Strategy-Based Program Synthesis with
I0SS

Maritta Heisel* Thomas Santen Dominik Zimmermann

Abstract

This paper presents the program synthesis system 10SS (Integrated Open Syn-
thesis System). It is based on the concept of strategy as a uniform representation of
development knowledge making the integration of different synthesis methods pos-
sible. The implemented system is an instantiation of a generic system architecture
designed to provide machine support for the application of formal methods in soft-
ware development. The properties of the system are demonstrated by means of a
sample development.

1 Introduction

Tool support for software development is an area of growing interest, as can be seen by
the flourishing of computer-aided software engineering (CASE). CASE tools are fairly well
understood, and there is a large number of them, see [Fug93]. If, however, one is interested
in developing provably correct software, tool support is hardly available to date.

In order to guarantee semantic properties of a software product like correctness, formal
methods have to be applied. These add considerable complexity not only to the artifacts
software developers have to work with, but also to the development process itself. This
means that tool support is even more indispensable than for conventional software devel-
opment. On the other hand, this also means that the architecture of such systems has to
be designed carefully, because satisfactory user support is essential for the acceptance of
formal methods by software developers.

We consider the following properties as crucial for a system that supports the develop-
ment of correct software. They are discussed in more detail in [HWW94].

e The system should be interactive, i.e. the user must be able to control the devel-
opment process. This requirement holds at least as long as it is not possible to
replace human creativity, e.g. in finding loop invariants or inductive arguments, by
automatic processes.

e When the users control the development process, they will be confronted with system-
generated intermediate states of a development. In this situation, they must be
able to make sensible decisions. Therefore, all information that is important for the
development process must be represented explicitly and not in encoded form.

*Technische Universitat Berlin, FB Informatik — Softwaretechnik, Franklinstr. 28-29, Sekr. FR 5-6,
D-10587 Berlin, email: {heisel,santen,dominik }@cs.tu-berlin.de, fax: (+49-30) 314-73488

e A system that imposes severe restrictions on the procedure to be followed in the
development process will not be accepted. Hence, the system should be flexible and
support different ways of developing a program.

o Openness 1s one more requirement to guarantee flexibility. It should be possible to
add new development methods in a routine way, and the evolution of the system
should take place gradually, without invalidation of former work.

e The system should visualize the development process in an appropriate way and
provide an overview over the progress of development. It should be easy to use,
making program synthesis feasible for non deeply-involved experts and enabling the
programmer to concentrate on the task at hand.

The system presented in this paper, IOSS (Integrated Open Synthesis System), supports
program synthesis by application of strategies. It is a research prototype that possesses
all of the above properties. The idea underlying IOSS is to support methods for program
development as they are known for software development with formal methods. Examples
for such methods are programming paradigms like divide-and-conquer or the method pre-
sented by Gries [Gri81]. They are formalized as so-called strategies. Strategies describe
methods for problem solving by problem reduction. For the notion of strategy, it is not
necessary to know exactly what problems and solutions look like, and when a solution
is acceptable for a given problem. Instead, strategies are generic in these three parame-
ters. In IOSS, problems are basically specifications, and solutions are basically imperative
programs. The underlying architecture, however, 1s more general: it can also be used for
alternative definitions of problems and solutions.

Our contribution is three-fold: First, we introduce the concept of strategy as a knowl-
edge representation mechanism which makes development knowledge amenable to machine
support (Section 2). Second, we provide a generic system architecture that is able to sup-
port software development by application of strategies (Section 3). Third, we present the
program synthesis system 10SS as an instance of the system architecture (Section 4). An
example serves to demonstrate how working with IOSS proceeds (Section 5) and illustrates
the concepts that are only briefly sketched in Sections 2 and 3. A detailed discussion of
strategies and the system architecture is given in [HSZ94]. We also report on experience
with the implementation of the system (Section 6). In a low-budget project, its graphical
user interface was designed and implemented within one person-month. It is an example
of re-use and integration of heterogenous software packages that are freely available to
the research community. In the concluding section we discuss related work and future
improvements of the system.

2 Representing Software Development Knowledge by
Strategies

There are two aspects to a method for software development: strategies and heuristics.
Strategies describe possible steps during a development, e.g. how to implement a particular
class of algorithms. They are the part of a method that is usually described in text books.
In contrast, the ability to decide which strategy may successfully be applied in a particular
situation requires human intuition and a deep understanding of the problem at hand. The

rules of thumb that experts develop when working with a technique, we call the heuristic
part of their method.

