Specification of the Unix File System:
A Comparative Case Study

Maritta Heisel

Technische Universitat Berlin
FB Informatik — FG Softwaretechnik
Franklinstr. 28-29, Sekr. FR 5-6
D-10587 Berlin, Germany
heisel@cs.tu-berlin.de
fax: (+49-30) 314-73488

Abstract. The starting point of this investigation are two different for-
mal specifications of the user’s view of the Unix file system, one algebraic
and one model-based. The different features exhibited by the specifica-
tions give rise to a discussion of desirable and undesirable properties of
formal specifications.

1 Why yet another specification of the Unix file system?

The Unix file system is one of the best (or at least most) specified software
systems. Several versions have been published: [1, 3, 5]'. All of these versions
are distinguished in important aspects, e.g. in the view that is considered or the
executability of the specification.

We will present yet another version, and it is not even new in the above-
mentioned aspects. It models the user’s view of the Unix file system, just like the
specification of Bidoit, Gaudel and Mauboussin [1]. In fact, it was inspired by this
specification. When investigating language-independent issues of specifications
[7], we thought it a nice exercise to express the given specification, written in
the algebraic language PLUSS, in the model-based language Z [8], where the Z
specification was to resemble the PLUSS specification as close as possible. Had
this enterprise succeeded, no need would have arisen for yet another paper on
the Unix file system.

The Unix file system presents itself to the user as a tree where each node
has a name and an arbitrary number of successors. A specification of such trees
should be present in some library for re-use, where the content of the nodes (as
opposed to their names) should be a generic parameter. The first trial to define
such trees indeed looked promising:

[NAME)]

TREE[X] = If(NAME x X))
| node(( NAME x seq TREE[X])

! Our apologies to all those not. mentioned here.



It was discussed with a Z specialist (who will remain unnamed here) and
approved. What an unpleasant surprise that the Z type checker rejected this
specification! A look at the Z grammar showed that the checker was right (of
course). Free types in connection with genericity are indeed not allowed in Z.

What began with thorough disappointment ended up in a lesson on the
aesthetics of formal specifications. We were able to make a virtue out of necessity
and came up with a specification that looks entirely different than the one we
started out from, although it basically models “the same thing”. From our point
of view, the new 7 specification is not inferior to the original one in PLUSS. Tt
turned out that the strengths and weaknesses of the two versions lie in different
areas, so that it is virtually impossible to prefer one over the other without
reservations.

The aim of this paper 1s to stimulate a discussion on the various desirable
features of formal specifications and how they can be achieved. In the following,
we present parts of the specification in two versions?. Important differences are
contrasted, and it is tried to distill the lessons to be learned from the example
and to come to a better assessment of the qualities of formal specifications.

2 Re-Usability

That re-usability is a desirable property of specifications is undisputed. For our
example, it is our intention to start out from a generic specification of named
trees, and instantiate and adapt this specification to define directories.

2.1 Generic Specification of Named Trees

It seems perfectly clear that trees are defined as recursive data structures, doesn’t
1t?7 The following PLUSS specification is recursive even if it does not look like it
at first sight: it uses lists which are defined recursively.

proc NAMED_TREE(X)
use LIST, NAME
sorts Named_Tree
cons <_ . _>: (Name x X) x List(Named_Tree) — Named_Tree
func

axiom

end NAMED_TREE(X)

As already stated, our trial to define trees in Z recursively was no success. 7
does not support recursive definitions very well since it is part of the “Z philos-
ophy” to define types as sets. It turns out that adhering to the “Z philosophy”

2 where we do not stick literally to the specification given in [1].



yields a modeling of trees in which all the necessary functions can be expressed
quite elegantly. This modeling is not recursive.

In 7, lists are called sequences; they are defined as finite partial functions
from the natural numbers into some type X . Similarly, named trees will be finite
partial functions from sequences of positive natural numbers into the Cartesian
product NAME x X.

[NAME]

NAMED_TREE[X] ==
{f :seqN; - NAME x X |
() € dom f
A (Y path : seq; N | path € dom f o
front path € dom f
A (last path # 1 = front path = (last path — 1) € dom f))}

This definition models trees as functions mapping “addresses” to the content
of the node under the respective address. Each node consists of a name and an
item of the parameter type X. The empty sequence is the address of the root.
The length of an address sequence coincides with the depth of the node in the
tree. The number ¢ denotes the i-th subtree. Hence, an address can only be valid
if its front is also a valid address. And if there is an i-th subtree for 7 > 1 then
there must also exist an ¢ — 1-th subtree.

