Tool Support for Formal Software Development:
A Generic Architecture

Maritta Heisel, Thomas Santen, Dominik Zimmermann

Technische Universitat Berlin® and GMD FIRST**

Abstract. We present a formalism independent approach to the design
of tools supporting the application of formal methods in software devel-
opment. It consists of a concept to represent problem solving knowledge,
called strategy, and a generic architecture showing how to implement
tools for strategy-based development. A prototype system for program
synthesis demonstrates the practicality of the approach.

1 Introduction

Today, formal methods for software development are at the edge of entering
industrial practice. The theory of formal specification and verification of software
is well understood, and an increasing number of case studies in industrial context
are performed to evaluate cost and use of the application of formal methods [5].
Especially in safety-critical applications they are recognized as one technique to
support development of highly dependable software.

In this situation, an increasing number of non-experts in the field have started
to use formal methods, and thus tool support is of growing importance. Most
existing tools are parsers, type checkers and documentation tools for specifica-
tions, or theorem provers for the underlying logics. Only few provide support
for the methodological aspects of formal methods. But non-experts have to rely
on guidance to set up formal specifications, demonstrate their properties, and
develop code from specifications in a provably correct way.

The present paper addresses the problem of how to design tools to support the
process aspect of software development specific to formal methods. We introduce
a concept representing a “method” in a way that allows us to provide machine
support for its application. We also present a system design for the implemen-
tation of this concept. A prototype system for program synthesis demonstrates
the practicality of our approach.

We do not see formal methods as a means to replace traditional software
engineering. Put into practice, they will only be one technique among others
to enhance software quality. Our approach therefore focuses on tools specific
to support application of formal methods. It is not intended to replace but to
complement existing CASE technology.

* Softwaretechnik (FR5-6), Franklinstr. 28/29, D-10587 Berlin, Germany. e-mail:
{heisel,dominik }@cs.tu-berlin.de
** Rudower Chaussee 5, D-12489 Berlin, Germany. e-mail: santen@first.gmd.de

Requirements for Formal Methods Specific Tool Support

In general, there are two conflicting goals in the design of tools specifically for
formal methods. In contrast to classical software engineering, such a tool must
be designed to guarantee semantic properties of the resulting product, e.g. cor-
rectness with respect to a specification. Therefore it must enforce certain ways
of procedure. On the other hand, it has to provide as much freedom as possible
for the developers and must not hinder creativity. From these goals, we deduce
the following requirements:

Guarantee Semantic Properties. A tool must support the development process
in a way that eases rigorous mathematical reasoning and establishes confidence
that the product indeed fulfills the required properties. Two aspects contribute
to establishing confidence: first, there must be a clear identification of the steps
in the development process that are crucial to establishing semantic properties.
Second, since the development support tool will inevitably contain errors it must
be designed to provide insight into the “semantically relevant” components and
their interaction.

Balance User Guidance and Flexibility. Formal methods usually consist of some
mathematical formalism and a variety of more or less explicitly stated techniques
how to use it. Due to syntactic constraints and mathematical rigor, their appli-
cation tends to be non-trivial. It is therefore important not to leave the user
alone with a mere formalism but to develop explicit techniques to guide its use
and offer the user choice of tried and tested approaches on how to proceed. In
order not to unnecessarily restrict its users, a tool must support the combination
of such techniques. Furthermore, it must also be customizable by informed users
who develop specialized techniques for their project contexts.

With or without formal methods, several attempts are usually needed to solve
a problem in a satisfying way. A tool for formal methods should provide means
to explore alternative ways to a solution. It should enable judging the feasibility
of an approach as early as possible.

For classical software engineering, support for multiple developers is standard.
The main problem is to maintain consistency of the resulting documents. For
formal methods, the consistency problem appears in a sharper sense: how can
work be distributed in a way that ensures the results can be combined and
properties guaranteed with reasonable effort? A development tool should provide
information about “safe” ways to parallelize work.