While heuristics are hardly mechanizable, tool support for strategies is possible. Our
system architecture is designed to support problem solving by application of strategies in
an interactive environment that supports experts in using their heuristic knowledge.

Technically, the purpose of a strategy is to find a suitable solution to some software
development problem. A strategy works by problem reduction. For a given problem, it
determines a number of subproblems. From the solutions to these subproblems the strategy
produces a solution to the initial problem. Finally, it tests if that solution is acceptable
according to some notion of acceptability of a solution wrt. a problem. The solutions to
subproblems are naturally obtained by strategy applications as well.

However, this description says nothing about interdependencies between the various
subproblems and solutions. In general, the subproblems of a strategy are not independent
of each other and of the solutions to other subproblems, see [Hei94]. These dependencies
induce a partial ordering on the subproblems: it restricts the order in which the various
subproblems can be set up and solved.

For a strategy to work, we need not only to know its dependency relation but also
how exactly the subproblems are constructed, how the final solution is assembled from the
solutions to the subproblems, and how to check if this solution is acceptable. All in all, a
strategy is described by the following items:

e the number of subproblems it produces,
e the dependency relation on them and their solutions,

o for each subproblem, a procedure how to set it up using the information in the initial
problem and the subproblems and solutions it depends on,

e a procedure describing how to assemble the final solution,
e a test of acceptability for the assembled solution, and

e optionally a procedure providing an explanation why a particular solution is accept-

able.

The last item is not strictly necessary for a strategy to work. Still, one might be
interested in a more detailed documentation of why a particular solution “works” for a
given problem. For TOSS, the explanation is a formal correctness proof.

The above description of what a strategy consists of is parameterized by the notions of
problem, solution, and acceptability. Problems and solutions provide a common interface
between strategies. It is therefore possible to design a system architecture for strategy-
based problem solving that is generic in the exact definition of problems and solutions.
This architecture is described in the following section. The notion of strategy we have only
sketched can precisely be defined in terms of relational calculus and partial orders [Hei94].

Implementations of strategies should be independent of each other with a uniform
interface between them. Thus, the implementation of a strategy is some kind of module
with a clearly defined interface to other strategies and the rest of the system. We call
an implementation of a strategy a strategy module. The signature shown in Figure 1
corresponds to the components of a strategy as described above.

The natural number subpr is the number of subproblems generated by a strategy. The
Boolean matrix dependency represents dependencies between the children nodes 1 through

subpr : Nat
dependency : array[l...subpr,1...subpr|of Bool
setup : array[l...subpr]of (P xlist(P xS) — P)
assemble : (P x array|[l...subprjof S) — S
accept : § X P — Bool
explaizn : S xXP —=E&

Figure 1: Interface of a Strategy Module

subpr. While we can describe dependency as an array, the remaining elements of the
module are proper functions or procedures because they represent the algorithmic content
of the strategy. For each subproblem, we need to know how to set it up. Thus setup is
an array of functions. The function setup[i] produces the 7" subproblem from the initial
problem and a list of problems and solutions. This list contains the sibling problems and
their solutions on which problem 7 depends.

The assemble function computes the final solution from the initial problem and the
solutions to all subproblems. The accept and explain functions are concerned with the
final solution. This solution is checked by accept for acceptability wrt. the initial problem.
Optionally, explain may provide an explanation of type £ to further document why the
solution 1s acceptable.

3 The System Architecture

Figure 2 gives a general view of the architecture. Two global data structures represent the

initial external
problem information strategy selection

O 7
Q/\Q A
® OO

uedxe

‘%Dp/y

updxe

development tree control tree

strategy base

Figure 2: General view of the system architecture

state of development: the development tree and the control tree. The development tree
represents the entire development that has taken place so far. A node contains a problem
and its solution (once it has been found), and references to its children and to siblings
it depends on. Furthermore, it contains the functions needed to set up the problem and
determine its solution. These functions stem from the involved strategy modules. Two
strategies are involved in processing one node of the development tree: a creating and a
reducing strategy. Arrows on one level of the development tree indicate dependencies. The
shaded node indicates that the corresponding problem has already been solved.

The data in the control tree is only concerned with the future development. Its nodes
point to unsolved nodes of the development tree, thus representing open tasks and keeping
track of unsolved problems and their dependencies. It provides a basis to choose the next
problem to reduce. The shaded node of the development tree has no counterpart in the
control tree.

