopMotor′()
turnMotorRight′()
turnMotorLeft′()

95 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

SunControl interfaces IV

� interface �
fin ctrl′

rotateFinsWithPositiveDegree′()
rotateFinsWithNegativeDegree′()

IAL Interfaces:

� interface �
usr cmds

manuallyOpenSunBlind()
manuallyCloseSunBlind()
adjustFinsPositiveDegree()
adjustFinsNegativeDegree()

� interface �
sun state

sunShine()
noSunShine()

96 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

SunControl interfaces V

� interface �
sun blind ctrl

stopSunBlind()
lowerSunBlind()
pullUpSunBlind()

� interface �
sun blind state

sunBlindIsPulledUp()
sunBlindIsLowered()

Interface inside application:
� interface �

sun state if

sun()
noSun()

97 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

SunControl interfaces VI

Interface inside IAL:

� interface �
wind kmh

windSpeed(kmh: Integer)

98 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Introduction

Concepts

Connection
notation

Four-variable
model

Architectural
patterns

Procedure

Example - TLC

Example - SBC

Phase 8

Phase 9

Validation

The subproblem architectures have the same external
interfaces as the problem diagrams.

The phenomena of sequence diagrams at the external
interfaces are the same as the signals in the interfaces of
the application layer.

The direction of all signals is consistent to each other and
consistent to the input.

The architecture has the same external interfaces as the
sun blind controller component of the system architecture
developed in Phase 5.

The overall architecture contains all components of all
subproblem architectures.

99 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Phase 8: Specify the behavior of all components of
all software architectures, using sequence diagrams

...

5. Design global system architecture

6. Derive specifications for all components of the global
system architecture

7. Design a software architecture for all components of the
global system architecture that should be implemented in
software

8. Specify the behavior of all components of all software
architectures, using sequence diagrams

9. Specify the software components of all software
architectures as state machines

10. Implement software components and test environment

...

100 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Phase 8: Specify the behavior of all components of
all software architectures, using sequence diagrams

For each subproblem:
input: software architectures from Phase 7 composite structure

diagrams
interface specifications from Phase 7 interface classes
system behavior from Phase 4 sequence diagrams

with annotated states
interface behavior of all programmable compo-
nents from Phase 6

sequence diagrams
with annotated states

output: interface behavior of all software components
(test specification)

sequence diagrams
with annotated states

validation: all sequence diagrams together must describe
the same interface behavior as in Phase 6
all signals in the interfaces classes of Phase 7
must be used in at least one sequence diagram
direction of signals must be consistent with the
required and provided interfaces of Phase 7
signals must connect components as connected
in the software architecture of Phase 7
it must be possible to map any new states to the
states of Phase 6

101 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Notations and concepts

Four-variable model (repetition)

Transformation of timing constraints

102 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Four-variable model

 Actuators Sensors

Component Behavior (Phase 6)

^

Application Component Behavior (Phase 8)

^

Application Component Behavior (Phase 8)
System Behavior (Phase 4) =

System Behavior (Phase 4) =

 Application

 Sensor IAL Actuator IAL

 Sensor HAL Actuator HAL

Hardware

ControlComponent

Application layer software should have the the same
interfaces as the system, i.e., monitored and controlled
variables.
States of the environment will be mapped to internal
states.

103 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Transformation of timing constraints I

In Phase 4, timing constraints are specified as shown in the
following figure.

sd Phase 4 Sequence

Environment Machine

x: integer

unit =
seconds

t=now
IncommingSignal()

{t+x}
OutgoingSignal()

104 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Transformation of timing constraints II

These timing constraints can be transformed in this phase into
implementable events to reuse the specification from Phase 4,
e.g., as shown in the following figure:

sd Phase 8 Sequence

Application

x': integer

Timeout Timer IAL

unit =
seconds

IncommingSignal()

setTimeout(x')
t=now

timeout()
{t+x'}

OutgoingSignal()

x ′ is derived from x according to the expected execution time
of the application component and the hardware devices.

105 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Transformation of timing constraints III

The Timeout Timer can be specified as follows:
sd Timeout Timer Behavior

Application

x: integer

Timeout Timer Clock

unit =
seconds

setTimeout(x)

loop(x*1000)

millisecond_pulse()

timeout()

From the timing constraints, concrete requirements for the
execution time of the application component and the precision
of the clock can be derived.

106 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Executing Phase 8 I

To create the sequence diagrams, for each software component
and each subproblem the following steps have to be performed:

Draw a lifeline for the software component to be specified.
Either introduce a lifeline for the connected components,
or connect the arcs representing a signal with the left and
right border of the sequence diagram.

Describe the interface behavior of the component using
the signals from the software architecture.

The specification of the application components should be
reused from Phase 4.

107 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Executing Phase 8 II

The specification for the interface abstraction layer can be
derived from the domain knowledge used to derive the
specification and the specification of the other
components in the system architecture, expressed as
sequence diagrams.

The specification for the hardware abstraction layer should
show the mapping from the IAL to the hardware and vice
versa. Since this specification is usually described in the
data book and in the schematic of the hardware, only a
reference must be given.

If possible, refer to other sequence diagrams and do not
draw diagrams for the same sequence several times.

108 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Executing Phase 8 III

Add states where they are relevant to describe the
behavior. Map the defined states to the states in the
environment.

Add missing sequence diagrams to describe the behavior
for all relevant states.

Add timing constraints if necessary.

Specify the initialization sequences. They describe the
state of the software components after initializing the
components (e.g., after power-on).

109 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Remarks

In this phase, each component is described separately.

Do not forget the extended four-variable model (for reuse
of specifications).

A specification expressed somewhere else should be
referenced and does not have to be translated into
sequence diagrams.

The sequence diagrams developed in this phase are a
concrete basis for the implementation of test cases for all
software components.

110 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Example 1: traffic light control

111 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Global software architecture I

 Driver Driver
 Driver
 Request

AbstractionIAL

TrafficLightApplication

InductionLoop LightsInterface

 LightsDriver InductionLoop BrokenLight Emergency

 Microcontroller

emergency
request button at

LightsControl

TrafficLightsController

er_if’bl_if’

lights_on_off_if’

lights_state_if

srr_if’

srr

irq8ports irq9irq7

induction loop
to detect cars
on secondary

road
fire brigade

bl_if

lights_on_off_if

er_if
srr_if

112 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Global software architecture II

TrafficLightApplication

 Clock TimeOutTimer

 TrafficLightBehavior

srr
lights_state_if

timeoutset_timeout

ms_clock

bl_if’ er_if’

113 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Behavior of the components I

TrafficLightBehavior – all subproblems: same as in Phase 4
(also for the initialization sequence), see four-variable model
and transformation of timing constrains

Clock – all subproblems: reused component without states
(initialization sequence not necessary).

TimeOutTimer – all subproblems: see slide Transformation of
timing constraints.

114 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Behavior of the components II

InductionLoopIAL – subproblem MainRoadPassing:
sd InductionLoopIAL

InductionLoopIAL

srr ()

vehicle_
waiting ()

An initialization sequence is not necessary since no states are
specified.

InductionLoopDriver – subproblem MainRoadPassing: see
InductionLoopIAL and description of the Microcontroller.

115 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Behavior of the components III

LightsInterfaceAbstraction – all
subproblems:
The complete specification for this
component can be derived from
the domain knowledge about the
lights compontent in Phase 4.

sd LightsIA 1

LightsInterfaceAbstraction

main_red ()

m_red (on)

m_yellow (off)

m_green (off)

(example)

An initialization sequence is not necessary since no states are
specified.

LightsDriver – all subproblems: see LightsInterfaceAbstraction
and description of the Microcontroller.

116 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Behavior of the components IV

BrokenLightDriver – subproblem BrokenLightSafeState: see
description of the Microcontroller.

EmergencyRequestDriver – subproblem
EmergencyRequestSecondaryRoadPassing: see description of
the Microcontroller.

Microcontroller – all subproblems: The behavior is described in
the Microcontroller data book and therefore not specified here.

117 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Validation

All sequence diagrams together describe the same behavior
as in Phase 6.

All signals in the interfaces classes of Phase 7 occur in the
specification of at least one component (in the complete
specification).

The direction of the signals are consistent with the
required or provided interfaces of Phase 7.

The signals connect the same components as connected in
the software architecture of Phase 7.

The states of the environment are mapped 1:1 to the
application states.

118 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Example 2: sun blind control

119 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Global software architecture

IALIAL

HAL

ToSpeedIAL

HAL

IAL IAL

Button SunSensor WindSensor Motor

WindSensorSunSensor Motor

HAL

Fin

HAL

SunSensor WindSensor Motor

Mikrocontroller

SunBlindApp

SunBlindController

WindPulse

Fins

usr_cmds sun_state

HAL

wind_kmh

wind_state

wind_speed’sun_intensity’ motor_state’

motor_ctrl’

ctrl

sun_blind_
 state

fin_ctrl’

sun_blind_

Button

button_state’

Buttons

button_state

motor_statesun_intensity wind_speed

motor_ctrl

PortsIrq6Irq7

fin_ctrl

120 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Software architecture of the application

SunBlindApp

SunBlindAppCtrl

SunDetection

usr_cmds

wind_state
ctrl

sun_blind_
 state

sun_blind_
sun_state_if

fin_ctrl’
sun_state

121 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Behavior of the Components I

ButtonIAL – subproblems SunControl and UserControl

sd ButtonIAL (R5)

ButtonIAL

unit = s

upButtonPushed
t=now

upButtonReleased
{t>=3}

manuallyOpenSunBlind

122 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Behavior of the Components II

sd ButtonIAL (R6)

ButtonIAL

unit = s

downButtonPushed
t=now

downButtonReleased
{t>= 3}

manuallyCloseSunBlind

123 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Behavior of the Components III

ButtonIAL – subproblems SunControl and FinsControl
sd ButtonIAL (R4)

ButtonIAL

unit = s

ALT

downButtonPushed
t=now

downButtonReleased
{t..t+ 2.9}

manuallyAdjustFinsWith
NegativeDegree

upButtonPushed
t=now

upButtonReleased
{t..t+ 2.9}

manuallyAdjustFinsWith
PositiveDegree

124 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Behavior of the Components IV

SunSensorIAL – subproblem SunControl

sd SunSenorIAL

SunSenorIAL

intensity(in)

ALT
[in>=32000]

sunShine

[in<32000]

noSunShine

125 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Behavior of the Components V

WindSensorIAL – all subproblems

sd WindSensorIAL

WindSensorIAL

windSpeed(ws)

ALT
[ws<=80]

noHeavyWind

[ws>80]

heavyWind

126 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Behavior of the Components VI

WindPulseToSpeedIAL – all subproblems
sd WindPulseToSpeedIAL

WindPulseToSpeedIAL

oldWindSpeed: integer

unit=ms

windPulse
t=now

windPulse
{t+x}

ALT
[x=oldWindSpeed]

[else]

windSpeed(6000/x)

oldWindSpeed:=x

127 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Behavior of the Components VII

MotorIAL – subproblems UserControl and SunControl

sd MotorIAL

MotorIAL

ALT

pullUpSunBlind

turnMotorLef t

lowerSunBlind

turnMotorRight

128 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Behavior of the Components VIII

MotorIAL – subproblem NodestructControl

sd MotorIAL (R3 and R7)

MotorIAL

ALT

motorLef tBlocked

SunBlindIsPulledUp

motorRightBlocked

SunBlindIsLowered

stopSunBlind

stopMotor

129 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Behavior of the Components IX

ButtonHAL see ButtonIAL and description of Microcontroller
SunSensorHAL see SunSensorIAL and description of
Microcontroller
WindSensorHAL see WindSensorIAL and description of
Microcontroller
MotorHAL see MotorIAL and description of Microcontroller.
Microcontroller see description of Microcontroller.