Provide Overview of Development. Exactness and rigor entail a higher level of
detail that must be handled. It is crucial for developers to have tool support
that provides an overview of the development process and the relations between
subtasks. They must avoid roundabout ways and dead ends in the development
that may make proof of properties practically infeasible if not theoretically im-
possible. The task here is to design the tool so as to maintain the necessary

information that can be used to provide a supportive user interface.

We wish to identify general concepts that are applicable to a variety of for-

malisms. The contribution of the present paper is a formalism independent ap-

proach to the design of tools that support the peculiarities of formal methods.
The results of this work are as follows:

— We introduce the concept of strategy as a knowledge representation mech-
anism which makes development knowledge amenable to machine support.
Methods are represented as sets of strategies.

— A uniform interface between strategies facilitates their modular implemen-
tation. It makes the combined application of methods possible and enhances
the adaptability of a support tool to new and improved ways of procedure.

— A generic architecture shows how to implement support tools for strategy-
based development. This architecture is designed to meet the requirements
expressed above.

In the rest of the paper, we proceed as follows: in Sect. 2, strategies are
introduced. Section 3 presents a general overview of the architecture, followed by
a description of its components: implementation of strategies (Sect. 4), internal
data structures (Sect. 5), and data and control flow (Sect. 6). We describe an
implemented program synthesis system as an instance of the system architecture
in Sect. 7. We look at related work in Sect. 8. In the concluding section, we discuss
how our approach meets the above requirements and mention implications to
future research.

2 Representing Development Knowledge by Strategies

There are two aspects to a method for software development: strategies and
heuristics. Strategies describe possible steps during a development. Examples
are how to decompose a system design to guarantee a particular property, how to
conduct a data refinement, or how to implement a particular class of algorithms.
Strategies are the part of a method that is usually described in text books. In
contrast, the ability to decide which strategy may successfully be applied in a
particular situation requires human intuition and a deep understanding of the
problem at hand. The rules of thumb that experts develop when working with
a technique, we call the heuristic part of their method.

While heuristics are hardly mechanizable, strategies can be implemented.
Our system architecture is therefore designed to support problem solving by
application of strategies in an interactive environment that supports experts in
using their heuristic knowledge.

Technically, the purpose of a strategy is to find a suitable solution to some
software development problem. A strategy works by problem reduction. For a
given problem, it determines a number of subproblems. From the solutions to

these subproblems the strategy produces a solution to the initial problem. Fi-
nally, it tests if that solution is acceptable according to some notion of accept-
ability of a solution with respect to a problem. The solutions to subproblems are
naturally obtained by strategy applications as well.

However, this description is too general to be of much use. It is even in-
adequate in its simplicity because it says nothing about interdependencies be-
tween the various subproblems and solutions. An example from program syn-
thesis serves us to motivate the more detailed description of strategies given in
Sect. 2.2.

2.1 An Example: Synthesis of Divide-And-Conquer Algorithms

Before we can describe concrete strategies for a specific area of software devel-
opment, we have to establish the notions of problem, solution and acceptability.
In the context of program synthesis, problems are specifications of programs.
Accordingly, solutions are programs in some programming language, and a so-
lution is acceptable with respect to a problem only if the program meets the
specification. In general, we do not need more assumptions on the specification
language or on what it means that a program meets a specification. A specifica-
tion may encompass functional requirements as well as constraints on time and
space complexity of the resulting algorithm.

As an example, we consider an approach from literature to synthesize divide-
and-conquer algorithms [22], where problems are functional requirements. Solu-
tions are programs in some functional programming language, and a program is
acceptable if and only if it is totally correct with respect to the specification. A
divide-and-conquer algorithm can be represented by a schematic definition of a
recursive function:

f(z) = if primitive(z) then directly_solve(z)
else (composeo (g X f) o decompose)(x)

where g = f or g = id (the identity function).