There are two kinds of branchings in the control tree that stem from the dependencies
between the development nodes. They tell if siblings have to be solved in a fixed left-to-
right order or if they may be solved in an arbitrary order. The “normal” branching in the
left subtree of the control tree in Figure 2 represents a fixed order in which the problems
have to be solved. On the other hand, the triangle v in the upper branching represents
a variable order for the two children of the root. The leaves of the control tree point to
unreduced problems. The shaded leaves may be tackled in the next step.

As far as possible, selection of the next problem should be left to the developer. When
selecting a strategy to reduce a particular problem, it is usually not obvious if the strategy
will succeed in producing a solution. Therefore developers might try to tackle the “hardest”
subproblem first and reduce it until they can decide if a solution is possible. Then they
might concentrate on the next “hard” problem in some other branch of the development.
In this way, the architecture makes it possible to focus development on the critical tasks
first.

The control tree as a separate data structure is not strictly necessary. All information
it represents is contained in the development tree. Still, for efficiency reasons, it is useful
to maintain control information explicitly.

The third major component of the architecture is the knowledge base. It represents the
knowledge for strategy-based problem solving by strategy modules as described in Section
4.

A development roughly proceeds as follows: The initial problem is the input to the
system. It becomes the root node of the development tree. The root of the control tree
is set up to point to this problem. Then a loop of strategy applications is entered until
a solution for the initial problem has been constructed. Upon each entrance of the loop
body, a backtrack point is set.

To apply a strategy, first the problem to be reduced is selected from the leaves of the
control tree. The set of reducible leaves can be determined by considering the control tree’s
two kinds of branchings. The reducible leaves of a tree with normal root branching are
the reducible leaves of the leftmost subtree. For a triangle branching, they are the union
of the sets of reducible leaves of all subtrees. Users may choose from the set of reducible
leaves which is marked in black in Figure 2.

Second, a strategy is selected from the strategy base. Strategy selection will usually
be interactive but implementations of heuristics to choose a strategy or to suggest a set
of applicable ones are also conceivable. Applying the strategy to the problem means to
extend the development tree with nodes for the new subproblems, install the functions

of the strategy in these nodes, and set up dependency links between them. The control
tree is also extended according to the dependencies between the produced subproblems.
Application of a strategy may need more information than is provided by the problem it is
applied to, e.g. information needed to prove termination. Like strategy selection, providing
external information usually encompasses user interaction or heuristics.

If a strategy immediately produces a solution and does not generate any subproblems,
or if solutions to all subproblems of a node in the development tree have been found, the
functions to assemble and accept a solution are called, and, if successful, the solution is
recorded in the respective node of the development tree. Also the explanation field of the
current node is filled in. The current node of the control tree is deleted. If the parent node
of the deleted one has no other children, the process of solution assembly is recursively
applied to that node.

In case the accept test fails, the most recent cycle of problem selection and strategy
application is undone. The system backtracks to the state of development before selection
of the current node.

Backtracking may not only be initiated by the system but also by the users, e.g. if they
decide that a strategy application leads nowhere because the generated subproblems cannot
be solved. User-driven backtracking is possible during both node and strategy selection.

The loop of strategy applications terminates when the control tree is empty. Then all
nodes of the development tree have successfully been solved. Its root contains the solution
to the initial problem which is the product of the development. The development tree as
a whole documents the design process.

4 10SS

IOSS is an instantiation of the described architecture. It supports synthesis of provably
correct imperative programs. In this section, we first establish the notions of problem,
solution, acceptability, and explanation that are used for IOSS. We then give an overview
over its strategy base. Finally we present the IOSS interface.

4.1 Problems, Solutions, and Explanations

In TOSS, problems are specifications of programs, expressed as pre- and postconditions
that are formulas of first-order predicate logic. To aid focusing on the relevant parts of the
task, the postcondition is divided into two parts, invariant and goal. In addition to these
it has to be specified which variables may be changed by the program (result variables),
which ones may only be read (input variables), and which variables must not occur in
the program (state variables). The latter are used to store the value of variables before
execution of the program for reference of this value in its postcondition.