130 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Behavior of the Components X

SunDetection – Subproblem SunControl
sd SunDetection

SunDetection

unit = s

ALT

sunShine()
t=now

noSunShine()
{t..t+59}

sunShine()
t=now

{t+60}
sun()

noSunShine()

noSUnShine()
t=now

sunShine()
{t..t+239}

noSunShine()
t=now

{>t+240}
noSun()

sunShine()

131 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Behavior of the Components XI

SunBlindAppCtrl – Subproblem SunControl
sd SunBlindAppCtrl (R1 and R8)

SunBlindAppCtrll ButtonIAL SunDetection WindSensorIAL MotorIAL

unit=ms
PULLED_UP

heavyWind()

sun()

NEG lowerSunBlind

noSun()

noHeavyWind()

manuallyOpenSunblind()
t = now

sun()

NEG lowerSunBlind

noSun()

{t+4*
3600}

sun

lowerSunBlind()

LOWERED

132 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Behavior of the Components XII

sd SunBlindAppCtrl (R2 and R8)

SunBlindAppCtrl ButtonIAL SunDetection WindSensorIAL MotorIAL

unit=s
LOWERED

manuallyCloseSunblind()
t = now

noSun()

NEG pullUpSunBlind

onSun()

{t+4*
3600}

noSun

pullUpSunBlind

PULLED_UP

133 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Behavior of the Components XIII

sd SunBlindAppCtrl (R8)

SunBlindAppCtrl WindSensorIAL SunDetection MotorIAL ButtonIAL

unit=s
PULLED_UP and
noManualControl

IGNORE
lowerSunBlind,
pullUpSunBlind

ALT

manuallyCloseSunBlind()
bt=now

manuallyOpenSunBlind()
bt=now

adjustFinsPositiveDegree()
bt=now

adjustFinsNegativeDegree()
bt=now

PULLED_UP and
ManualControl

sun

NEG lowerSunBlind

{bt+ 3600
*4}

PULLED_UP and
noManualControl

noSun

sun

lowerSunBlind()

LOWERED and
noManualControl

134 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Behavior of the Components XIV

SunBlindAppCtrl – Subproblem UserControl
sd SunBlindApp (R5)

SunBlindApp WindSensorIAL MotorIAL ButtonIAL

manuallyOpenSunBlind()

pullUpSunBlind()

135 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Behavior of the Components XV

sd SunBlindApp (R6)

SunBlindApp WindSensorIAL MotorIAL ButtonIAL

heavyWind()

manuallyCloseSunBlind()

NEG lowerSunBlind()

noHeavyWind

manuallyCloseSunBlind()

lowerSunBlind()

136 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Behavior of the Components XVI

SunBlindApp – subproblem FinsControl
sd SunBlindApp (R4a)

SunBlindApp WindSensorIAL FinHAL ButtonIAL

heavyWind()

manuallyAdjustFinsWithNegativeDegree()

NEG rotateFinesWithNegativeDegree()

noHeavyWind

manuallyAdjustFinsWithNegativeDegree()

rotateFinesWithNegativeDegree()

manuallyAdjustFinsWithPositiveDegree()

rotateFinesWithPositiveDegree

SunBlindApp

137 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Behavior of the Components XVII

– subproblem NodestructControl
sd SunBlindApp (R3 and R9)

SunBlindApp WindSenorIAL MotorIAL

sunBlindIsLowered()

stopSunBlind()

heavyWind

pullUpSunBlind

turnLef tIsBlocked

stopSunBlind

138 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Introduction

Concepts

Four-variable
model

Timing
constraints

Procedure

Example - TLC

Example - SBC

Phase 9

Validation

All sequence diagrams together describe the same behavior
as in Phase 6.

All signals in the interfaces classes of Phase 7 are captured
in at least one sequence diagram.

The direction of the signals are consistent with the
required or provided interfaces of Phase 7.

The signals connect the same components as connected in
the software architecture of Phase 7.

The state invariants can be mapped as follows:

noManualControl ⇔ no interaction within the last 4 hours
manualControl ⇔ pressed within the last 4 hours
PULLEED UP ⇔ UP
LOWERED ⇔ DOWN

139 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Phase 9: Specify the software components of all
software architectures as state machines

...

7. Design a software architecture for all components of the
global system architecture that should be implemented in
software

8. Specify the behavior of all components of all software
architectures, using sequence diagrams

9. Specify the software components of all software
architectures as state machines

10. Implement software components and test environment

11. Integrate and test software components

12. Integrate and test hardware and software

140 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Phase 9: Specify the software components of all
software architectures as state machines

input: interface behavior from Phase 8 sequence diagrams
with annotated
states

relationships between subproblems speci-
fied in Phase 5

grammars

output: component overview description with refer-
ences to interface classes

class diagram with
ports, sockets and
lollipops

data types and operations class diagrams
defined using pre- and postconditions formulas or natu-

ral language
state machines state machine dia-

grams
invariants formulas or natu-

ral language

validation: consistent with interface behavior from
Phase 8
completeness of state machines (implies
error-cases for user-interaction)
a class must be active if it contains an ac-
tive class or a timer

141 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Notations and concepts

Notation for active and passive classes

Pre- and postconditions

Class invariants

UML 2.0 state machine diagrams

Active and passive sensors

142 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Notation for active and passive classes

Components corespond to classes.

Active Class: May contain timers, work in parallel to its
environment, may contain other passive or active
classes (see composite structure diagram of
Phase 7)

Passive Class: Cannot contain timers, functionality is executed
in the time context of an active class, may
contain other passive classes.

operation(..)

ClassnamePassiveClass

operation(..)

ClassnameActiveClass
attribute: Datatype attribute: Datatype

required_interface

provided_interface

required_interface

provided_interface 143 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Notation for data types

Data Type Class: passive class without required or provided
interfaces

operation(..)

DataTypeClass
<<type>>

attribute: Datatype

144 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Design by Contract – Pre- and Postconditions

Needed to apply principle of design by contract.

Must be specified for all operations.

Preconditions: express when an operation may be called.

Postconditions: express effect of operations by relating the
state before calling the operation with the state that is
reached after termination of the operation.

145 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Design by Contract – Contracts in daily life

Bertrand Meyer
Object-Oriented Software Construction
Prentice Hall 1988 (first edition), 1997 (second edition)
online see:
http://archive.eiffel.com/doc/manuals/technology/contract/page.html

Contractual partners are clients and sellers or service
providers.

Both expect advantages from the contract and are willing
to make a commitment.

146 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Design by Contract – Example

I want to travel from Berlin to Duisburg.
Commitments Advantages

Passenger Pay ticket getting to Duisburg
Be there at departure time
Must keep precondition Has advantages from post-

condition

Traffic
provider

Must take the passenger to
Duisburg

Receives price for the
ticket; does not have to
take passengers who have
not paid or did not arrive
in time

Must guarantee postcond. Can assume precondition

147 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Pre- and Postconditions – Advantages of explicit
contracts

Meyer:

A contract document protects both the client, by
specifying how much should be done, and the
supplier, by stating that the supplier is not liable for
failing to carry out tasks outside of the specified
scope.

Application to software: A contract is a formal agreement
between a machine / a class and its actors / clients. It specifies
the rights and duties for both sides.

148 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Pre- and Postconditions – Example: Stack (generic
class)

class Stack[T]
attribute nb elements: integer
method empty(): Boolean

full(): Boolean
push(x: T)
pop()
top(): T

end class Stack[T]

149 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Pre- and Postconditions – Specification of the
stack operations I

empty() pre true
post Result = true ⇔ nb elements = 0

full() pre true
post Result = true ⇔ nb elements = . . .

push(x: T) pre not full
post not empty
and nb elements = nb elements@pre + 1
and “top = x”

“x@pre”: old value of attribute x, i.e., value when

operation is called;

“x”: new value of attribute x, i.e., value when

operation terminates

150 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Pre- and Postconditions – Specification of the
stack operations II

pop() pre not empty
post not full
and nb elements = nb elements@pre - 1
and “top element of the stack is deleted”

top(): T pre not empty
post noChange
and Result = “top element of the stack”

151 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Pre- and Postconditions – Commitments and
advantages

Commitments Advantages

Client Call push(x) only if
stack is not full

Element x is put on
stack, top() results in x ,
nb elements is increased by
1.

Must keep precondition Has advantages from post-
condition

Server Makes sure that x is
placed on the stack

Unnecessary to handle the
case if stack is full.

Must guarantee post-
condition

Can assume precondition

152 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Pre- and Postconditions – Application of the design
by contract principle I

An operation may only be called when its precondition is
satisfied. Otherwise, its effect is unspecified.

The caller of an operation must make sure that the
precondition of the operation holds.
This can be done by checking the precondition explicitely
before calling the operation. However, the precondition
can also be guaranteed by the context. For example,
immediately after a pop operation, a push operation is
always possible.

Pre- and postcondition must be contained in the code of
each operation, either as an assertion that can be checked
at runtime, or (at least) as a comment.

In the implementation of the operation, the precondition is
not checked!!

153 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Pre- and Postconditions – Application of the design
by contract principle II

Operations that are called from the environment outside
the machine should be robust, i.e., they should have
precondition true, and the treatment of error cases should
be performed in the operation.

Internal operations may have stronger preconditions than
true. Then, the treatment of error cases must be
performed in the operations that call the operation in
question.

Example: An operation push1 that checks if the stack is
full is a different operation than the push operation given
above. It implements a different functionality!

154 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Pre- and Postconditions – Syntax

Boolean expressions like in programming languages
Example: x <> 0 and x <= y

Formulas, using logical connectives
Example: x 6= 0 ∧ x ≤ y

Natural language
Example: “x must not be equal to zero, and x must be
less than or equal to y”

155 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Class invariants

Condition that holds for all objects of a class, in the initial
state, before and after each operation.

Example: class invariant for Stack: 0 ≤ nb elements

156 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

State Machines

Consist of states and transitions between these states.

Example: two states with transitions

state_1

state_2

transition_1

transition_2

157 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Transitions, initial states

1

Transition:

e: input signal
g: guard (boolean
expression)
a: output signals or actions,
seperated with commas

A transition is taken when g
is true and e occurs. Then, a
is sent/executed.

Each state machine must
have an initial (pseudo-) state
that points to another state

1Several figures taken from UML Superstructure Specification, v2.0
(709 Pages), http://www.omg.org/docs/formal/05-07-04.pdf

158 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

State Lists

C

insignal1 /

BA

insignal1 /

A, B

C

insignal1 / =̂ outsignal1 outsignal1 outsignal1

It is allowed to combine states.

159 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

State References

C

insignal1 /

BA

=̂

CC

A

insignal2 /

B

insignal2 /
insignal1 /

 outsignal1 outsignal2 outsignal1 outsignal2

It is allowed to repeat states.

160 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Composite States

=̂

C

insignal1 /

A

B insignal2

insignal2
insignal2

C

insignal1 /

A

B

AB

 outsignal1 outsignal1

“XOR” hierachical states. When the state machine is in state
AB, it is either in state A or in state B.

161 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Referenced Composite States

=̂
insignal2

C

C
insignal2

insignal1 /

A

B

AB

AB

 outsignal1

insignal1 /

A

B

AB

 outsignal1

162 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Regions

“AND” hierarchical (parallel) states. When the state machine
is in state S , it is in all regions at the same time. To eliminate
regions, one has to form the Cartesian product of the states of
the (two or more) regions.
Alternative: Do not use regions, but define a separate active
class (and corresponding state machine) for each parallel state
machine.

163 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Choice States

No “real” states (the state machine cannot stay in such states,
events are not processed); they are only used to make case
distinctions.

164 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Entry and Exit Points

Entry points can be used to go directly to a specified state
inside a composite state.
Exit points can be used to leave the composite state from a
specified state and go to another state outside (that is
connected with the exit point).

165 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Example: Reference to Sub-State Machines with
Entry and Exit Points

166 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Final State and Terminate Node

A final state indicates, that the composite state will be left.

A terminate node indicates that the object will be destroyed.

167 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Sub-State Machines: Example ATM (1)

168 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Sub-State Machines: Example ATM (2)

169 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

History

When a composite state is re-entered, the sub-state is entered
that was most recently left.

Recursive history connector. May be useful when substates are
also hierarchically structured.

170 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Difference between active and passive sensors I

Active Sensor: Sensor actively sends its measured values (cyclic
or when they changed).

Passive Sensor: Sensor values have to be requested. We
distinguish between passive sensors that react
with and without delay.