2.2 Discussion

By refraining from using free types we managed to obtain a generic tree definition
in Z that may be re-used later. But this was mere luck.

Issue 1 Is there a convincing reason why genericity in connection with free types
is forbidden in 79

In comparison with PLUSS and other algebraic languages, Z’s support for
genericity and re-use is poor. In contrast, PLUSS, even offers a param construct
that makes it possible to state restrictions on the types used as actual parameters
in the instantiation of generic specifications. This feature is not too frequent in
specification languages.

There might be members of the Z community who would oppose to this opin-
ion. Wordsworth [10], p.25, for instance, states that genericity can be achieved
by introducing the parameters of the specification as basic types. The following
would indeed have been legal:

[NAME, X]
TREE = [f{(NAME x X))
| node(( NAME x seq TREE))
An instantiation of this “generic” definition would redefine X:

A == ...



Issue 2 Is the use of basic types and their later redefinition a satisfactory solu-
tion for genericity?

For example, what happens if more than one instantiation of the “generic”
specification is needed in one and the same specification?

3 Descriptive vs. Recursive Specifications

Without further functions allowing one to manipulate and access named trees,
the above definitions would not be of much use. We compare the different man-
ners of specifying such functions as they are supported by the different languages.

3.1 Completing the Generic Specifications

We first give a more complete specification of named trees in PLUSS. For those
familiar with algebraic languages, it bears no surprise. Lists are assumed to be
defined by a constant nil, a constructor function “/”, and selector functions

the head of _ and the tail of _.

proc NAMED_TREE(X)
use LIST, NAME
sorts Named_Tree
cons <_ . _>: (Name x X) x List(Named_Tree) — Named_Tree
func
the name of _: Named_Tree — Name
the content of_: Named_Tree — X
the children of_: Named_Tree — List(Named_Tree)
the name list of_: List(Named_Tree) — List(Name)
the number of children of_: Named_Tree — Integer
the child of _ named _: Named_Tree x Name — Named_Tree
pred
_is leaf: Named_Tree
precond forall n:Name, t:Named_Tree
child: the child of t named n is defined when
n belongs to the name list of t
axiom forall n, n":Name, t:Named_Tree, x:X, l:List(Named _Tree)
name: the name of <(n,x) .1> =n
cont: the content of <(n,x) .1> =x
st: the children of <(n,x) . 1>) =1
nll: the name list of nil = nil
nl2: the name list of t / 1 = the name of t / the name list of |
nb: the number of children of <(n,x) . 1> = length(l)
isl: <(n,x) . 1> is_leaf iff 1 = nil
child1: n = the name of the head of the children of t
= the child of t named n = the head of the children of t



child2: n # the name of the head of the children of <(n’,x) . 1>
= the child of t named n
= the child of <(n’x) . the tail of > named n

end NAMED_TREE(X)

The corresponding definitions in 7 look as follows, where we also define some
auxiliary functions on NAMED_TREE[X] which have no counterpart in the
PLUSS specification.

—[X]
child : NAMED_TREE[X] x N; + NAMED_TREE|[X]
number_of _children : NAMED_TREE[X] — N

children : NAMED_TREE[X] —s P NAMED_TREE[X]
leafs : NAMED_TREE[X] — P(seqNy)

dom child = {t : NAMED_TREFE[X]; i :Ny | (i) € domt}
Vt: NAMED_TREE[X];i:N; e
(i) €domt =
child(t,i) = {s :seqNy; nz : NAME x X |
(i) " sedomt A nz=t({i)” s)} A

domt # {()} =
number_of _children t = maz{k : Ny | (k) € domt} A

domt = {{)} = number_of _childrent = 0 A
childrent =
{k : 1.. number_of _children t & child(t, k)} A
leafst = {s :seqNy | s €dom¢t A (V51 :seqN; o s~ s1 ¢ domt)}

With the help of these functions we can now specify:

—[X]
name_of _tree : NAMED_TREE[X] — NAMFE

names : P NAMED_TREE[X] —+ P NAMFE

child_named : NAMED_TREE[X] x NAME —s NAMED_TREE|[X]

Yn: NAME; t : NAMED_TREE|[X]; ts : P NAMED_TREE[X] o
name_of _tree t = first(t()) A
names ts = {t : ts ® name_of _tree t} A
n € names(children t) = (t,n) € dom(child_named) A
child_named(t,n) € children t A
name_of _tree(child_named(t,n)) = n

These are not all, but the most important functions on named trees.