Solutions are programs in an imperative Pascal-like language. Additional components
are additional pre- and postconditions, respectively. If the former is not equivalent to true,
the developed program can only be guaranteed to work if not only the originally specified,
but also the additional precondition holds. The additional postcondition gives information
about the behavior of the program, i.e. it says how the goal is achieved by the program.
If, e.g., the specification requires the value of variable x to be increased, the additional
postcondition might contain the equation * = 2’ + 4711 which means that = is increased

by 4711.

A solution is acceptable if and only if the program is totally correct with respect to
both the original and the additional the pre- and postconditions, does not contain state
variables, and does not change input variables.

FEzplanations for solutions are provided as formal proofs in dynamic logic [Gol82]. This
is a logic designed to prove properties of imperative programs. Proofs are represented as
tree structures that can be inspected at any time during development.

4.2 The Strategy Base

The strategy base of IOSS contains formalized development knowledge in form of strategy
modules. A number of interactive, semi-automatic and fully automatic strategies have
been implemented. In the current version, they are oriented on programming language
constructs. In the near future, higher level strategies, e.g. for the development of divide-
and-conquer algorithms or re-usable procedures, will be built in.

Strategies Solving a Problem Directly. Sometimes the precondition of a problem is
sufficient for its goal, e.g. if a conditional needs only one branch. In this case, the empty
program skip is developed using the skip strategy.

The two assignment strategies are used more frequently since assignments are the basic
building blocks of imperative programs. In the interactive version, the assignment solving
the problem has to be given by the user; for the automatic version, the goal must contain
equations in some of the result variables; these are used to set up an assignment.

Strategies Modifying a Problem. The strengthening strategy is needed to use domain-
specific knowledge in the problem solving process. The idea is to replace the goal of the
problem by a stronger one, i.e. a formula which entails the old goal in the model under
consideration.

Sometimes it is necessary to introduce a new state variable for some result variable.
This 1s accomplished using the state variable strategy.

Strategies for Developing Compound Statements. The intermediate assertion strat-
egy corresponds to the rule for compound statements in the Hoare calculus. There, an
intermediate assertion is introduced which forms the postcondition of the first part of the
compound and the precondition of the second part.

Two other strategies are based on the assumption that a conjunctive goal can be
achieved by a compound statement, each part of the compound establishing one conjunct
(see [Der83]). The disjoint goal strategy can be applied if the goal can be divided into two
independent subgoals. Two subgoals are independent if the result variables that need to
be changed to achieve the one subgoal are disjoint from the result variables that need to be
changed to achieve the other subgoal. The strategy can also be applied if the goal is not of
conjunctive form but there is an invariant which is invalidated by the achievement of the
goal. The additional postcondition of the first statement may be necessary to develop the
second part of the compound. Hence, the first statement must be developed first.

The protection strategy can be applied when a conjunctive goal is to be achieved by a
compound statement but the subgoals are not independent as required for the disjoint goal
strategy. In this case, the goal for the first statement must be an invariant for the second
one. Again, the problem for the second part of the compound depends on the solution for
the first part.

Strategies for Developing Conditionals. The conditional strategy reflects the rule
for conditionals of the Hoare calculus. The disjunctive conditional strategy applies if the
goal is of disjunctive form and each of the branches of the conditional will establish one
disjunct of the goal.

Strategies for Developing Loops. The loop strategy develops a loop for a given prob-
lem. Since it does not consider the initialization of the loop and the development of the
invariant, it is usually applied in combination with the strengthening and protection strate-
gies. In contrast, the while strategy (which is defined [Hei94] but not yet built into the
system) performs the development of the invariant, the initialization and the loop body in
a single reduction step, according to the heuristics given in [Gri81].

A complete description of these strategies can be found in [Hei94].

4.3 Interface

Figure 3 shows a snapshot the program synthesis described in Section 5. On the left-hand

Hle Edit “iew Graph i|

Development Tree: Current. Problem:
Preconditions:

| intermediate_assertion |

perm{a, al}
gorted{a, i, n}

=
Y
not 1 = mall
i = fix58
-
I heap{a, null, 1}

Backirack lefnull, i3}
: eT— lefi, n}
Automatic Assignment gea{seg(a, 1, nj, seglz, null, 1)}
7 d Assi lefrmll, n}
? strengthening Manual Assigninent.
. Skip é
Strengthening .
State Variahle ALY
Lo true
up— perm{a. al}
strengthening Disjoint Goal ﬂg;;'{?:{a;mii ni}
Protection legrull, i}
Intermediate Assertion le{i, n}
e geaf{segfa, 1, n), segia, mll, 1)} 7
Conditional : o
Disjunctive Conditional