ActiveSensor PassiveSensorWithoutDelay PassiveSensorWithDelay

actualValue(value: type) getValue()newValue(value: type) getValue(): type

sensor_interface_1 sensor_interface_2 sensor_interface_3b sensor_interface_3a

measured_value measured_value measured_value

sensor_interface_1 sensor_interface_2
sensor_interface_3b

sensor_interface_3a

Both are drawn as active classes because they are hardware
components, and hardware components usually work in parallel
with their environment.

171 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Difference between active and passive sensors II

HALActiveSensor
lastValue: type

HALPassiveSensorWithoutDelay
lastValue: type

HALPassiveSensorWithDelay
lastValue: type

"getIALValue()" returns lastValue

wait_for_
new_value

wait_for_
clock

wait_for_
next_value

[x <> lastValue]

clock()

[ELSE]
[getValue() <> lastValue]
/ lastValue := getValue(),

sensor_interface_1 sensor_interface_2
sensor_interface_3b

sensor_interface_3a

newIALValue() getIALValue(): type

actualValue(x)

newIALValue(lastValue)

[ELSE]

/ getValue()

send_if_to_IAL

send_if_to_IAL send_if_to_IAL send_if_to_IAL get_if_for_IAL

get_if_for_IAL

get_if_for_IALget_if_for_IAL

/ lastValue := x,

newIALValue(x)

/ getValue()

newValue(x) / lastValue:= x,
 newIALValue(x)

The interface to the higher layer can be the same for all type of
sensors if this kind of HAL is used.

172 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Phase 9: Specify the software components of all
software architectures as state machines

input: interface behavior from Phase 8 sequence diagrams
with annotated
states

relationships between subproblems speci-
fied in Phase 5

grammars

output: component overview description with refer-
ences to interface classes

class diagram with
ports, sockets and
lollipops

data types and operations class diagrams
defined using pre- and postconditions formulas or natu-

ral language
state machines state machine dia-

grams
invariants formulas or natu-

ral language

validation: consistent with interface behavior from
Phase 8
completeness of state machines (implies
error-cases for user-interaction)
a class must be active if it contains an ac-
tive class or a timer

173 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Executing Phase 9 I

For each component, the following steps should be performed:

Decompose the component if necessary. In this case, add
descriptions of new interface classes.

Draw an active (e.g., behaves like hardware, contains a
clock) or passive (e.g., calculation-routine) class with its
interfaces as a component overview description.

174 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Executing Phase 9 II

For each subproblem and each component, the following steps
should be performed:

Design a state machines that implements the behavior of
all sequence diagrams specified in Phase 8.

Add necessary data as attributes to the component
overview description.

In case of complex data or complex operations on data
types: add classes for data types.

Specify pre- and postconditions for all operations of
introduced classes.

Complete the state machines, i.e. there must be a
specified reaction to each possible input signal.

Add class invariants to introduced classes if possible.

175 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Executing Phase 9 III

To merge the different state machine associated with one
component, the following steps should be performed:

The state machine diagrams can be merged according to
the case distinction we made in Phase 7:

Case 1 (The components are hardware (HAL) or interface
abstraction layers (IAL), establishing the connection to
some hardware device): often the state machines will
already be equal, because they describe the same device. If
not, the state machines must be merged manually. In
many cases, we only need to add the additional signals to
the appropriate states.
Case 2 (Two application components belong to
subproblems being related sequentially or by alternative):
the composition can be achieved by using composite
states. The connecting arcs between the sub-automata
depend on the problem.

176 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Executing Phase 9 IV

Case 3 (Two application components belong to parallel
subproblems and share some output phenomena): here,
the merge depends on the problem to be solved. The
priorities from Phase 5 have to be taken into account.
Case 4 (Two application components belong to parallel
subproblems and share some input phenomena): the merge
has to be performed manually.
Case 5 (Two application components belong to parallel
subproblems and do not share any interface phenomena):
no merge should be performed, see Phase 7.

When state machines are merged, for each state it must
be checked if it can handle all events that can occur.

177 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Remarks

In contrast to Phase 8, the behavior must be described
completely for each subproblem since the state diagrams
form the basis for the implemention.

To validate the results, it should be assured that each
composed state machine is complete and covers all input
events that can be sent by the components with an
interface to the composed state machine.

178 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Example 1: traffic light control

179 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Global software architecture

 Driver Driver
 Driver
 Request

AbstractionIAL

TrafficLightApplication

InductionLoop LightsInterface

 LightsDriver InductionLoop BrokenLight Emergency

 Microcontroller

emergency
request button at

LightsControl

TrafficLightsController

er_if’bl_if’

lights_on_off_if’

lights_state_if

srr_if’

srr

irq8ports irq9irq7

induction loop
to detect cars
on secondary

road
fire brigade

bl_if

lights_on_off_if

er_if
srr_if

180 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component TrafficLightApplication I

The component TrafficLightApplication is an active component
since it contains a clock. The following overview diagram is not
strictly necessary since this component is decomposed as shown
on the following slide.

bl_if er_if

TrafficLightApplication

srr lights_state_if

The component TrafficLightApplication is split into the
subcomponents TrafficLightBehavior, Clock, and
TimeOutTimer. These components are specified separately.

181 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component TrafficLightApplication II

TrafficLightApplication

 Clock TimeOutTimer

 TrafficLightBehavior

srr
lights_state_if

timeoutset_timeout

ms_clock

bl_if’ er_if’

182 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component TrafficLightApplication III

〈〈interface〉〉
ms clock

MsClock ()

〈〈interface〉〉
set timeout

SetTimeOut (seconds: Integer)

〈〈interface〉〉
timeout

TimeOut ()

183 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component Clock

Clock component overview

Clock
ms_clock

The component is an active component since it has to
work in parallel with all other components and generates
cyclic signals.

Usually it is a standard component, contained in the
operating system. Hence, it is not specified here.

184 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component TimeOutTimer I

TimeOutTimer component overview

−remainingTime: Long

set_timeout

− SetTime (Time: Long)

− IsZero (): Boolean

− DecTime ()

TimeOutTimerms_clock

timeout

Additionally, it contains a data type and operators for the
remaining time.

The state machine uses this data.

The component is a passive component, since it reacts
immediately to the input signals of the clock.

185 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component TimeOutTimer II

TimeOutTimer operations
IsZero()

pre true

post Result = true ⇔ remaining time = 0

SetTime(x)

pre x > 0

post remaining time = x

DecTime()

pre remaining time 6= 0

post remaining time = remaining time@pre −1

186 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component TimeOutTimer III

TimeOutTimer state machine

TimeOutTimer

RunningStopped

 / SetTime (seconds * 1000)

MsClock ()
[ELSE]

MsClock () / DecTime()

 / SetTime (seconds * 1000)
SetTimeOut (seconds)

SetTimeOut (seconds)

/ SetTime(0)

[IsZero()] / TimeOut ()

TimeOutTimer invariants
For the state machine and the data of the component the
following additional invariant must always be true:

In state Stopped ⇒ remaining time = 0
In state Running ⇒ remaining time > 0

187 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component TrafficLightBehavior I

TrafficLightBehavior component overview

another_vehicle_waiting: boolean

bl_if er_if

TrafficLightBehavior

srr lights_state_if

set_timeout timeout

It is a passive component since it reacts immediately to
input signals.

The attribute another vehicle waiting was added later.

188 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component TrafficLightBehavior II

TrafficLightBehavior state machine for SecondaryRoadPassing

ALL_WAIT_S

SEC_PASSING_

WILL_START

SEC_PASSING

WILL_END
SEC_PASSING_

SEC_PHASE

TimeOut () / sec_yellow_red(), SetTimeOut(1)

TimeOut () / sec_green(), SetTimeOut(10)

/SetTimeOut (3)

TimeOut () / sec_red()

TimeOut () / sec_yellow(), SetTimeOut(1)

189 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component TrafficLightBehavior III

TrafficLightBehavior state machine for MainRoadPassing

MAIN_PASSING_
WILL_START

MAIN_PASSING srr() / another_vehicle_waiting:= true

LONG_ENOUGH

TimeOut ()

[ELSE]

MAIN_PASSING_
WILL_END

MAIN_PASSING_

srr() / another_vehicle_waiting:= true

srr() / another_vehicle_waiting:= true
ALL_WAIT_M

MAIN_PHASE

TimeOut () /

main_red()

[another_vehicle_waiting] / main_yellow(), SetTimeOut(1)

srr() / main_yellow(),

SetTimeOut(1)

/ SetTimeOut (3)

TimeOut () / main_yellow_red(), SetTimeOut(1)

TimeOut () / main_green(), SetTimeOut(20)

The attribute an-
other vehicle waiting
is added to store a
secondary road
request.

The state machine
is using this data.

190 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component TrafficLightBehavior IV

TrafficLightBehavior
state machine for
EmergencyRequest
In this state ma-
chine, the states
of the other state
machines are re-
peated (in blue)
to express the
behavior without
changing all other
state machines.

MAIN_PASSING,

MAIN_PASSING_WILL_END,

MAIN_PASSING_LONG_ENOUGH

MAIN_PASSING_WILL_START,

ALL_WAIT_M,
ALL_WAIT_S

SEC_PASSING_
WILL_START

SEC_PASSING,
SEC_PASSING_
WILL_END

FIRE_ALL_WAIT

FIRE_
MAIN_PASSING_
WILL_END

FIRE_
SEC_PASSING_
WILL_START

FIRE_

FIRE_

SEC_PASSING_

SEC_PASSING_
WILL_END

FIRE_PHASE

TimeOut ()

emergency_request_end () /

emergency_request_end () /

emergency_request_end () /

emergency_request_end () /

/ sec_green()

TimeOut () /sec_green()

TimeOut () / sec_yellow_red(), SetTimeOut(1)

sec_yellow(), SetTimeOut(1)

TimeOut () / main_red(), SetTimeOut(3)

main_red(), SetTimeOut(1)

 / main_yellow(), SetTimeOut(1)

SetTimeOut(3), sec_red()
TimeOut () /

sec_yellow(), SetTimeOut(1)

sec_yellow(), SetTimeOut(1)

191 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component TrafficLightBehavior V

TrafficLightBehavior State Machine for BrokenLightSafeState

BROKEN_PHASE

BROKEN_

ALL_WAIT

BROKEN_

BLINK_ON

BROKEN_

BLINK_OFF
TimeOut () / all_off (),

 SetTimeOut(1)

TimeOut() / all_off(), SetTimeOut(1)

TimeOut() / sec_yellow(), SetTimeOut(1)

/ SetTimeOut(3), main_red(), sec_red()

192 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component TrafficLightBehavior VI

TrafficLightBehavior merged state machine
This component is contained in all subproblems. The attribute
another vehicle waiting is only contained in the subproblem
MainRoadPassing. Therefore, in the state machines for the
other subproblems this attribute must be considered:

In the subproblem SecondaryRoadPassing, the signal srr
must not change the attribute another vehicle waiting,
since the cars on the secondary road are allowed to pass
and they are not waiting.

In the subproblem EmergencyRequest, the signal srr must
not change the attribute another vehicle waiting, since the
cars on the secondary road are allowed to pass and they
are not waiting.

193 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component TrafficLightBehavior VII

On start-up, each time the main phase is activated the
attribute another vehicle waiting must be set to false.

Since the subproblems MainRoadPassing and
SecondaryRoadPassing are related sequentially, one state
machine will be activated as soon as the other state machine
terminates. The state machines for the subproblems
EmergencyRequest and BrokenLightSafeState are parallel and
activated with the signals broken light() or
emergency request start(). Once activated, they take control
over the output signals. Additionally, the initialization sequence

194 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component TrafficLightBehavior VIII

is considered.

SEC_PHASE

srr ()

srr ()

MAIN_PHASE

BROKEN_PHASE

TrafficLightBehavior

/another_

FIRE_PHASE

emergeny_request_start()

emergeny_request_start()

broken_light ()

broken_light ()

vehicle_
waiting:= false,

 main_red (),
 sec_red ()

waiting:= false

/another_vehivle
waiting:= false

/another_vehicle

broken_light ()

srr ()

H

H

H

195 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component: InductionLoopIAL I

InductionLoopIAL component overview and state machine for
MainRoadPassing

InductionLoopIAL

srr

srr_if’

InductionLoopIAL

wait_for_srr

srr ()
vehicle_waiting () /

It is a passive component since it reacts immediately to input signals.