3.2 Discussion

It is noticeable that in the PLUSS specification, functions usually are defined as
recursive equations, where the structure of the recursion follows the list construc-
tors. The same holds true for the specification given in [1], except for the fact
that there the tree and forest constructors are used as recursion schemas. This
means that they are mostly executable and hence almost an implementation. In
the 7 specification, the functions are given as closed mathematical expressions.

Unfortunately, one confession must be made here: the above specification of
child_named is semantically invalid in Z because in the reference manual [8] it
is required that “the predicates must define the values of the constants uniquely
for each value of the formal parameters.” This 1s not the case here, because
child_named selects an arbitrary child with the given name, whereas the PL.USS
specification is deterministic and constructive. “Legal” possibilities would be to
either define a relation instead of a function or give an unambiguous definition
like in PLUSS. Since the type checker cannot find this “violation”, it is hard to
prevent (or even detect!) specifications like this.

However, we do not see any difficulties with a definition like the one for
child_named. On the contrary, it has the advantage to give an implementor
the greatest possible freedom: if it is more efficient to search from the back
to the front instead of vice versa, it should be possible to do so. The PLUSS
specification prohibits this and thus may prevent an efficient implementation.
It is even questionable here if one should actually require child_named to be a
function in the mathematical sense. One could argue that it suffices when the
result it yields has the given name.

Issue 3 Should we strive for very high-level specifications that anticipate as few
implementation details as possible?

To put it in other words: Is it satisfactory to specify functions as recursive
equations along some constructors, as suggested by many algebraic specification
languages?

It should be noted that this is not a language issue, but an issue of style.
It would well be possible to specify functions as closed terms when using an
algebraic language with a sufficiently expressive logic (i.e. more expressive than
the one of PLUSS). The point is that this would be more complicated because
something like the mathematical toolkit of Z had to be predefined. However,
once this were done, algebraic specifications could look very much the same as
in Z, as far as the use of recursive equations is concerned. It seems that the
tradition to define functions with recursive equations stems from the time when
algebraic specification languages had an initial semantics. In these times, there
was no other possibility indeed.

4 Modularity

The next step in the specification of the user’s view of the Unix file system is to
specify directories, re-using the specification of named trees. It turns out that it
is by far not enough to instantiate the generic parameter.



4.1 Specifying Directories

Before this can be done, the generic specification itself has to be modified in
order to make it possible to use names for navigation in the tree. This can be
done with paths. Paths are nonempty lists of names:

spec PATH as NONEMPTY-LIST(NAME)

PATH == seq; NAME

The next step is to define functions working on the combination of named
trees and paths. For this purpose, we have to define a predicate is_existing_path_-
of that decides if a path is valid for a given tree, and the functions object_at_in,
pruned_at, and plus_added_under which select an item, prune the tree or add a
new subtree under a given path. We only present the definition of is_existing_-
path_of .

proc NAMED_TREE_WITH_PATH(X)
use NAMED_TREE(X), PATH
pred
_is existing path of_: Path x Named_Tree
axiom forall n, n’:Name, p: Path, t:Named_Tree, x:X, l:List(Named_Tree)
exist1: n / nil is existing path of t iff n = the name of t
exist2: n / n’ / nil is existing path of t
iff n = the name of t & n’ belongs to the name list of t
exist3: n’ belongs to the name list of t is false
= n /n’ /pis existing path of t is false
exist4: n’ belongs to the name list of t
= n / n’ /pis existing path of t iff n = the name of t
& n’ / p is existing path of the child of t named n’
end NAMED_TREE_WITH_PATH(X)

It should be noted that we had the choice between two kinds of clumsiness
here. Bidoit, Gaudel and Mauboussin [1] preferred to define paths from scratch.
This made it possible to embed names into paths, i.e. to define every name to be
a path. However, this specification is 33 lines long. We found that a bit much and
preferred the one-line definition of paths as nonempty lists of names. The price
for this is that we have to write “n / nil” where Bidoit, Gaudel and Mauboussin
only have to write “n”. This inconvenience will occur again in Section 5.1 when
we define relative paths.