Goals:

protection

Lsii, fizo8} N

manual_assignment| | loop | d
Varables:
Input: in
Result: (2. 1
State: [fix58, a1
Foy |
14 v}

Figure 3: The TOSS interface

side of the window the development tree is displayed. Different colors and shades of the
nodes visualize different states. The user can re-scale the tree, hide subgraphs, or view
nodes. A separate window pops up for each node; several nodes can be inspected at the

same time. On the right-hand side the user sees the current problem. To apply a strategy
one chooses one from the menu of strategies shown in the center. Whenever a strategy
requires user input, the user is prompted for it in a window.

5 An Example

In this section we present a few selected steps from a sample development with TOSS to
show how development with TOSS proceeds. The task is to sort an array a of integers. To
do this we want to develop a heapsort algorithm. The initial problem is shown in Figure
4(a)". The concept of the heapsort algorithm is to first build a heap?, and then level down
the heap putting the top (maximum) element at the end of the array and restoring the
heap for the remaining unsorted segment of the array.

Preconditions:
Ile{null, n}
theap{a, mull, n}
jperm{=, al}
Preconditions:
a = al
le{rull, n} £
Invariants:
lefrmll, n /
7 i ¥
Invariants: J
I -
v Goals:
permia, al}
; . sorted{a, 1, n}
Sl heap{a, null, 1}
sorted{a, null, n} lefnull, i}
perm{a, al} ledi, n}
1= mll
geaf{seglas, i, n), segla, rull, i)} 7
vl
:) Varables:
Yariables: stz
Input: n fRL "En :
Result: = Result: 2. 1
State: {31 State: al

Figure 4: The problems (a) initially and (b) before the initialization of the loop

Since the program section that builds the heap will be almost identical in both parts of
the algorithm, the idea is to develop the second part first and re-use the developed program
section in the first part.

'TOSS uses a prefix-ascii notation for functions and predicates. Variables, constants, predicates, and
functions are defined in a signature file read in by T10SS.

2A heap is a binary tree of numbers where each node is greater than or equal to both of its successors.
Such a tree can be stored in an array: the successors of node ¢ are stored under the addresses 2: + 1 and

21 + 2.

To start with, we apply the intermediate assertion strategy to the initial problem,
because it allows us to choose which part of the compound we want to develop first. The
strategy prompts us for an intermediate assertion. The one we need as precondition for
the second part is that the array a is a heap and that it is a permutation of the original
array, denoted by the state variable al:

heap{a,null,n} and perm{a,al}

The goals for the second subproblem yielded by the intermediate assertion strategy are
the goals of the initial problem. With two applications of the strengthening strategy we
use the fact that the empty array is always a heap and other domain-specific knowledge to
replace these goals by stronger ones, resulting in the problem shown in Figure 4 (b).

Our approach now is to establish all goals but i = null in a first step, and then
establish i = null with a loop, the formerly achieved goals being the invariants of the
loop. We select the protection strategy, where the first statement will establish the loop
invariant and the second will be the loop itself. The assignment i := n establishes the goals
for the first statement. We enter it using the manual assignment strategy. Since it does
not generate any new problems, IOSS automatically calls the corresponding assemble and
accept functions to check the solution for its acceptability. In particular, this may involve
the invocation of the built-in theorem prover, proving the correctness of the assignment
wrt. its specification.

After application of the loop strategy to the second subproblem yielded by the protection

Preconditions: Comy |- Precondition:
lnot i = null N |true Y
i = fixl2 il
perm{a, al} il
sorted{a, 1. n}
heap{a, null, i}
lefrwll, i} Program:
le{i, n} r i
gea{segfa, 1, n), segfa, rmll, i)} iBEEIIL dive(n) ; =
le{rull, n} WHILE not i = null
1 DO BEGIN
3 Rk p(l) i
k=1
WHILE not { lsi{simult{two, ki), n}
" : -» ge{get(a, ki,
. Invariants: i get(a.
ltrue N s (multitwo, ki1
permiz, aly and | ls{si{s(mult(twa, k1)),
sorted{a, 1, n} n}
heap{a, null, i} - gﬂg:zg:» K.
L 11, i :
l:grl“-l 5 i} — s({s(mult{two, k)1)13))
%eaiﬁﬁia: i, n}, segia, mull, i)} I IF not lsis(s(mult(two, k333, i} =
e{null, n} THEN m := s{mult(twa, k})
ELSE IF griget{s, s{multitwo, k)}},
getla, s{s(multitwo, K))i)}
. THEN m := s{mult{twa, l})
- : gl i ELSE m := s{s{mult{two, k)}} ;
1s{1, faixlZ} S IF griget(a, m), getia, ki}
THEN a := swapia, k m) ;
ki=m
END
END ;
i:=n;
WHILE not 1 = rmll
| nn RERTH 4
A = . P
| Postcondition:
[true k]
Variables:
Input: in
Result: |2, i
State: f’lxiﬁ2, al £