This schema describes a flow of control that is characteristic of divide-and-
conquer algorithms: if some primitive predicate holds, the problem can be solved
directly. Otherwise, the input has to be decomposed into two parts. Depending
on the way decompose works, the function f is either recursively applied to both
parts of the input (¢ = f) or to one part and the other one is left unchanged
(g = id). Finally, the results yielded by f and g are composed to make up the
final result of the algorithm.

Smith [22] describes several “strategic” ideas on how to develop divide-and-
conquer algorithms by filling the gaps in the schematic algorithm. One of them
is shown in Fig. 1. The idea is to develop the decompose-recursion-compose part
from front to back.

Consider the problem of sorting a list.®> The first thing to do is to find an
algorithm in a library that reduces the length of the list. One possible solution is

8 We are aware of the fact that to solve a problem like this our framework is not
necessary. Due to space limitations, it is not possible to present a non-trivial example.

To develop a divide-and-conquer algorithm

1. construct a simple decomposition operator decompose
2. find the control predicate primitive

3. construct the composition operator compose

4. construct the primitive operator directly_solve

Fig. 1. A divide-and-conquer strategy

listsplit which splits an input list into two halves. Once we have decided on the
decomposition function, we can determine the test to terminate the recursion:
listsplit is applicable only if the input has at least length two.

Selecting listsplit also has consequences for the recursive case. Both halves
of the input list have to be sorted. Hence, the composition operator must merge
two sorted lists to produce the result of the sorting function. This problem again
leads to a divide-and-conquer algorithm.

Since a list with at most one element is always sorted, directly_solve becomes
the identity function. In the end, selecting listsplit has lead us to developing a
mergesort algorithm.

mergesort(z) = if length(z) < 2
then z
else (merge o (mergesort x mergesort) o listsplit)(z)

The procedure shown in Fig. 1 is an example of the problem solving knowl-
edge we want to represent as strategies. It gives guidance on what to do in which
order, but nevertheless cannot be carried out completely automatically.

2.2 The Structure of Strategies

There is a subtle interference between decomposition, composition and direct
solution. The specifications for compose and directly_solve can be set up only
after the code for decompose is known. If we choose a different decomposition, not
only the algorithms but also the specifications for composition and direct solution
look different. Assume, for example, we decided to implement decomposition by
cutting off the first element of the list. Then we would get only one recursive
call and the specification for compose would be to produce a sorted list out
of a sorted list and a single element. We would end up with an insertion sort
algorithm.

Figure 1 suggests a fixed order to find the composition and the primitive
operators. This is an over-specification because these steps are independent.
Descriptions of strategies serving as a basis for an implementation must not
only express dependencies between but also independence of subproblems in
order to pose as few restrictions as possible on the users and show possibilities
to parallelize work.

find d&c

algorithm
- - find
find find primitive
decomposition composition solution
7 -7

directly_solve

7

—— evident -
Fig. 2. Example dependency graph

In general, the subproblems of a strategy are not independent of each other
and of the solutions to other subproblems. The dependency graph for the divide-
and-conquer strategy is shown in Fig. 2. Due to the tight relation between the
control predicate and the decomposition algorithm we only get three subprob-
lems. The solution to the decomposition algorithm contains the control predicate
(step 2 of Fig. 1).*

The arrows denote dependencies. Plain arrows are evident dependencies.
They reflect our intuition of problem solving: the subproblems depend on the
original problem, and their solutions depend on the corresponding problems. The
final solution depends on the solutions of the subproblems. The bold dashed
arrows are more interesting. They are called distinctive dependencies and are
characteristic of the divide-and-conquer strategy of Fig. 1. These dependencies
induce a partial ordering on the subproblems: it restricts the order in which the
various subproblems can be set up and solved. The dependency graph of a valid
strategy must not contain cycles. Moreover, problems must not depend on so-
lutions, nothing may depend on the final solution, and the initial problem must
not depend on anything.