—[X]
_is_existing_path_of _: PATH < NAMED_TREE[X]

Vt: NAMED_TRFE[X];p: PATH e
p 1s_existing_path_of t &

(head p = name_of _tree t A

(tail p # () = (3 ty : children t o tail p is_existing_path_of t,)))




We note that in PLUSS, a new generic specification is defined (without new
constructors), whereas in 7Z a new global generic definition is added. Now, the
actual parameters can be defined:

spec UNTX-NODE as FILE U { dir }
spec DIRECTORY as NAMED_TREE_WITH_PATH(UNIX-NODE)

where FILF defines files as being either text files or binary files.

To finish the specification of directories, we must further specify some con-
straints related to the nodes: (i) a file may only be a leaf node; (ii) all successors
of a node have different names. These constraints on the data type cannot be
added to the parameter or to the generic specification but only to the whole
instantiated generic specification:

axiom forall d: Directory, n: Name, 1,j: Integer
file: the content of d is a file = d is leaf
inj: n = the name of the 1 th element of the children of d
& n = the name of the j th element of the children of d
=>1=]

For Z, we define:

UNIX _NODE = dir | file( FILE)
DIRECTORY == NAMED_TREE[UNIX _NODE]

The global constraint that has to be added is

Vd:DIRECTORY;n: NAME;i,j :Ne
Vp:domd e (second(d p) € ran file = p € leafs d) A
#(names(children d)) = #(children d)

Requirement (ii) can be expressed somewhat more elegantly in Z because
the Z specification is based on sets instead of lists. But even if sequences had
been used, it would be possible to directly express that the sequence must be
injective.

4.2 Discussion

Modularity is a very desirable feature for formal specifications. First, it is im-
portant for re-use. Libraries of predefined specifications should contain relatively
small and self-contained modules so that they can serve as a kind of construction
kit. Second, it 1s very hard to read, comprehend and maintain large, unstructured
formal specification documents. Unfortunately this is exactly what 7 forces its
users to build. There is no possibility of nesting specification constructs (im-
porting of schemas is just a shorthand for textually copying the content of the



imported schema) or grouping parts of specifications together to form a new
entity. Hence, the whole specification is spread out at the top-level.

In PLUSS, for instance, it is possible to import named trees without paths. In
7, you get all or nothing: once you have defined an instance of NAMED_TREF,
you also have defined the operations dealing with paths, no matter if you want
them or not.

Object oriented versions of Z are under development [6, 4] that provide better
facilities for modularizing specifications. However, this is not a solution to the
problem. Currently, 7 is being standardized. The existence of a standard is
of some importance to industry. They seem to prefer standardized products
over others. If the standard will not contain better facilities for modularizing
7, specifications, hundreds of industrial specifiers and programmers will have to
live with the poor structuring facilities of Z.

Issue 4 Can poor language facilities be compensated for by a better specification
discipline?

It it our experience that 7 specifications can be well readable. This can be
achieved by detailed comments (which are strongly advocated by the Z method-
ology) and by a skillful layout of the specification. But perhaps the question
should be asked the other way around: why do specifiers have to compensate for
poor language facilities?

5 Freely Generated Data Types and Z

Not only absolute, but also relative paths (relative to a given path) can be used
to navigate in the directory tree. These are best specified as an abstract data

type.

5.1 Defining Relative Paths

In PLUSS, relative paths, called displacements, can be defined straightforwardly:

spec RELATIVE_PATH

use PATH

sort Displacement

cons
empty_d: — Displacement
_: Path — Displacement
_/ _: Displacement x Name — Displacement
../ : Displacement — Displacement

func
_ || = : Path x Displacement — Path

axiom forall p: Path, n: Name, dp: Displacement
catl: p || empty_d = p

cat2: p || (n/nil)=p/n



catd: p || (dp / n) = (p || dp) / n / ni
cat4d: (n / nil) || ../dp = (n nil) || dp
catd: (p /n) || ../dp =p || dp

end RELATIVE_PATH

Paths are embedded into displacements, i.e. each path is also a displacement.
In Z, this is impossible. There, we have to define a function d that converts a
path into a displacement (see below). The list constructor “/” is overloaded here;
overloading is allowed in PLUSS. Again, we have to write “n / nil” instead of
ﬂn?? X
As long as no genericity is involved, we can use free types in Z:
DISPLACEMENT ::= empty_d
| d{PATHY
| (_/_){DISPLACEMENT x NAMEY
| ../{DISPLACEMENTY)

This definition corresponds to the cons part of the PLUSS specification. The
function || has to be defined by an axiomatic box.