Figure 5: Problem for the loop body (a) and solution to the initial problem (b)

strategy the system automatically selects the negation of the goal as the test for the loop:
not i = null. To ensure termination of the loop, we have to interactively enter a bound
function (i), a predicate for a well founded order (1s), and a least element wrt. to the
order (null). We may also supply additional invariants. The goal for the loop body is
constructed from the bound function and the less predicate: it is to reduce the value of
the bound function (while maintaining the invariant). The problem for the loop body is
shown in Figure 5(a).

Reducing the value of the bound function will invalidate the invariant; it has to be
re-established afterwards. We first apply the disjoint goal strategy. It automatically deter-
mines the only goal of the problem (1s{i,fix12}) to be the goal for the first part of the
compound. The invariants of the problem are automatically determined to be the goals
for the second part. Reducing the value of the bound function is trivial:

i := p(i). Re-establishing the invariant is done in two steps: swapping the first (a[0])
and last (a[z]) element of the heap, and restoring the heap for the unsorted segment of the
array (al0...7—1]).

Since the unsorted segment is a heap except for the first element (resulting from the
swapping), we restore the heap by letting this element “descend down” in the tree. This
again 1s achieved by a loop. It is synthesized with a similar approach as the first loop. We
first apply the protection strategy. The first subproblem of it specifies the initialization
of the loop, solved by k := null. Before we can apply the loop strategy to the second
subproblem, we need to establish a goal appropriate for the termination of the loop with the
strengthening strategy. Casually expressed, we're done when the element that “descends
down” is at its proper place in the heap. The formula expressing this is:

(2k—|—1< i — alk] > a[Qk—I—l])/\ (2k—|—2< i — alk] > a[Qk—l—Q])
Its prefix-ascii notation as used in TOSS is:

(Is{s(mult(two,k)),i} -> ge{get(a,k),get(a,s(mult(two,k)))})
and (1s{s(s(mult(two,k))),i} -> ge{get(a,k),get(a,s(s(mult(two,k))))})

Now we apply the loop strategy that selects the negation of the above formula as the
test for the loop. For the development of the loop body we first need state variables for
a and k. We get them by applications of the state variable strategy. In the loop body we
need to determine the successor with which the descending element has to be swapped,
swap these two, and reduce the bound function to work towards the termination of the
loop. We refrain from elaborating the development of the loop body in this place. Tt
involves nested applications of the disjunctive conditional strategy, as well as application
of the conditional strategy, the skip strategy, and several applications of assignment and
compound strategies. With the development of the loop, the second part of the heapsort
algorithm has been completed. Developing the first part proceeds much in the same way as
developing the second. Once the total development is completed®, we can inspect the root
node and have a look at the solution to the initial problem, shown in Figure 5(b). Figure
6 shows the proof tree for the developed program that was built by the system hand in
hand with the development of the program.

3For the curious reader: The development of the heapsort algorithm involves in total 54 strategy
applications.

Gperations Uiew ael%

Figure 6: Proof tree for the heapsort algorithm.

6 Experience with Re-Use and Integration

The implementation of IOSS has been carried out in two steps. First, the kernel system
has been implemented as an instance of the proposed architecture. Second, a graphical
user interface has been designed and implemented on top of the kernel system.

The Kernel System. The basis for the implementation of 10SS is the Karlsruhe In-
teractive Verifier (KIV), a shell for the implementation of proof methods for imperative
programs [HRS88]. It provides a functional Proof Programming Language (PPL) with
higher-order features and a backtrack mechanism. Strategies are implemented as collec-
tions of PPL-functions in separate modules. New strategies can be incorporated in a routine
way. Currently a template file for new strategies supports this process; for the future, we
envision tool support relieving the implementor of anything but the peculiarities of the
newly implemented strategy.