For a strategy to work, we need to know not only its dependency relation
but also exactly how the subproblems are constructed, how the final solution
is assembled from the solutions to the subproblems, and how to check if this
solution is acceptable. A strategy is described by the following items:

— the number of subproblems it produces,
— the dependency relation on them and their solutions,

* For program synthesis, solutions do not consist of just program code. They contain
additional information about the behavior of the program, see Sect. 7.

for each subproblem, a procedure how to set it up using the information in
the initial problem and the subproblems and solutions it depends on,

— a procedure describing how to assemble the final solution,

a test of acceptability for the assembled solution, and

— optionally a procedure providing an explanation why a particular solution is
acceptable.

The last item is not strictly necessary for a strategy to work. Still, one might
be interested in a more detailed documentation of why a particular solution
“works” for a given problem. An explanation may be a formal proof or an infor-
mal description, depending on the required degree of mathematical rigor.

The above description of what a strategy consists of is parameterized by the
notions of problem, solution, and acceptability. Problems and solutions provide
a common interface between strategies. It is therefore possible to design a sys-
tem architecture for strategy-based problem solving that is generic in the exact
definition of problems and solutions. This system architecture is described in the
following sections. The notion of strategy sketched here can be precisely defined
in terms of relational calculus and partial orders [10].

3 The System Architecture

To begin with, we give an overview of the central components of the system
architecture and sketch by way of an example how strategy-based problem solv-
ing proceeds. Sections 4 through 6 provide a more detailed description of the
architecture’s components.

3.1 Overview of the Architecture

Figure 3 gives a general view of the architecture. Two global data structures
represent the state of development: the development tree and the control tree.
The development tree represents the entire development that has taken place so
far. Nodes contain problems, information about the strategies applied to them,
and solutions to the problems as far as they have been found. Links between
siblings represent dependencies on other problems or solutions. The data in the
control tree is concerned only with the future development. Its nodes represent
open tasks. They point to nodes in the development tree that do not yet contain
solutions. The degrees of freedom to choose the next problem to work on are
also represented in the control tree.

The third major component of the architecture is the strategy base. It rep-
resents knowledge for strategy-based problem solving by modules implementing
strategies. Each module consists of a set of functions that realize the tasks com-
prising a single strategy.

A development roughly proceeds as follows: the initial problem is the input
to the system. It becomes the root node of the development tree. The root of
the control tree is set up to point to this problem. Then a loop of strategy appli-
cations is entered until a solution for the initial problem has been constructed.

initial external
problem information strategy selection

. ?
@O O e |
/ RN
O-CO-O o/o\o | :

Do,

updxe

uedxe

development tree control tree

strategy base

Fig. 3. General view of the system architecture

To apply a strategy, first the problem to be reduced is selected from the leaves
of the control tree. Second, a strategy is selected from the strategy base. Strategy
selection will usually be interactive but implementations of heuristics to choose a
strategy or to suggest a set of applicable ones are also conceivable. Applying the
strategy to the problem means to extend the development tree with nodes for the
new subproblems, install the functions of the strategy in these nodes, and set up
dependency links between them. The control tree is also extended according to
the dependencies between the produced subproblems. Application of a strategy
may need more information than is provided by the problem it is applied to,
e.g. information needed to prove termination. Like strategy selection, providing
external information usually encompasses user interaction or heuristics.

If a strategy immediately produces a solution and does not generate any
subproblems, or if solutions to all subproblems of a node in the development
tree have been found, the functions to assemble and accept a solution are called,
and, if successful, the solution is recorded in the respective node of the devel-
opment tree. When a solution is produced the control tree shrinks because it
only contains references to unsolved problems. The process terminates when the
control tree vanishes, because then the solution for the initial problem has been
found. The result of the process is a development tree where all nodes contain
acceptable solutions.