_||-: PATH x DISPLACEMENT — PATH

Vp:PATH;n: NAME; dp : DISPLACEMENT e
pl|lempty_d=pA
plld(n)=p~(n) A
p |l (dp/n) = (p || dp) = (n) A
(n) [ (--/dp) = (n) [| dp A
(™ () |l ../dp=plldp

Disregarding the lack of modularity of the Z specification, see Sect. 4, both
specifications of relative paths are adequate. Therefore, nothing needs to be
discussed and no new issues need to be raised.

6 State-Based Systems and Algebraic Languages

It is convenient to consider the user’s view of the Unix file system as a state that
can be changed by user commands.

6.1 Defining the User’s View

We are now ready to define the system state: it consists of a directory, and two
paths, one for the home directory and one for the working directory. In Z, such
system states are easily defined by a schema:



__OneUserView
root : DIRECTORY
home_dir : PATH

working_dir : PATH

home_dir is_existing_path_of root
second(object_at_in(home_dir, root)({}))) = dir
working_dir is_existing_path_of root
second(object_at_in(working_dir, root)((}))) = dir

As an example of a Unix command, we consider the command c¢d which
changes the working directory. Since c¢d can be called with various parameters,
we have to define several schemas for this operation, due to the strong typing
of 7. Tf no argument is supplied to cd, the working directory is set to the home
directory by default.

_cd_def
AQOneUserView

root’ = root
home_dir' = home_dir
working_dir’ = home_dir

If an absolute path is supplied to c¢d, the working directory is set to this path,
provided it is a legal one. Legal means that the path exists in the directory and
that it leads to a directory, not to a file.

__cd_abs
AOneUserView
p?: PATH

p?is_existing_path_of root

second (object_at_in(p?, root)({))) = dir
root’ = root

home_dir' = home_dir

working_dir' = p?

If a displacement is supplied to cd, the new working directory is computed
as the absolute path yielded by combining the old working directory with the
given displacement.



_cd_rel
AOneUserView
dp? : DISPLACEMENT

(working_dir || dp?) is_existing_path_of root
second(object_at_in(working_dir || dp?, root)(())) = dir
root’ = root
home_dir’ = home_dir
working_dir' = working_dir || dp?

To define state-based systems in algebraic languages, one possible “schema”
(similarly to the definition of freely generated types in Z) is to first define a
data type S (instead of a schema) modeling the global state. If the state schema
consists of more than one variable, S has to be defined as the Cartesian product
of the types of the state variables. The state invariant must be given as a global
axiom on S. Each operation in a state-based system is specified by a function
having the state before execution of the operation as an additional input pa-
rameter and the state after execution of the operation as an additional output
parameter. Generally, the axioms for such a function are the conjunction of the
axioms for the state definition of the “before”-state, the “after”-state and the
axioms defining the operation. We are lucky: for our Unix example, it is possible
to use a simpler version, although we now have the obligation to show that each
cd function yields indeed a legal state.

spec ONE_USER_VIEW
use DIRECTORY , RELATIVE_PATH
sort User-view
cons < —. — .— >: Directory x Path x Path — User-view
func
cd: User-view — User-view
cd: User-view x Path — User-view
cd: User-view x Displacement — User-view

precond forall root: Directory, hd,wd, p: Path, dp: Displacement
cdl: cd(<root.hd.wd> p) is defined when
p is an existing path of root
& the object at p in root is a Directory
cd2: ed(<root.hd.wd>,dp) is defined when
cd(<root.hd.wd>, wd || dp) is defined
axioms forall root: Directory, hd,wd, p: Path, dp: Displacement,
uv:User-view
state: uv = <root.hd.wd>
= hd is an existing path of root
& the object at hd in root is a Directory
& wd is an existing path of root



& the object at wd in root is a Directory
cdl: cd(<root.hd.wd>) = <root.hd.hd>
cd2: ed(<root.hd.wd>,p) = <root.hd.p>
cd3: ed(<root.hd.wd>,dp) = <root.hd.wd||dp>
end ONE_USER_VIEW

We observe that, in PLUSS, there is no need to invent different names for the
different versions of the ed command because overloading is permitted.

6.2 Discussion

The general approach to define state-based systems in algebraic languages seems
to be a bit clumsy. In the worst case, it could be necessary to repeat the state
invariant over and over again. We are not aware of any satisfactory solutions to
this problem but would be glad to learn about them if they exist.