This component is only contained in subproblem
MailRoadPassing, and no merge is performed.

196 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component LightsInterfaceAbstraction I

LightsInterfaceAbstraction component overview

LightsInterfaceAbstraction

lights_state_if

lights_on_off_if

It is a passive component since it reacts immediately to
input signals.

197 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component LightsInterfaceAbstraction II

LightsInterfaceAbstraction
state machine for MainRoad-
Passing

wait_for_l_change

LightsInterfaceAbstraction

main_yellow_red ()/
m_red (true),
m_yellow (true),
m_green (false)

main_yellow ()/

main_green ()/

main_red ()/
m_red (true),
m_yellow (false),
m_green (false)

m_red (false),
m_yellow (true),
m_green (false)

m_red (false),

m_green (true)
m_yellow (false),

LightsInterfaceAbstraction
state machine for Secondary-
RoadPassing

wait_for_l_change

LightsInterfaceAbstraction

sec_yellow_red ()/
s_red (true),
s_yellow (true),
s_green (false)

sec_red ()/
s_red (true),
s_yellow (false),
s_green (false)

sec_yellow ()/
s_red (false),

s_yellow (true),
s_green (false)

sec_green ()/

s_yellow (false),
s_green (true)

s_red (false),

198 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component LightsInterfaceAbstraction III

LightsInterfaceAbstraction
state machine for Emergen-
cyRequest

wait_for_l_change

LightsInterfaceAbstraction

sec_yellow_red ()/
s_red (true),
s_yellow (true),
s_green (false)

sec_red ()/
s_red (true),
s_yellow (false),
s_green (false)

sec_yellow ()/
s_red (false),

s_yellow (true),
s_green (false)

sec_green ()/

s_yellow (false),
s_green (true)

s_red (false),

LightsInterfaceAbstraction
state machine for Broken-
LightSafeState

wait_for_l_change

LightsInterfaceAbstraction

all_off ()/

s_red (false),
m_red (false),

m_yellow (false),
s_yellow (false),
m_green (false),
s_green (false)

main_red ()/
m_red (true),
m_yellow (false),
m_green (false)

sec_red ()/
s_red (true),
s_yellow (false),
s_green (false)

sec_yellow ()/
s_red (false),
s_yellow (true),
s_green (false)

199 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component LightsInterfaceAbstraction IV

LightsInterfaceAbstraction global state machine

wait_for_l_change

LightsInterfaceAbstraction

wait_for_l_change

main_yellow ()/

main_green ()/

main_red ()/
m_red (true),
m_yellow (false),
m_green (false)

sec_red ()/
s_red (true),
s_yellow (false),
s_green (false)

m_red (false),
m_yellow (true),
m_green (false)

sec_yellow ()/
s_red (false),

s_yellow (true),
s_green (false)

m_red (false),

m_green (true)
m_yellow (false),

sec_green ()/

s_yellow (false),
s_green (true)

s_red (false),

main_yellow_red ()/ all_off ()/

sec_yellow_red ()/
s_red (true),
s_yellow (true),
s_green (false)

m_red (true),
m_yellow (true),
m_green (false)

s_red (false),
m_red (false),

m_yellow (false),
s_yellow (false),
m_green (false),
s_green (false)

200 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component: InductionLoopDriver

InductionLoopDriver component overview

InductionLoopDriver

irq7

srr_if

When this component receives the signal interrupt request 7, it emits
a srr signal.

It is a passive component since it reacts immediately to input signals
from the Microcontroller.

It is not specified here since it only converts the interrupt into a
signal for the IAL.

This component is only contained in subproblem MailRoadPassing and

need not be merged.
201 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component LightsDriver

LightsDriver component overview

LightsDriver

lights_on_off_if

ports

This component sets the ports to switch the lights on or off.

It is a passive component since it reacts immediately to input signals
from the IAL.

It is not specified here since it only passes on the input signals from
the IAL to specific ports of the microcontroller.

202 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component: BrokenLightDriver

BrokenLightDriver component overview

BrokenLightDriver

bl_if’

irq8

When this component receives the signal interrupt request 8, it emits
a broken light signal.

It is a passive component since it reacts immediately to input signals
from the Microcontroller.

It is not specified here since it only converts the interrupt into a
signal for the IAL.

This component is only contained in subproblem BrokenLightSafeState and

need not be merged.

203 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component: EmergencyRequestDriver

EmergencyRequestDriver component overview

EmergencyRequestDriver

portsirq9

er_if

When this component receives interrupt request 9, it reads out the
port connected to the emergency request switch and emits the signal
emergency request start() or the signal emergency request end().

It is a passive component since it reacts immediately to input signals
from the Microcontroller.

It is not specified here since it only reads out the input port in case of
an interrupt request and generates the signal for the IAL.

This component is only contained in subproblem EmergencyRequest and

need not be merged.
204 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component Microcontroller

Microcontroller component overview

The Microcontroller is a reused existing component.

It is not specified here since it is described in its datasheet.

It is an active component since it is a hardware
component.

The component requires and provides at least the same
interfaces as shown in the global software architecture.

205 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Validation

The state machines are consistent with the interface
behavior from Phase 8. All states are covered. Additional
states ending with PASSING WILL START are
introduced.

Each architectural component is covered, and in all state
machines each possible input signal (as specified in
Phase 7) is taken into account. The interface classes are
the same as in Phase 7.

206 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Example 2: sun blind control

207 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Global software architecture (repetition)

IALIAL

HAL

ToSpeedIAL

HAL

IAL IAL

Button SunSensor WindSensor Motor

WindSensorSunSensor Motor

HAL

Fin

HAL

SunSensor WindSensor Motor

Mikrocontroller

SunBlindApp

SunBlindController

WindPulse

Fins

usr_cmds sun_state

HAL

wind_kmh

wind_state

wind_speed’sun_intensity’ motor_state’

motor_ctrl’

ctrl

sun_blind_
 state

fin_ctrl’

sun_blind_

Button

button_state’

Buttons

button_state

motor_statesun_intensity wind_speed

motor_ctrl

PortsIrq6Irq7

fin_ctrl

208 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component SunControlApplication (repetition)

This component can be deomposed as follows:
SunBlindApp

SunBlindAppCtrl

SunDetection

usr_cmds

wind_state
ctrl

sun_blind_
 state

sun_blind_
sun_state_if

fin_ctrl’
sun_state

� interface �
sun state if

sun()
noSun()

209 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component SunDetection I

SunDetection component overview

SunDetection

t: Timer

sun_state_if

sun_state

210 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component SunDetection II

SunDetection state machine

NO_SUN

SUNWF_SUN

WF_NO_SUN

noSunShine () /

t.stop()

t.timeout() /

sunShine () /

noSunShine () /
t.stop()t.start(60)

t.timeout() /

noSun ()

SunDetection

sunShine () /

sun ()

t.start(240)

211 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component SunBlindAppCtrl I

SunBlindAppCtrl component overview

SunBlindAppCtrl

manTimer: Timer

manualControl: Boolean

h_wind: Boolean

sun_

blind_

state

sun_

blind_

ctrl

fin_

ctrl’
usr_cmds sun_state_if wind_

state

212 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component SunBlindAppCtrl II

SunBlindAppCtrl state machine for SunControl

SunBlindAppCtrl

CTRL

manuallyAdjustFinsWithNegativeDegree () /

manualControl := true,

manTimer.Start (4*3600)

manualControl := true,

manTimer.Start (4*3600)

manuallyAdjustFinsWithPositiveDegree () /
manTime.timeout () /

manualControl := false

h_wind := false

noHeavyWind () /

H

H

H

H

213 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component SunBlindAppCtrl III

��
��
��

��
��
��

LOWERED

manuallyOpenSunBlind() / manualControl:=true, CTRL

h_wind:=true,

manuallyCloseSunBlind() /

noSun() [manualControl==false] / pullUpSunBlind()

heavyWind() /

PULLED_UP

manuallyCloseSunBlind() [h_wind==false] / manualControl:=true,

manualControl:=true,

manualControl:=true,

manTimer.Start (4*3600)

manuallyCloseSunBlind() [h_wind==false] /

manTimer.Start (4*3600)

sun() [manualControl==false and manuallyOpenSunBlind()/

manTimer.Start(4*3600), pullUpSunBlind()

manTimer.Start(4*3600), lowerSinBlind()

h_wind==false] / loweringSunBlind()manualControl:=true,

manTimer.Start (4*3600)

214 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component SunBlindAppCtrl IV

SunBlindAppCtrl state machines for UserControl

SunBlindAppCtrl

CTRL

215 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component SunBlindAppCtrl V

LOWERED

CTRL

h_wind:=true,

manuallyCloseSunBlind() /

heavyWind() /

PULLED_UP
manuallyOpenSunBlind()/

 loweringSunblind()

manuallyCloseSunBlind() [h_wind==false] /

manuallyOpenSunBlind() /

pullUpSunBlind()

216 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component SunBlindAppCtrl VI

SunBlindAppCtrl state machine for FinsControl

CTRL
rotateFinsWithNegativeDegree ()

[h_wind==false] /

manuallyAdjustFinsWitgPositiveDegree () /

[h_wind=false] /

rotateFinsWithPositiveDegree ()

SunBlindAppCtrl

manuallyAdjustFinsWithNegativeDegree ()

H

H

217 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component SunBlindAppCtrl VII

SunBlindAppCtrl state machines for NoDestructControl

SunBlindAppCtrl

CTRL

h_wind := false
noHeavyWind () /

H

218 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component SunBlindAppCtrl VIII

LOWERING

PULLING_UP LOWEREDheavyWind() / h_wind:=true, pullUpSunBlind()

h_wind:=true,
heavyWind() /

sunBlindIsPulledUp () /
stopSunBlind()

heavyWind() /
h_wind:=true,

PULLED_UP

sunBlindIsLowered () /

stopSunBlind()
heavyWind() /

h_wind:=true,
stopSunBlind(),

pullUpSunBlind()

CTRL

219 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component SunBlindAppCtrl IX

SunBlindAppCtrl merged state machine

manuallyAdjustFinsWithNegativeDegree () /

SunBlindAppCtrl

CTRL

manualControl := false

manTime.timeout () /

h_wind := false
noHeavyWind () /

 [else]

 [else]

 [h_wind==false] /

 [h_wind==false] /

rotateFinsWithPositiveDegree ()

rotateFinsWithNegativeDegree ()

manuallyAdjustFinsWithPositiveDegree () /
manualControl := true,

manTimer.Start (4*3600)

manTimer.Start (4*3600),

manualControl := true

H

H

H

H

220 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component SunBlindAppCtrl X

PULLING_UP LOWEREDheavyWind() / h_wind:=true, pullUpSunBlind()

manTimer.Start(4*3600), pullUpSunBlind()

stopSunBlind()

sunBlindIsLowered () /

manuallyOpenSunBlind() / manualControl:=true, CTRL

h_wind:=true,
heavyWind() /

manuallyCloseSunBlind() /

manTimer.Start (4*3600)
manuallyOpenSunBlind() /

noSun() [manualControl==false] / pullUpSunBlind()

manuallyCloseSunBlind()