A severe restriction of KIV is its command-line interface. There is no reasonable way
to bring into effect the potential to inspect the state of development and to take advantage
of the freedom of choice provided by the architecture. The need for a more sophisticated
interface became apparent, if IOSS was ever to be used by anyone else but its creators.

The Graphical Interface. Since we had very limited resources in terms of person-power
to realize the interface, we decided to rely as much as possible on existing software packages
and toolkits. The interface was to be built with minimal changes to the kernel system. We
needed a means to transfer data from KIV to whichever interface system we would use. For

the visualization of the state of development, we needed a graph layout system. Moreover,
we wanted to avoid programming on a level such as the X Window Toolkit, since this is a
tedious, time-consuming task.

With the following packages we found just what we needed:

Tcl — A simple, extensible scripting language providing generic programming facilities.
FEach application can implement new features as Tcl commands [Ous94].

Tk — An extension to Tcl providing a toolkit for the X Window System. Tk extends the
core Tcl facilities by commands for building user interfaces. It hides much detail C
programmers must address when constructing a user interface [Ous94].

expect — An extension to Tc1/Tk designed to control interactive programs using standard
terminal 1/O. For the controlled programs, expect takes over the part of the user
“typing” commands and interpreting output [Lib91].

TkSteal — An extension to Tk to integrate stand-alone X applications in a Tk-built interface

[Del94].

daVinci — A generic visualization system for directed graphs [FW94].

Tk e
777777777777777777777777 TkSteal
Tcl Expect daVinci
I0SS-Kernel

Figure 7: System integration for the TOSS interface

Figure 7 illustrates the integration of these packages to construct the graphical interface
for TOSS. expect controls the command-line interface of KIV and the application interface
of daVinci. TkSteal provides “interface sugar” for the graphical interface. It integrates
daVinci with the other parts of the IOSS interface.

We think it is remarkable how little effort was required to build the interface. It took
only one person-month to build it in its current shape. Only 800 LOC needed to be written
in Tcl, 116 LOC of additional code had to be written in PPL.

7 Discussion

The example of Section 5 has given an impression of how it “feels” to work with the system.
The user controls the development process by selecting strategies and providing additional
information necessary to apply the selected strategies. The intermediate development
states essentially consist of the development tree and the current problem. The current
problem completely and unambiguously states the task that is to be solved. For software
developers, however, it is often important to understand the context in which this task is
to be solved. This context information is provided by the development tree. Browsing the
tree gives an overview of the whole development.

Since a broad variety of strategies is at the user’s disposal, the system is able to sup-
port different approaches to program development. Different methods can be applied in
combination. This is achieved by a common interface: all strategies produce and consume
the same kind of information. The uniform design and local implementation of strategy
modules makes it possible to incorporate new strategies in a routine way.

7.1 Related Work

As already stated, IOSS is built on top of a former version of KIV. In its current version
[Rei92], KIV supports the verification of program modules according to a fixed strategy.
The degree of automation is impressive. Since in program verification, not only the specifi-
cation but also the program is known, automation is much easier achieved than in program
synthesis.

The paradigm motivating the development of KIV as well as TOSS is tactical theorem
proving. The idea is to use a metalanguage to write programs that construct proofs in a
logical formalism. The basic steps such programs can perform are called tactics and are
derived rules of the basic formalism. The control structures of the metalanguage are called
tacticals. This approach was introduced in Edinburgh LCF [GMW79] and is used today
in the Nuprl system [Con86] and others.

The approach underlying KIDS (Kestrel Interactive Development System) [Smi90] is to
fill in algorithm schemas by constructive proof of properties of the schematic parts. This
is achieved by highly specialized code (design tactics) for each schema. In KIDS, however,
there is no general concept of design tactics and how to incorporate a new one into the
system.

LOPS [BH84] is a system for deductive program synthesis following a fixed procedure.
The systems CIP-S [CIP87], see also this volume, and PROSPECTRA [HKB93] support
transformational program synthesis. All of these systems are designed to support a specific
synthesis method. It was not the intention of their creators to integrate these with other
ones.

7.2 Future Improvements

With the strategies of the current version, program synthesis with IOSS is a time-consuming
and highly interactive task. This is due to the fact that the current strategies are quite low-
level. Higher-level strategies with a better potential for automation are already designed
[Hei94, Hei92] and can be incorporated in the near future.