Issue 5 Are there more elegant ways to deal with states in algebraic languages?

It seems that this issue cannot be neglected by the algebraic specifications
community. For implementation purposes, efficiency considerations will probably
always play a major role because the impressive MIPS numbers of new computer
generations are eaten up by the ever more complicated, comfortable, and large
new programs that are written (and demanded!) for them. Research on functional
programming languages takes this fact into account. In this area, it is even more
evident that it is impractical to copy large data structures for each function
call that is executed. There are approaches to avoid this and nevertheless retain
referential transparency [9]. Similar ideas for algebraic specification languages
would be most welcome.

7 The Moral of the Story

What do we learn of this comparative case study? The good news is that we
indeed succeeded in specifying the system we wanted. The languages available
today are basically useful. The bad news is that sometimes they seem to create
more problems than they solve. This is irrespective of the fact that much research
activity has been devoted to the design of specification languages.

There seems to be a large gap between the algebraic and the model-based
communities. But in reality, in every system specification there will be parts
where clean algebraic properties are wanted and other parts where a state is
necessary. This means we cannot (or at least do not want) to do without one or
the other of these features. Both means of expression are useful and necessary.
Ignoring this fact, algebraic languages pretend there i1s no need for a state, and
model-based languages pretend there is no need for comfortable, abstract and
encapsulated data type definitions.

Additionally, we learned that a good specification discipline and style can
make up for many deficiencies of today’s specification languages. However, this
can be no substitute for real language support.



Both stylistic and language issues come into play when we ask ourselves what
makes up a “good” specification. Some of the properties discussed in the preced-
ing sections are not disputed, e.g. re-usability or modularity. At most the best
ways to achieve them are subject of discussions. Concerning the call for a very
high level of abstraction in formal specifications, this is probably different. Some
people strongly argue in favor of executable specifications because of their pro-
totyping potential. This is an issue where it is hard to choose between conflicting
goals: it is our strong conviction that specifications should not enforce premature
implementation decisions ; on the other hand, animating specifications is very
important because — as Brooks [2] put it — “For the truth is, the client does not
know what he wants”. It is a fact of life that system requirements cannot be
fixed from the beginning and will continue to change during the project?. In the
end, it is like everywhere: easy solutions cannot be expected.

Acknowledgment. We would like to thank Thomas Santen for many stimulating
discussions and for his comments on this work.

References

1. M. Bidoit, M.-C. Gaudel, and A. Mauboussin. How to make algebraic specifica-
tions more understandable? In M. Wirsing and J.A. Bergstra, editors, Algebraic
Methods: Theory, Tools and Applications, number 394 in LNCS, pages 31 — 67.
Springer-Verlag, 1989.

2. Frederick P. Brooks. No silver bullet — essence and accidents of software engineer-
ing. Computer, pages 10-19, April 1987.

3. O. Declerfayt, B. Demeuse, F. Wautier, P. Y. Schobbens, and E. Milgrom. Precise
standards through formal specifications: A case study: the unix file system. In
Proceedings EUUG Autumn Conference, Cascais, Portugal, 1988.

4. Kevin Lano and Howard Haughton. Specifying a concept-recognition system in
Z++. In Kevin Lano and Howard Haughton, editors, Object-Oriented Specification
Case Studies, chapter 7, pages 137-157. Prentice Hall, 1988.

5. Carroll Morgan and Bernard Sufrin. Specification of the UNIX Filing System. In
lan Hayes, editor, Specification Case Studies. Prentic-Hall, 1987.

6. Gordon Rose and Roger Duke. An object-Z specification of a mobile phone system.
In Kevin Lano and Howard Haughton, editors, Object-Oriented Specification Case
Studies, chapter 5, pages 110-129. Prentice Hall, 1993.

7. Jeanine Souquiéres and Maritta Heisel. How to manage formal specifications?
Submitted for publication, 1994.

8. J. M. Spivey. The 7 Notation — A Reference Manual. Prentice Hall, 2nd edition,
1992.

9. Phil Wadler. Monads for functional programming. In M. Broy, editor, Program
Design Calculi, volume 118 of Computer and Systems Sciences, pages 233-264.
Springer-Verlag, 1993.

10. J. B. Wordsworth. Software Development with Z. Addison-Wesley, Wokingham,
1992.

 In this respect our case study was unrealistic because it specified an already existing
system.



This article was processed using the I¥TEX macro package with LLNCS style