3.2 Example: Mergesort Revisited

To illustrate how the notion of strategy introduced in Sect. 2 is supported by
the architecture of Fig. 3, we reconsider the example of Sect. 2.1 and sketch how
an instance of the architecture for program synthesis works when developing the
mergesort algorithm. Figure 4 shows a snapshot of the development.

mergesort

N

mergesort-
dir.-solve

o

e
0
i

\
/,

merge-
compose

merge-
decompose

merge-
dir.-solve

Fig. 4. Development tree for a mergesort algorithm

The initial problem is to sort a list. We decide to apply the divide-and-
conquer strategy to it. Upon invocation of the strategy, we already know the
dependencies between the children of the initial problem: the exact forms of
both the composition and direct solution problems depend on the algorithm
constructed to decompose the list. The dependencies are recorded in the devel-
opment tree (pointed arrows).

The only problem that can be tackled now is the decomposition. Having
found listsplit as a solution to the decomposition problem (shaded node), we are
free to choose which one of the two remaining problems to reduce first: they are
independent of each other. In Fig. 4, the composition problem is reduced first.

To develop the merge algorithm, an alternative divide-and-conquer strategy
to the one described in Sect. 2 is applied. It constructs the algorithm “backward”:
first the composition part, then the decomposition, and finally the primitive
solution part.> Applying this strategy to the problem for merge produces the
development tree shown in Fig. 4.

Suppose now, the merge and mergesort-directly-solve algorithms have been
developed. Then the final step of the application of the divide-and-conquer strat-
egy to the initial sorting problem is to assemble the solutions listsplit, merge and
merge-directly-solve.

5 Extending the result list by one element is a simple composition operation for merge,
while deciding which element of the two input lists to put next into the result is more
complex. Thus a function for decompose is unlikely to be found in a library and the
strategy of Fig. 1 is not applicable.

4 Strategy Implementation

Implementations of strategies should be independent of each other with a uni-
form interface between them. Thus, the implementation of a strategy is a module
with a clearly defined interface to other strategies and the rest of the system. In
the following, we call an implementation of a strategy a strategy module. The sig-
nature shown in Fig. 5 corresponds to the components of a strategy as described
in Sect. 2.2.

subpr : Nat
dependency : array [1...subpr,1... subpr] of Bool
setup : array [1...subpr]of (P xlist(P x S) = P)
assemble : (P x array|[l...subpr]of §) = S
accept : (array [0 ... subpr]of (P x §)) — Bool
explain : (array [0...subpr]of (P x S)) = &

Fig. 5. Interface of a strategy module

The natural number subpr is the number of subproblems generated by a
strategy. The Boolean matrix dependency represents dependencies between the
children nodes 1 through subpr. While we can describe dependency as an array,
the remaining elements of the module are proper functions or procedures because
they represent the algorithmic content of the strategy. For each subproblem,
we need to know how to set it up. Thus setup is an array of functions. The
function setup[i] produces the i ‘" subproblem from the initial problem and a
list of problems and solutions. This list contains the sibling problems and their
solutions on which problem 7 depends.

The assemble function computes the final solution from the initial prob-
lem and the solutions to all subproblems. The accept and explain functions are
concerned with the final solution. This solution is checked by accept for accept-
ability with respect to the initial problem. Optionally, explain may provide an
explanation of type £ to further document why the solution is acceptable.

5 The Structure of Development and Control Trees

We describe the internal structure of the development and the control tree, and
their interaction with the strategy base.

5.1 Development Tree

Two strategies are involved in processing one node of the development tree:
a creating and a reducing strategy. Figure 6 shows the internal structure of
a node of the development tree and its relation to the creating and reducing
strategies. The flow of information is indicated by pointed arcs. A node contains a
problem and its solution, and references to its children and to siblings it depends

creating strategy

setup dependencns

u g]dxa;‘

T dependencies on siblings

/ \

problem
\ solution explanation
\, accept explain /
g \\, assemble
- children
asemble»ﬂ;»_,,—“’ ‘
reducing strategy

Fig. 6. Structure of a node in the development tree

on. Furthermore, it contains the functions needed to set up the problem and
determine its solution. These functions stem from the strategy modules involved.

The development tree as a data structure contains all information about the
process, the open problems and the result of the current development. Thus
it is the basis to browse and provide views of developments, switch between
developments, and analyze them for replay and re-use.