Another weakness of the current implementation concerns the proof of predicate logic
formulas. The theorem prover of KIV is not very sophisticated and knows nothing e.g.
about ordering relations. It is worthwhile to improve the prover by parameterizing it with
theories and incorporating rewriting techniques.

Until now, there is only one version of the development tree. To support a more
explorative style of development, it is desirable to allow several alternative development
(and control) trees in a single development.

In the current version of 10SS, no heuristics are implemented to guide the selection
of strategies. A first step towards the elicitation of heuristics is an empirical approach:
whenever a strategy is selected, the reasons for the selection should be recorded. This also
provides further documentation of the development.

Finally, we want to explore other application domains besides program synthesis. A
promising candidate for this project is specification acquisition. In this phase of the life

cycle, the transition from informal requirements to formal specifications is made. The

problems do not have a formal semantics but the solutions do. Our long-term goal is to
provide machine support for various phases of the software life cycle, where a common
system architecture provides a strong potential for integration.

References

[BHS4]

[CIP8T7]

[Con86]

[Del94]
[Der83]
[Fugd3]

[FW94]

[GMW79]

[Gol82]

[Gri81]
[Hei92]

[Hei94]

[HKB93]

[HRSSS]

[HSZ94]

W. Bibel and K. M. Hornig. LOPS — a system based on a strategical approach to
program synthesis. In A. Biermann, G. Guiho, and Y. Kodratoff, editors, Automatic
Program Construction Techniques, pages 69-89. MacMillan, New York, 1984.

CIP System Group. The Munich Project CIP. Volume II: The Program Transforma-
tion System CIP-S. Number 292 in Lecture Notes in Computer Science. Springer-
Verlag, 1987.

R. L. Constable, et al. Implementing mathematics with the Nuprl proof development
system. Prentice Hall, Englewood Cliffs, NJ, 1986.

Sven Delmas. Kidnapping X Applications. Unpublished Paper, TU Berlin, 1994.
Nachum Dershowitz. The Fvolution of Programs. Birkhduser, Boston, 1983.

Alfonso Fuggtta. A classification of case technology. Computer, 26(12):25-38, Decem-
ber 1993.

Michael Frohlich and Mattias Werner. daVinci V1.3 User Manual. Technical report,
Universitdt Bremen, 1994.

Michael Gordon, Robin Milner, and Christopher Wadsworth. Edinburgh LCF. Num-
ber 78 in Lecture Notes in Computer Science. Springer Verlag, New York, 1979.

R. Goldblatt. Aziomatising the Logic of Computer Programming. LNCS 130. Springer-
Verlag, 1982.

David Gries. The Science of Programming. Springer-Verlag, 1981.

Maritta Heisel. Formale Programmentwicklung mit dynamischer Logik. Deutscher
Universitatsverlag, Wiesbaden, 1992.

Maritta Heisel. A formal notion of strategy for software development. “Technical
Report 94-28, TU Berlin, 1994.

B. Hoffmann and B. Krieg-Briickner, editors. PROgram Development by SPFCifica-
tion and TRAnsformation, the PROSPECTRA Methodology, Language Family and
System. LNCS 680. Springer-Verlag, 1993.

Maritta Heisel, Wolfgang Reif, and Werner Stephan. Implementing verification strate-
gies in the KIV system. In E. Lusk and R. Overbeek, editors, 9th International Con-
ference on Automated Deduction, number 310 in Lecture Notes in Computer Science,
pages 131-140. Springer-Verlag, 1988.

Maritta Heisel, Thomas Santen, and Dominik Zimmermann. A system architecture
for strategy-based software development. Submitted for publication, 1994.

[HWW94] Maritta Heisel and Debora Weber-Wulff. Korrekte Software: Nur eine Illusion? In-

formatik — Forschung und Entwicklung, 9(4):192-200, October 1994.

[Lib91]

[Ous94]
[Rei92]

[Smi90]

Don Libes. expect: Scripts for controlling interactive processes. Computing Systems,
4(2), November 1991.

John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

Wolfgang Reif. Verification of Large Software Systems. In R. Shyamasundar, editor,
Foundations of Software Technology and Theoretical Computer Science. 12th Con-
ference. New Delhi, India, December 1992. Proceedings, LNCS 652, pages 241-252.
Springer Verlag, 1992.

Douglas R. Smith. KIDS: A semi-automatic program development system. [FEF
Transactions on Software Engineering, 16(9):1024-1043, September 1990.