[h_wind==true] /

manualControl:=true,

manTimer.Start (4*3600)
manualControl:=true,
manTimer.Start (4*3600)

manuallyCloseSunBlind()
[h_wind==false] /

manTimer.Start
 (4*3600)

pullUpSunBlind()

stopSunBlind(),

h_wind:=true,
heavyWind() /

LOWERINGPULLED_UP

heavyWind() /
h_wind:=true,

manuallyCloseSunBlind()/

manuallyOpenSunBlind()/

manualControl:=true,

manuallyCloseSunBlind() [h_wind==true] /

manualControl:=true,

manTimer.Start (4*3600)

manualControl:=true,
manTimer.Start (4*3600)

manualControl:=true,
[h_wind==true] /
manuallyOpenSunBlind()

manTimer.Start (4*3600)

pullUpSunBlind()

stopSunBlind(),
manTimer.Start(4*3600),

manualControl:=true,

manuallyOpenSunBlind() /

manuallyCloseSunBlind() [h_wind==false] / manualControl:=true,

manTimer.Start(4*3600), loweringSunblind()

stopSunBlind(),

manualControl:=true, sunBlindIsPulledUp () /

stopSunBlind()

sun() [manualControl==false and
h_wind==false] / lowerSunBlind()

manTimer.Start(4*3600), lowerSunBlind()

lowerSunBlind(),

221 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component ButtonIAL I

ButtonIAL component overview

ButtonIAL

timer: Timer

usr_cmds

button_state’

222 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component ButtonIAL II

ButtonIAL state machine for SunControl and UserControl

NO_KEY

downButtonPushed’() /

downButtonReleased’() /

timer.timeout() / manualCloseSunBlind()

timer.start(3)

ButtonIAL

UP

DOWN

timer.stop()

upButtonReleased’() /

timer.timeout() / manualOpenSunBlind()

timer.stop()

upButtonPushed’() /
timer.start(3)

223 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component ButtonIAL III

ButtonIAL state machine for FinsControl

NO_KEY

timer.start(3)

ButtonIAL

DOWN

downButtonPushed’() /

upButtonReleased’() /

timeout()
UP

manuallyAdjustFins

WithNegativeDegree ()

downButtonReleased’() /
timer.stop(),
manuallyAdjustFinsWithNegativeDegree ()

upButtonPushed’() /

timer.start(3)

timer.timeout()

timer.stop(),

224 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component ButtonIAL IV

ButtonIAL merged state machine

NO_KEY

timer.start(3)

ButtonIAL

DOWN

downButtonPushed’() /

upButtonReleased’() /

UP

timer.stopt(),

manuallyAdjustFins

WithNegativeDegree ()

downButtonReleased’() /
timer.stop(),
manuallyAdjustFinsWithNegativeDegree ()

upButtonPushed’() /

timer.start(3)

timer.timeout() / manuallyCloseSunBlind()

timer.timeout() / manuallyOpenSunBlind()

225 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component ButtonHAL

ButtonHAL component overview

ButtonHAL

button_state’

ports

This component checks the port of the microcontroller
representing the state of the buttons every 20 ms and generates
the pressed and released signals if the state of the port changes.

226 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component SunSensorIAL I

SunSensorIAL component overview

SunSensorIAL

sun_intensity’

sun_state

This component is contained only in the subproblem
SunControl and need not to be merged.

227 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component SunSensorIAL II

SunSensorIAL state machine

SUN

NO_SUN

sunIntensity’(x) [x<32000] /

 noSunShine()

SunSensorIAL

sunIntensity’(x) [x>=32000] /

 sunShine()

228 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component SunSensorHAL

SunSensorHAL component overview

SunSensorHAL

sun_intensity’

irq7 ports

When this component receives an intrerrupt from irq7, it reads
out the port of the microcontroller where a new intentity is
stored and sends the sunIntensity signal.
This component is contained only in the subproblem
SunControl and need not to be merged.

229 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component WindSensorIAL I

WindSensorIAL component overview

WindSensorIAL

wind_state

wind_kmh

This component is the same for all subproblems and need not
to be merged.

230 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component WindSensorIAL II

WindSensorIAL state machine

NO_HEAVY_

WIND

HEAVY_WIND

 heavyWind()

windSpeed(x) [x<80] /

noHeavyWind ()

WindSensorIAL

windSpeed(x) [x>=80] /

231 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component WindPulseToSpeedIAL I

WindPulseToSpeedIAL component overview

WindPulseToSpeedIAL

t0: long

t1: Timer

date: Date

wind_kmh

wind_speed’

This component is the same for all subproblems and need not
to be merged.

232 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component WindPulseToSpeedIAL II

WindPulseToSpeedIAL state machine

NO_KEY

WindPulseToSpeedIAL

/ t1.start(), t0:=getTime()

windPulse’() /

t1.timeout() /

t1.start(10),

t1.start(10), windspeed(0)

t0:=getTime()

,windspeed(6000/(getTime()−t0)),

233 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component WindSensorHAL

WindSensorHAL component overview

WindSensorHAL

wind_speed’

irq8

When this component receives the signal interrupt req 8(), it
emits a windPulse signal.
This component is the same for all subproblems and need not
to be merged.

234 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component MotorIAL I

MotorIAL component overview

MotorIAL

motor_ motor_

ctrl’state’

sun_

blind_

ctrl
blind_

sun_

state

235 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component MotorIAL II

MotorIAL state machine for SunControl and UserControl

ONE_AND_

ONLY

MotorIAL

stopSunBlind () /

stopMotor ()

turnMotorRight’()
loweringSunBlind () /

pullingUpSunBlind () /

turnMotorLeft’()

236 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component MotorIAL III

MotorIAL merged state machine (Signals for
NoDesctructControl added)

ONE_AND_

ONLY

MotorIAL

stopSunBlind () /

turnMotorRight’()

turnMotorLeft’()

motorLeftBlocked’ () /

sunBlindIsPulledUp ()

sunBlindIsLowered ()

motorRightBlocked’ () / lowerSunBlind () /

stopMotor’ ()

pullUpSunBlind () /

237 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component MotorHAL I

MotorHAL component overview

MotorHAL

motor_

ctrl’

ports

motor_
state’

This component sets the ports to turn the motor left or right or
to stop it. It would be a passive component for the
subproblems SunControl, UserControl and FinsControl since it
reacts immediately to input signals. But it has to be an active

238 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component MotorHAL II

component, since it also checks the port of the microcontroller
representing the state of the motor every 10 ms and generates
the blocked signals if the state of the port changes (subproblem
NoDestructControl).

239 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component FinHAL

FinIAL component overview

FinHAL

state ctrl

fin_ fin_

ctrl’

fin_

state’

fin_

This component sets the ports to turn the fins left or right.
This component is contained only in the subproblem
FinsControl and need not to be merged.

240 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Component Microcontroller

Microcontroller component overview

Microcontroller

timertick

button_state sun_intensity wind_

speed

motor_

ctrl

ports irq6 irq7

The Microcontroller is a reused existing component. In this Figure, only

the interfaces relevant for the problem are shown.

241 / 241

ES

Heisel

Overview

Phase 6

Phase 7

Phase 8

Phase 9

Introduction

Concepts

Active and
passive classes

Pre- and
postconditions

Class invariants

UML 2.0 state
machine
diagrams

Active and
passive sensors

Procedure

Example - TLC

Example - SBC

Validation

The state machines behave as described in the sequence
diagrams of Step 8. All states are covered.

The interface classes are the same as in Phase 7.

SunDetection, ButtonIAL, and WindPulseToSpeedIAL are
active classes, because they contain timers.
SunBlindAppCtrl is active, because it contains the active
class SunDetection. MotorHAL is an active component
since it works in parallel with the other components.

The state machines handle all possible signals in all states.

242 / 241

ES

Heisel

Overview

Phase 10

Phase 11

Phase 12

Summary

Embedded Systems
WS 08/09

Maritta Heisel
Maritta.Heisel(AT)uni-duisburg-essen.de

Denis.Hatebur(AT)uni-duisburg-essen.de

University Duisburg-Essen – Faculty of Engineering
Department of Computer Science
Workgroup Software Engineering

1 / 92

file:Maritta.Heisel(AT)uni-duisburg-essen.de

ES

Heisel

Overview

Phase 10

Phase 11

Phase 12

Summary

Overview of development process (DePES) I

1. Describe system in use

2. Describe system to be built

3. Decompose problem

4. Derive a machine behavior specification for each
subproblem

5. Design global system architecture

6. Derive specifications for all components of the global
system architecture

7. Design an architecture for all programmable components
of the global system architecture that will be implemented
in software

2 / 92

ES

Heisel

Overview

Phase 10

Phase 11

Phase 12

Summary

Overview of development process (DePES) II

8. Specify the behavior of all components of all software
architectures, using sequence diagrams

9. Specify the software components of all software
architectures as state machines

10. Implement software components and test environment

11. Integrate and test software components

12. Integrate and test hardware and software

3 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Phase 10: Implement software components and
test environment

...

7. Design a software architecture for all components of the
global system architecture that should be implemented in
software

8. Specify the behavior of all components of all software
architectures, using sequence diagrams

9. Specify the software components of all software
architectures as state machines

10. Implement software components and test
environment

11. Integrate and test software components

12. Integrate and test hardware and software

4 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Phase 10: Implement software components and
test environment

input: software component behavior from
Phase 8

sequence diagrams
with annotated states

specification of merged components of
Phase 9

different notations

output: test software for software components programming lan-
guage or test lan-
guage

implemented software components programming lan-
guage

validation: run tests test results

5 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Notations and concepts

Java

Implementation of modules

Module tests

6 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Constants

in C++:

#define X 2

or const int X = 2;

in Java: final static int X = 2;

7 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Classes in Java

Always one file for one class, no header files

Name of constructor = name of class = name of file

There is no destructor, the garbage collection frees
memory of unused objects (e.g. for objects set to null).

The entry point of an application is
public static void main (String[] args)
in one class (file).

Note: Java is case sensitive.

8 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Objects in Java

All objects that are not simple data types such as
boolean, char, byte, short, int, long, float,
double have to be created explicitly.

For some simple data types predefined classes exist (e.g.
Integer for int). These classes provide methods like,
e.g., toString.

Create an object m of the class Integer:
Integer m = new Integer(0);

Or: Integer m; m = new Integer(0);

Attributes and methods declared as static belong to the
class and are the same for all objects.

super can be used to access functionality of the the
superclass.

this can be used to reference the object itself.

9 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Classes: Example

public class MainInit {

private Integer i; // Attributes

private String s;

public MainInit() { // Constructor

s = new String();

i = new Integer(7);

}

public static void main(String [] args) {

MainInit m = new MainInit();

}

}

10 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Abstract Classes

Methods that are not yet implemented can be defined as
abstract.

A class with at least one abstract method is an abstract
class.

Abstract classes are useful for inheritance.

Java supports no multiple inheritance.

An abstract class has to be extended by another class
where the method has to be implemented (keyword:
extends).

It is not possible to create objects of an abstract class.

11 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Abstract Classes: Example

abstract makesound()

<<abstract>>

makesound() makesound()

<<class>> <<class>>

Animal

Dog Cat

public abstract class Animal {

public Animal(){}

public abstract void makeSound();

}

public class Cat extends Animal {

public Cat(){}

public void makeSound()

{System.out.println("miaow");}

}

public class Dog extends Animal {

public Dog(){}

public void makeSound()

{System.out.println("woof-woof");}

}

public class Main{

public static void main(String[] args) {

Animal a1 = new Dog();

Animal a2 = new Cat();

a1.makeSound(); a2.makeSound();

}

}

12 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Interface Classes

A class where all methods are abstract can be declared as
an interface.

A class can implement several interfaces (keyword
implements), but it can only extend one other class.

A class can be accessed using the interface.

An interface class has no constructor.

Solves problem of multiple inheritance.

13 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Interface Classes: Example

abstract makesound()

animal

dog

makesound() makesound()

cat
<<class>> <<class>>

<<interface>>

public interface Animal {

public void makeSound();

}

public class Cat implements Animal {

public Cat(){}

public void makeSound()

{System.out.println("miaow");}

}

public class Dog implements Animal {

public Dog(){}

public void makeSound()

{System.out.println("woof-woof");}

}

public class Main{

public static void main(String[] args) {

Animal a1 = new Dog();

Animal a2 = new Cat();

a1.makeSound(); a2.makeSound();

}

}

14 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Exceptions

Methods can throw exceptions
public int div(int n1, int n2) throws Exception {

if (n2==0) throw Exception;

...

}

Exceptions can be handled with try and catch
try {

a = div(b,c);

} catch (Exception e) {

System.out.println(e); //println internally calls e.toString()

}

Other exceptions are e.g. IOException,
ClassNotFoundException, ArithmeticException,
OutOfMemoryError, Error.

15 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Assertions

Assertions can be used to specify (and check) the
pre-conditions and possibly post-conditions of a method.

Assertions are defined using

assert condition==true: "ErrorString";

Assertions are introduced in Java 1.5, they are only
evaluated using the execution switch “evaluate assertions”:

java -ea

Exceptions thrown by assertions cannot be caught.

16 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Threads (, Tasks with shared memory)

Threads are necessary for active components.

Systems with one processor use time slices to simulate
parallelism for several threads.

The started thread runs “in parallel” to the other parts of
the software.
Threads in Java support the following functionality:

start starts the Thread
interrupt stops the thread

setName Assigns a name to the thread.
sleep Waits the time given as a parameter in ms.
yield Advises the scheduler to run another thread at this time.

setPriority Assigns a priority to the thread. Threads with a higher
priority get more execution time or they preempt the
other tasks (depends on OS).

17 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Example: Threads

import java.lang.*; // import library functionality

public class Clock extends Thread{

private ms_clock clk; // Attributes

public Clock(ms_clock call) { // Constructor

clk = call;

this.start();

}

public void run () { // Thread

while (true) { // endless Loop

clk.MsClock();

try {

Thread.sleep(1); //this.sleep(1) is also possible

} catch (Exception e) { // when thread is interrupted

System.out.println(e); // using interrupt()

}

}

}

}

18 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Example: Threads with runnable interface
(alternative way)

import java.lang.*;

public class Clock implements Runnable{

private Thread clockThread; // Attributes

private ms_clock clk;

public Clock(ms_clock call) { // Constructor

clk = call;

clockThread = new Thread (this);// an object of type Thread

clockThread.start(); // must be created with the

} // object of Clock as a param.

public void run () { // Thread

while (true) { // endless Loop

clk.MsClock();

try {

Thread.sleep(1);

} catch (Exception e) {

System.out.println(e);

}

}

}

}

Must be used if the class extends another class.
19 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Problem: Concurrent access to variables

setVal(...)
x[0] = a
x[1] = b
x[2] = c

getSum()
a = x[0];
b = x[1];
c = x[2];

setVal(...)
x[0] = a

getSum()
a = x[0];
b = x[1];
c = x[2];

x[2] = c
x[1] = b

Thread 1 Thread 2

wrong Value

time

getSum() is executed
before the array is
filled completely.

20 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Solution: Synchronize

public class SharedMemSum {

private int[] x;

public SharedMemSum () {

x = new int [3] ;

x[0]=0; x[1]=0; x[2]=0;

}

synchronized void setVal(int a, int b, int c) { //called from T. 1

x[0] = a; x[1] = b; x[1] = c;

}

synchronized int getSum() { //called from Thread 2

int a,b,c;

a=x[0]; b=x[1]; c=x[2];

return a+b+c;

}

}

The statement synchronized makes a method
non-interruptable.

21 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Implementation of modules / software components
I

A module has provided and required interfaces that can be
connected with other modules

A module only uses functionality from its required
interfaces, from the programming language, and a limited
set of operations of the operating system (e.g., tasks,
threads, memory allocation, timers, messages,
synchronization mechanisms).

Active components are implemented using threads.

22 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Implementation of modules / software components
II

Interfaces can be implemented using

directly called methods,
methods in interface classes, or
messages, e.g.

delegates in C],

events in Java,

signals and slots in C++ with the Qt-library,

messages in the Windows API.

Messages usually allow asynchronous communication (with
queuing) and in some frameworks multiple consumers are
allowed.

23 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Implementation of interfaces I

Loose and tight coupling is possible for interfaces between
components.

For tight coupling methods are called directly.

Tight coupling of objects can only be implemented if the
called object is created by the calling class.

Tight coupling usually needs less resources and can also be
implemented using non-oo languages.

For loose coupling (methods in interface classes) the
objects are created by a different class. The object that
uses an interface of another object needs a reference to
the used object. The reference can be provided in the
constructor or in an additional method to connect the
objects.

24 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Implementation of interfaces II

With loose coupling, the object can be implemented
independently of its environment. The object becomes a
component. Messages also implement a loose coupling.
Loose coupling is better for the implementation of module
tests.

25 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Implementation of interfaces in Java

� interface �
if name

method 1 (par1: Integer)
method 2 (): String

package project_name;

public interface if_name {

public void method_1 (int par1);

public String method_2 ();

}

The project name should be added as a package. Otherwise
additional parameters are necessary to compile the project.
Note: int is a simple data type and and String is a class.

26 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Implementation of provided interfaces in Java I

Tuner

bat2: Batterybat1: Battery

AndSpeeker
Amplifier

PowerSupply PowerSupply

LineInOut

Each provided interface is defined as a interface class, e.g.:

public interface LineInOut {

public void transmitMusic();

}

public interface PowerSupply {

public void powerOn();

}

27 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Implementation of provided interfaces in Java II

A component can implement / provide several interfaces, e.g.:

public class AmplifierAndSpeeker implements

LineInOut, PowerSupply {

public AmplifierAndSpeeker (){} //constructor

public void transmitMusic() { Play;}

public void powerOn() { Action2;}

}

All provided operations must be implemented as methods.

28 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Implementation of required interfaces in Java I

A component can use / require several interfaces, defined as
interface classes.

public class Tuner implements PowerSupply {

private LineInOut outputDevice;

public Tuner(){ outputDevice = NULL; }

public void connectTo(LineInOut par) {outputDevice = par;}

public void powerOn() {

while (true) {

if (outputDevice!=NULL) outputDevice.transmitMusic();

}

}

29 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Implementation of required interfaces in Java II

The required interfaces become private attributes
(outputDevive of type LineInOut).

The component has to provide a method to connect the
component to the required component (connectTo). In
this connect method, the private attributes is initialized.

Using this private attribute, the connected component can
be used. It should only be used if it is initialized (if
(outputDevice!=NULL) ...).

Alternatively, it is possible to leave out the method connectTo
and initialize the connected interface in the constructor.

The component Tuner also provides the interface
PowerSupply and implements the method powerOn.

30 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Implementation of required interfaces in Java III

public class Battery {

public Battery(){ suppliedDevice=NULL }

private PowerSupply suppliedDevice;

public void connectTo(PowerSupply suppliedDevice) {

suppliedDevice.powerOn();

}

}

The component Battery powers on the supplied device when
connected. It requires the interface PowerSupply.

31 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Implementation of required interfaces in Java IV

The components bat1, bat2, myTuner, and myAmp can be
connected as follows:

Tuner

bat2: Batterybat1: Battery

AndSpeeker
Amplifier

PowerSupply PowerSupply

LineInOut

32 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Implementation of required interfaces in Java V

AmplifierAndSpeeker myAmp = new AmplifierAndSpeeker();

Tuner myTuner = new Tuner();

Battery bat1 = new Battery();

Battery bat2 = new Battery()

myTumer.connectTo(myAmp);

bat1.connectTo(myTuner);

bat2.connectTo(myAmp);

33 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Implementation of state machines in Java I

Can be implemented in different ways; here just one alternative
is shown.

Define a constant for each state.

Set the initial state in the constructor.

Create a method for each incoming signal.

Add a case distinction containing all possible states to this
method.

In each case emit the specified output signals and set the
new state of the state machine.

Add appropriate handling for the parameters of the signals.

Add a default case.

34 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Implementation of state machines in Java II

[id>10] /
[id<=10] /

req (id)

m:= id*2
minor (id),

major (id)

IDLE

BUSY

public class ComponentName implements provided_if {

static final int IDLE = 0, BUSY = 1;

private int state;

private req_if ri; private m;

public ComponentName (req_if ri_) {

state = IDLE // Init state

ri = ri_;

}

public void req(int id) {

switch (state) {

case IDLE:

if (id<=10) {

if (ri!=NULL) ri.minor (id);

m = id*2; state = BUSY;

} else {

if (ri!=NULL) ri.major (id);

state = BUSY;

}

break;

default:

assert false: "FSM error Req";

}

} ...

} 35 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Module Tests I

sd Testcase

ProcessName
Component Under

Test Test Driver

request()

reply(3)

check_reply(3)

OK

Sequence diagrams can be transformed into test cases.

A signal to the module can be implemented as a method
call to the module (must belong to a provided interface).

36 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Module Tests II

For each required interface, a test driver that provides the
required interfaces is necessary. It has to store the signals
and the parameters called from the module to be tested.
The test driver also needs an interface to check which
methods (with which parameters) were called.

Each signal in the sequence diagram from the tested
module will be implemented as a command to the driver to
check which methods (with which parameters) were called.

If a timing constraint is given, it must be checked that the
signal (method call) occurred within the given interval
(not before and not too late).

If a sequence diagram contains a combined fragment ALT,
then for each alternative a test case must be implemented.

37 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Module Tests III

If the sequence diagram contains variables, suitable sample
values must be used for testing. Try to use also values at
the limit of the range and out of the range.

If a sequence diagram describes a typical interactions, also
implement test cases for similar interactions and
exceptional behavior. (In this case you have to check the
state machines to find out the expected behavior.)

38 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Phase 10: Implement software components and
test environment

input: software component behavior from
Phase 8

sequence diagrams
with annotated states

specification of merged components of
Phase 9

different notations

output: test software for software components programming lan-
guage or test lan-
guage

implemented software components programming lan-
guage

validation: run tests test results

39 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Executing Phase 10

In general, the procedure to implement and test software
components using an object oriented programming languages
can be described as follows:

1. Create interface classes for all internal interfaces (also for
subcomponents).

2. Implement test drivers and cases for all components
(except HAL) according to the sequence diagrams of
Phase 8.

3. Create classes for all (sub-)components and implement
them.

Implement actions as private methods.
Implement the state machine.
Implement the active classes with threads.
Check all classes if there is a concurrent access to complex
variables and resolve this problem with the synchronized
statement.

4. Run test cases. 40 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Remarks I

Only the software components are implemented in this
phase. They will be connected / integrated in the next
phase.

The validation of this phase is performed by running the
test cases (unit test).

The HAL is difficult to test because the hardware is
directly connected to the HAL. Therefore, manual tests
using measurement equipment and debugging tools should
be performed.

Real-time functionality must be tested in an emulator.

41 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Remarks II

The software components are implemented using some
simple heuristics. For embedded systems, usually a static
connection between components is established. The
connectors in the composite structure diagrams can be
implemented e.g. as data streams, method calls,
asynchronous messages, or hardware access.

This development process allows developing statically
linked software components with the possibility of reuse.

42 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Example 1: traffic light control

43 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Create interface classes

<<interface >>

main_red ()
sec_red ()
main_yellow ()
sec_yellow ()
main_green ()
sec_green ()
main_yellow_red ()
sec_yellow_red ()
all_off ()

lights_state_if

package tlc;

public interface lights_state_if {

public void main_red();

public void sec_red();

public void main_yellow();

public void sec_yellow();

public void main_red_yellow();

public void sec_red_yellow();

public void main_green();

public void sec_green();

public void all_off();

}

44 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Implement test environment

The test environment consists of the test drivers for all
required interfaces and the test cases.

The test drivers stores the called methods and their
parameters.

The test drivers provides an interface to check the stored
methods and parameters.

Tests should be performed for all components, except
HAL.

The Hardware Abstraction Layer should be tested
manually, because you need hardware to test them.

45 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Test environment for LightsInterfaceAbstraction

: LightsInterface
Abstraction

: Lights

TestDriver

:TestCases

:TestTrafficLightsControlIAL

lights_on_off_if’

lights_state_if

check_lights_if

Test cases according Phase 8.

46 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Implementation of LightsTestDriver for
lights on off if′

class LightsTestDriver implements lights_on_off_if_ {

private boolean _m_red = false;

private boolean _s_red = false;

private boolean _m_yellow = false;

private boolean _s_yellow = false;

private boolean _m_green = false;

private boolean _s_green = false;

public void m_red (boolean x) { _m_red = x;}

public void s_red (boolean x) { _s_red = x;}

public void m_yellow (boolean x) { _m_yellow = x;}

public void s_yellow (boolean x) { _s_yellow = x;}

[...]

public boolean checkColor(boolean mr, sr, my, sy, mg, sg) {

return ((_m_red == mr) && (_s_red == sr) &&

(_m_yellow == my) && (_s_yellow == sy) &&

(_m_green == mg) && (_s_green == sg)) ;

}

}

47 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Implementation of test cases for
LightsInterfaceAbstraction

sd LightsIA 1

LightsInterfaceAbstraction

main_red ()

m_red (on)

m_yellow (off)

m_green (off)

package tlc;

import junit.framework.TestCase;

public class LightsInterfaceAbstractionTest extends

TestCase {

LightsInterfaceAbstraction lia;

LightsTestDriver ltd;

public void testInit() {

// Initialize the test environment and the SUT

ltd = new LightsTestDriver();

lia = new LightsInterfaceAbstraction(ldt);

// check that all lights are off ofter init

assertTrue("one light is on", ltd.checkColor

(false, false, false, false, false, false));

}

public void test_lightsia_1() {

// send input signal

lia.main_red();

// checks result using the test driver

assertTrue("not only m_red on", ltd.checkColor

(true, false, false, false, false, false));

}

...

}

All test cases (name must start with test) are executed auto-

matically by JUnit.

48 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Test environment for the application component

TestDriver

: LightsApp

:TestCases
Application

:TestAppTrafficLightsControl

: Timer
TestDriver

: TrafficLightBehavior

srr_if’

lights_state_if

bl_if’

er_if’
set_timeouttimeout

Test cases according to Phase 8.

49 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Implementation of test driver for set timeout

package tlc;

class TimerTestDriver implements set_timeout {

int sec = -1;

public void SetTimeOut(int seconds) {

sec = seconds;

}

public boolean checkSetTimeOut(int second) {

boolean ret = (sec == second); sec = -1;

return ret;

}

}

Reset of sec to enable two consecutive checks with same value.

50 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Implementation of LightsTestDriver for
lights state if

class LightsAppTestDriver implements lights_state_if {

int color = 0;

public final static int M_R = 1;

public final static int S_R = 2;

public final static int M_RY = 3;

[...]

public final static int ALL_OFF = 9;

public void main_red(){ color = M_R; }

public void sec_red(){color = S_R; }

public void main_yellow(){color = M_Y; }

[...]

public void all_off(){color = ALL_OFF;}

public boolean checkColor(int colorNr) {

boolean ret = (colorNr == color);

color = 0;

return ret;

}

}

51 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Implementation of test cases for
TrafficLightBehavior I

sd Initialization

crossing, road
users on lanes

TLC, lights control,
lights

power_on()

sec_red ()

main_red ()

ALL WAIT M

package tlc;

import junit.framework.TestCase;

public class TrafficLightBehaviorTest extends TestCase {

TrafficLightBehavior tlb;

LightsAppTestDriver lia;

TimerTestDriver tot;

public void testInitialization() {

// Initialize the test environment and the SUT

(System unter test).

52 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Implementation of test cases for
TrafficLightBehavior II

tlb = new TrafficLightBehavior();

lia = new LightsAppTestDriver();

tot = new TimerTestDriver();

tlb.ConnectTo(tot, lia);

// checks lights using the test driver

assertTrue("main_red not set", lia.checkColor(lia.M_R));

}

...

}

Only main red is checked due to limitation of the test driver since only the last
called is stored.

53 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Implementation of test cases for
TrafficLightBehavior III

sd Main Road Passing 2

crossing, road users
on lanes

waiting area of
secondary road

TLC main phase,
lights control, lights,

induction loop control

unit =
secondt=now

ALL WAIT M

main_yellow_red ()
{t+2.9 ..

t+3.1}

MAIN PASSING
WILL START

main_green ()
{t+3.9 ..

t+4.1}

MAIN PASSING

{>t+24} srr ()

main_yellow (){t=now}

MAIN PASSING
WILL END

main_red ()
{t+0.9 ..

t+1.1}

ALL WAIT S

54 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Implementation of test cases for
TrafficLightBehavior IV

package tlc;

import junit.framework.TestCase;

public class TrafficLightBehaviorTest extends TestCase {

...

public void testMainRoadPassing2() {

// ALL_WAIT_M

// simulate elapsed timer

tlb.Timeout();

// checks result using the test driver

assertTrue("main_red_yellow not set", lia.checkColor(lia.M_RY));

// checks timer setting using the test driver

assertTrue("timeout wrong", tot.checkSetTimeOut(1));

// simulate elapsed timer

tlb.Timeout();

// checks result using the test driver

assertTrue("main_green not set", lia.checkColor(lia.M_G));

// checks timer setting using the test driver

assertTrue("timeout wrong", tot.checkSetTimeOut(20));

// MAIN_PASSING

// simulate elapsed timer

tlb.Timeout();

55 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Implementation of test cases for
TrafficLightBehavior V

// sends directly a signals to the provided interfaces

tlb.srr()

// checks result using the test driver

assertTrue("main_yellow not set", lia.checkColor(lia.M_Y));

// checks timer setting using the test driver

assertTrue("timeout wrong", tot.checkSetTimeOut(1));

// MAIN_PASSING_WILL_END

// simulate elapsed timer

tlb.Timeout();

// checks result using the test driver

assertTrue("main_RED not set", lia.checkColor(lia.M_r));

// ALL_WAIT_S

}

...

}

The test runs faster than reality.

56 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Create classes for all (sub-)components

C_TimeOutTimer

−remainingTime: Long

set_timeout

− SetTime (Time: Long)
− IsZero (): Boolean
− DecTime ()

ms_clock

timeout

package tlc;

public class TimeOutTimer implements

ms_clock, set_timeout {

private timeout to;

private long remaining_time = 0;

public TimeOutTimer(timeout timeout_par)

{

to = timeout_par;

}

public void SetTimeOut(int seconds) {}

public void MsClock() {}

private void SetTime(long time) {}

private boolean IsZero() {}

private void DecTime() {}

}
All methods of all provided interfaces have to be implemented

(here: SetTimeOut, MsClock). An empty function body ({}) is
used to avoid error messages of the compiler.

57 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Implement actions as private methods

IsZero()

pre true

post Result = true ⇔
remaining time = 0

SetTime(time)

pre time ≥ 0

post remaining time = time

DecTime()

pre remaining time 6= 0

post remaining time =
remaining time@pre −1

package tlc;

public class TimeOutTimer implements

ms_clock, set_timeout {

...

private long remaining_time = 0;

...

private boolean IsZero() {

return (remaining_time == 0);

}

private void SetTime(long time) {

assert (time >= 0): "PRE: SetTime";

remaining_time = time;

}

private void DecTime() {

assert remaining_time!=0:

"PRE: DecTime";

remaining_time = remaining_time - 1 ;

}

}

58 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Implement the state machine as public methods I

� �
� �
� �

� �
� �
� �

TimeOutTimer

RunningStopped

 / SetTime (seconds * 1000)

MsClock ()
[ELSE]

 / SetTime (seconds * 1000)
SetTimeOut (seconds)

SetTimeOut (seconds)

/ SetTime(0)

[IsZero()] / TimeOut ()

MsClock () / DecTime()

59 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Implement the state machine as public methods II

package tlc;

public class TimeOutTimer implements ms_clock, set_timeout {

static final int STOPPED = 0;

static final int RUNNING = 1;

private int state;

...

public TimeOutTimer(timeout timeout_par) {

...

SetTime(0); state = STOPPED;

}

public void SetTimeOut(int seconds) {

switch (state) {

case STOPPED:

SetTime(seconds*1000); state = RUNNING; break;

case RUNNING:

SetTime(seconds*1000); break;

default:

assert false: "FSM error TimeOutTimer.SetTimeOut";

}

} ...

Do not forget the break-statement. Otherwise, the next case will also be

executed.
60 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Implement the state machine as public methods III

...

public void MsClock() {

switch (state) {

case STOPPED: // do nothing

break;

case RUNNING:

DecTime();

if (IsZero()) {

state = STOPPED;

to.Timeout(); // external interface

} // else: do nothing

break;

default:

assert false: "FSM error TimeOutTimer.MsClock";

}

} ...

}

61 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Implement the active classes with threads

C_Clock ms_clock

package tlc;

import java.lang.*;

public class Clock extends Thread{

private ms_clock clk;

public Clock(ms_clock call) {

clk = call;

this.start();

}

public void run () {

while (true) {

clk.MsClock();

try {

Thread.sleep(1);

} catch (Exception e) {

System.out.println(e);

}

}

}

}

62 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Check for concurrent access

For all classes: Check what methods of one class are called
from different threads.

No synchronized statement is necessary because no
complex attributes are shared between methods called by
different threads.

63 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Validation: run tests

Output of JUnit test environment:
Test result with one error:
Testsuite: tlc.TrafficLightBehaviorTest

Tests run: 33, Failures: 1, Errors: 0, Time elapsed: 0,217 sec

Testcase: testInit(tlc.TrafficLightBehaviorTest): FAILED

main_red not set

junit.framework.AssertionFailedError: main_red not set

at tlc.TrafficLightBehaviorTest.testInit(TrafficLightBehaviorTest.java:103)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)

at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)

Test tlc.TrafficLightBehaviorTest FAILED

Test result with no errors:
Testsuite: tlc.TrafficLightBehaviorTest

Tests run: 33, Failures: 0, Errors: 0, Time elapsed: 0,213 sec

64 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Example 2: sun blind control

65 / 92

ES

Heisel

Overview

Phase 10

Introduction

Notations

Java

Implementation
of modules

Module Tests

Procedure

Example - TLC

Example - SBC

Phase 11

Phase 12

Summary

Implementation of SunBlindContoller

See Netbeans-Project on http://swe.uni-due.de.

66 / 92

ES

Heisel

Overview

Phase 10

Phase 11

Introduction

Procedure

Example - TLC

Example - SBC

Phase 12

Summary

Phase 11: Implement software components and
test environment

...

7. Design a software architecture for all components of the
global system architecture that should be implemented in
software

8. Specify the behavior of all components of all software
architectures, using sequence diagrams

9. Specify the software components of all software
architectures as state machines

10. Implement software components and test environment

11. Integrate and test software components

12. Integrate and test hardware and software

67 / 92

ES

Heisel

Overview

Phase 10

Phase 11

Introduction

Procedure

Example - TLC

Example - SBC

Phase 12

Summary

Phase 11: Integrate and test software components

input: global software architecture from
Phase 7

composite structure dia-
grams

software behavior from Phase 6 sequence diagrams with an-
notated states

implemented software compo-
nents from Phase 10

programming language

output: implemented software programming language
test software for integrated soft-
ware

programming language or
test language

validation: run tests test results

68 / 92

ES

Heisel

Overview

Phase 10

Phase 11

Introduction

Procedure

Example - TLC

Example - SBC

Phase 12

Summary

Executing Phase 11

In general, the procedure to compose the software out of
components using an object oriented programming languages
can be described as follows:

1. Create a class for each subcomponent containing other
components to initialize all objects according to the
subcomponent-architecture.

2. Create a class MainInit to initialize all objects according
to the architecture from Phase 7.

3. Implement test cases for the connected components
(except HAL) according to the sequence diagrams of
Phase 6.

4. Run test cases.

69 / 92

ES

Heisel

Overview

Phase 10

Phase 11

Introduction

Procedure

Example - TLC

Example - SBC

Phase 12

Summary

Example 1: traffic light control

70 / 92

ES

Heisel

Overview

Phase 10

Phase 11

Introduction

Procedure

Example - TLC

Example - SBC

Phase 12

Summary

Create class containing all components of
TrafficLightsApplication I

TrafficLightApplication

 Clock TimeOutTimer

 TrafficLightBehavior

srr
lights_state_if

timeoutset_timeout

ms_clock

bl_if’ er_if’

71 / 92

ES

Heisel

Overview

Phase 10

Phase 11

Introduction

Procedure

Example - TLC

Example - SBC

Phase 12

Summary

Create class containing all components of
TrafficLightsApplication II

package tlc;

public class TrafficLightApplication {

// declare all components

private TrafficLightBehavior tlb;

private TimeOutTimer tot;

private Clock clk;

public TrafficLightApplication () { // constructor

// create all components, connect where possible

tlb = new TrafficLightBehavior();

tot = new TimeOutTimer(tlb);

clk = new Clock(tot);

}

public void connectTo(lights_state_if lsi) {

// connect remaining interfaces

tlb.connectTo(tot, lsi);

}

}

72 / 92

ES

Heisel

Overview

Phase 10

Phase 11

Introduction

Procedure

Example - TLC

Example - SBC

Phase 12

Summary

Create main class containing all components I

 Driver Driver
 Driver
 Request

AbstractionIAL

TrafficLightApplication

InductionLoop LightsInterface

 LightsDriver InductionLoop BrokenLight Emergency

 Microcontroller

emergency
request button at

LightsControl

TrafficLightsController

er_if’bl_if’

lights_on_off_if’

lights_state_if

srr_if’

srr

irq8ports irq9irq7

induction loop
to detect cars
on secondary

road
fire brigade

bl_if

lights_on_off_if

er_if
srr_if

73 / 92

ES

Heisel

Overview

Phase 10

Phase 11

Introduction

Procedure

Example - TLC

Example - SBC

Phase 12

Summary

Create main class containing all components II

package tlc;

public class MainInit {

// declare all components

private BrokenLightDriver bld;

private EmergencyRequestDriver erd;

private InductionLoopDriver ild;

private LightsInterfaceAbstraction lia;

private LightsDriver ld;

private TrafficLightsApplication tla;

public MainInit() {

// create all components, connect all components

ld = new LightsDriver(); // Actuators

lia = new LightsInterfaceAbstraction (ld);

tla = new TrafficLightApplication(); // Application

bld = new BrokenLightDriver(tlb); // Sensors

erd = new EmergencyRequestDriver(tlb);

ild = new InductionLoopDriver(tlb);

tla.ConnectTo(lia);

// Connect components and start Application

}

74 / 92

ES

Heisel

Overview

Phase 10

Phase 11

Introduction

Procedure

Example - TLC

Example - SBC

Phase 12

Summary

Create main class containing all components III

public static void main(String[] args) {

MainInit m = new MainInit();

}

}

Parameters are used to create connections according to the
software architecture. The order of initialisation is important.
Start with objects without required interfaces.

75 / 92

ES

Heisel

Overview

Phase 10

Phase 11

Introduction

Procedure

Example - TLC

Example - SBC

Phase 12

Summary

Test environment for integrated software

: TrafficLightApplication

: LightsInterface

Abstraction

: Lights

TestDriver

:TestCases

: InductionLoop

IAL

:TestTrafficLightsController

srr_if’

er_if’bl_if’

lights_on_off_if’

lights_state_if

check_lights_if

srr

Test cases according to Phase 6.

76 / 92

ES

Heisel

Overview

Phase 10

Phase 11

Introduction

Procedure

Example - TLC

Example - SBC

Phase 12

Summary

Implementation of test cases for
TrafficLightControl I

sd Initialization

crossing, road
users on lanes

TLC, lights control,
lights

power_on()

sec_red ()

main_red ()

ALL WAIT M

package tlc;

import junit.framework.TestCase;

public class TrafficLightBehaviorTest extends TestCase {

// declare components

TrafficLightApplication tla;

LightsInterfaceAbstraction lia;

LightsTestDriver ltd;

InductionLoopIAL il;

public void testInitialization() {

77 / 92

ES

Heisel

Overview

Phase 10

Phase 11

Introduction

Procedure

Example - TLC

Example - SBC

Phase 12

Summary

Implementation of test cases for
TrafficLightControl II

// Initialize the test environment and the SUT

(System unter test).

tla = new TrafficLightApplication ();

ltd = new LightsTestDriver();

lia = new LightsInterfaceAbstraction (ltd);

il. = new InductionLoopIAL(tla);

tla.ConnectTo(lia);

// checks lights using the testdriver

assertTrue("main_red and sec_red not set",

ltd.checkColor(true, true, false, false, false, false));

}

...

}

78 / 92

ES

Heisel

Overview

Phase 10

Phase 11

Introduction

Procedure

Example - TLC

Example - SBC

Phase 12

Summary

Implementation of test cases for
TrafficLightControl III

sd Main Road Passing 2

crossing, road users
on lanes

waiting area of
secondary road

TLC main phase,
lights control, lights,

induction loop control

unit =
secondt=now

ALL WAIT M

main_yellow_red ()
{t+2.9 ..

t+3.1}

MAIN PASSING
WILL START

main_green ()
{t+3.9 ..

t+4.1}

MAIN PASSING

{>t+24} srr ()

main_yellow (){t=now}

MAIN PASSING
WILL END

main_red ()
{t+0.9 ..

t+1.1}

ALL WAIT S

79 / 92

ES

Heisel

Overview

Phase 10

Phase 11

Introduction

Procedure

Example - TLC

Example - SBC

Phase 12

Summary

Implementation of test cases for
TrafficLightControl IV

package tlc;

import junit.framework.TestCase;

public class TrafficLightBehaviorTest extends TestCase {

...

public void testTLC_Main_Road_Passing_2() {

// ALL_WAIT_M

// wait 3 seconds

Thread.sleep(3000);

// checks lights state using the testdriver

assertTrue("main_red_yellow not set",

lia.checkColor(true, true, true, false, false, false));

// wait 1 second

Thread.sleep(1000);

// checks lights state (sec_green) using the testdriver

assertTrue("main_green not set",

lia.checkColor(false, true, false, false, true, false));

// MAIN_PASSING

// wait 21 seconds

Thread.sleep(21000);

// sends directly the srr signal to the provided interfaces

il.srr()

80 / 92

ES

Heisel

Overview

Phase 10

Phase 11

Introduction

Procedure

Example - TLC

Example - SBC

Phase 12

Summary

Implementation of test cases for
TrafficLightControl V

// checks result using the testdriver

assertTrue("main_yellow not set",

lia.checkColor(false, true, true, false, false, false));

// MAIN_PASSING_WILL_END

// wait 1 second

Thread.sleep(1000);

// checks lights state using the testdriver

assertTrue("main_red not set",

lia.checkColor(true, true, false, false, false, false));

// ALL_WAIT_S

}

...

}

81 / 92

ES

Heisel

Overview

Phase 10

Phase 11

Introduction

Procedure

Example - TLC

Example - SBC

Phase 12

Summary

Validation: run tests

Output of JUnit test environment:
Test result with one error:
Testsuite: tlc.TrafficLightBehaviorTest

Tests run: 24, Failures: 1, Errors: 0, Time elapsed: 3,345 sec

Testcase: testInit2(tlc.TrafficLightBehaviorTest): FAILED

main_red not set

junit.framework.AssertionFailedError: main_red and sec_red not set

at tlc.TrafficLightBehaviorTest.testInitialization(TrafficLightBehaviorTest.java:103)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)

at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)

Test tlc.TrafficLightBehaviorTest FAILED

Test result with no errors:
Testsuite: tlc.TrafficLightBehaviorTest

Tests run: 24, Failures: 0, Errors: 0, Time elapsed: 103,345 sec

82 / 92

ES

Heisel

Overview

Phase 10

Phase 11

Introduction

Procedure

Example - TLC

Example - SBC

Phase 12

Summary

Example 2: sun blind control

83 / 92

ES

Heisel

Overview

Phase 10

Phase 11

Introduction

Procedure

Example - TLC

Example - SBC

Phase 12

Summary

Implementation of SunBlindContoller

See Netbeans-Project on http://swe.uni-due.de.

84 / 92

ES

Heisel

Overview

Phase 10

Phase 11

Phase 12

Introduction

Procedure

Summary

Phase 12: Integrate and test hardware and software

...

7. Design a software architecture for all components of the
global system architecture that should be implemented in
software

8. Specify the behavior of all components of all software
architectures, using sequence diagrams

9. Specify the software components of all software
architectures as state machines

10. Implement software components and test environment

11. Integrate and test software components

12. Integrate and test hardware and software

85 / 92

ES

Heisel

Overview

Phase 10

Phase 11

Phase 12

Introduction

Procedure

Summary

Phase 12: Integrate and test hardware and software

input: system architecture from Phase 5 composite structure dia-
gram

system specifications from
Phase 4

sequence diagrams with an-
notated states

expression of the subproblem re-
lationships from Phase 3

grammar

implemented software from
Phase 11

programming language

output: integrated system machine
acceptance test cases test system and/or test

plans

validation: run tests test results

86 / 92

ES

Heisel

Overview

Phase 10

Phase 11

Phase 12

Introduction

Procedure

Summary

Executing Phase 12

Load software into target (microcontroller).

Perform manual tests.

Build test environment for automated test.

Implement test cases for the whole machine according to
the sequence diagrams from phase 4.

Run test cases.

87 / 92

ES

Heisel

Overview

Phase 10

Phase 11

Phase 12

Introduction

Procedure

Summary

Remarks

The acceptance test should not be done by the developer.

The test environment can be developed in parallel to the
design and implementation phases.

The test environment has to interact with the external
interfaces of the machine. Hence the technical interfaces
of the test system also consist of hardware.

88 / 92

ES

Heisel

Overview

Phase 10

Phase 11

Phase 12

Summary

What do we gain by defining such a process? I

Sequence of well-defined steps helps developers to focus
attention on relevant parts of the task (and fake a rational
design process ;-).

Developed models and their interrelations can be checked
in each step.

Validation is integral part of the process:

Validation conditions are defined for each step.
Systematic test case generation is part of the process.

Certification according to safety- and security standards
(IEC 61508 and Common Criteria) is supported.

89 / 92

ES

Heisel

Overview

Phase 10

Phase 11

Phase 12

Summary

What do we gain by defining such a process? II

Various possibilities for tools support:

UML tools available.
Tool for generating sequence diagrams available.
Model checker for UML state machines available.
Other tools conceivable.

Component-based development is supported.

Hardware as well as software components can be part of
the developed system (machine).

Specific attention is paid to the analysis phase and the
modeling of the environment. (Environment models yield
test cases.)

Non-functional (quality) characteristics can be taken into
account (in particular, safety and security; by specific
architectures and problem frames).

90 / 92

ES

Heisel

Overview

Phase 10

Phase 11

Phase 12

Summary

What do we gain by defining such a process? III

Systematic evolution of existing systems is supported
(traceability links between different models / documents).

Problem decomposition is performed explicitly and
systematically. Relations between subproblems are
exploited to compose partial solutions of subproblems.

Using patterns in various phases support re-use of existing
knowledge and (partial) automation:

Problem Frames for analysis
Architectural patterns for software design
Code patterns for implementing state machines

Process emerged from industrial practice, uses
well-established languages and techniques. Hence, no
ivory-tower invention.

91 / 92

ES

Heisel

Overview

Phase 10

Phase 11

Phase 12

Summary

What do we gain by defining such a process? IV

Therefore, we can hope that with DePES, we are able to
develop better products with less effort.

However: DePES is not a light-weight process!

92 / 92

	Introduction
	DePES
	Phase 1
	Introduction
	Notations
	Summary
	Procedure
	Example - TLC
	Example - SBC

	Phase 2
	Introduction
	Procedure
	Example - TLC
	Example - SBC

	Phase 3
	Introduction
	Notations
	Procedure
	Example - TLC
	Example - SBC

	Phase 4
	Introduction
	Notations
	Procedure
	Example - TLC
	Example - SBC

	Phase 5
	Introduction
	Notations
	Procedure
	Example - TLC
	Example - SBC

	Overview
	Phase 6
	Introduction
	Procedure
	Example - TLC
	Example - SBC

	Phase 7
	Introduction
	Concepts
	Procedure
	Example - TLC
	Example - SBC

	Phase 8
	Introduction
	Concepts
	Procedure
	Example - TLC
	Example - SBC

	Phase 9
	Introduction
	Concepts
	Procedure
	Example - TLC
	Example - SBC

	Overview
	Phase 10
	Introduction
	Notations
	Procedure
	Example - TLC
	Example - SBC

	Phase 11
	Introduction
	Procedure
	Example - TLC
	Example - SBC

	Phase 12
	Introduction
	Procedure

	Summary