5.2 Control Tree

The purpose of the control tree is to keep track of unsolved problems and their
dependencies. It provides a basis to choose the next problem to reduce. Figure
7 shows how the nodes of the control tree point to unsolved nodes in the de-
velopment tree. There are two kinds of branchings in the control tree that stem
from the dependencies between the development nodes. They indicate whether
siblings have to be solved in a fixed left-to-right order or if they may be solved
in an arbitrary order. The “normal” branching in the left subtree of the control
tree in Fig. 7 represents a fixed order in which the problems have to be solved.
On the other hand, the triangle v in the upper branching represents an arbitrary
order for the two children of the root. The leaves of the control tree point to
unreduced problems. The shaded leaves may be tackled in the next step.

As far as possible, selection of the next problem should be left to the devel-
oper. When selecting a strategy to reduce a particular problem, it is usually not
obvious if the strategy will succeed in producing a solution. Therefore developers
might try to tackle the “hardest” subproblem first and reduce it until they can
decide if a solution is possible. Then they might concentrate on the next “hard”
problem in some other branch of the development. In this way, the architecture
makes it possible to focus development on the critical tasks first.

All information the control tree represents is contained in the development
tree. Still, for efficiency reasons, it is useful to maintain control information

mergesort-\ <~
.. dir.-solve

Fig. 7. The control tree tracks unresolved problems

explicitly. The development tree grows with each strategy application while the
control tree shrinks whenever a solution is found. Without an explicit control
tree, the set of reducible nodes would have to be re-computed for each strategy
application.

6 Data Flow

The data flow diagram in Fig. 8 describes how the global data structures are
manipulated. The main control flow is a loop of strategy applications. Upon each
entrance of the loop body, a backtrack point is set. The strategy application
cycle consists of selecting a problem and a strategy, reducing that problem by
the strategy, and assembling solutions.

Node Selection. The set of reducible leaves can be determined by considering the
control tree’s two kinds of branchings. The reducible leaves of a tree with normal
root branching are the reducible leaves of the leftmost subtree. For a triangle
branching, they are the union of the sets of reducible leaves of all subtrees.
Users may choose from the set of reducible leaves. The chosen node becomes the
current node. It is possible to enhance flexibility of node selection and try to set
up problems that depend on incomplete solutions. Such problems are not in the
set of reducible leaves determined from the control tree.

Strategy Selection. Like selecting a node, choosing a strategy is typically a user
decision which may be assisted by heuristics. For example, some strategies are
applicable only to problems with certain properties. One heuristic might be to
search the strategy base for strategies particularly suited for the current problem.

user . Strategy user
decision | Neuristics base decision
initia initialize Dt | current | selext
problem dt and ct node node strategy
strategy
: reduce | ct |assemble ctempty ? output

dt : development tree node ot | solutions dt
ct : control tree

BP : backtrack point [:

ct non-empty ?

Fig. 8. Data flow diagram for the architecture

Solution Assembly. If the selected strategy creates no subproblems, the solution
to the current node can be immediately determined: assemble is called for the
current node, and the accept test is applied. If the test fails, the most recent cycle
of problem selection and strategy application is undone. The system backtracks
to the state of development before selection of the current node, symbolized by
the dashed arrow in Fig. 8.

If the solution is acceptable, explain fills in the explanation field of the
current node (cf. Fig. 6). The current node of the control tree is deleted. If the
parent node of the deleted one has no other children, the process of solution
assembly is recursively applied to that node.

Even if a solution is acceptable for the selected strategy, it may be inadequate
as part of the solution to a problem higher up in the development tree. Any
failure of accept functions during recursive solution assembly therefore causes a
backtrack, where the most recent strategy application is undone.

Backtracking may be initiated by the users as well, e.g. if they decide that a
strategy application leads nowhere because the generated subproblems cannot
be solved. User-driven backtracking is possible during both node and strategy
selection.

The loop of strategy applications terminates when the control tree is empty,
yielding a development tree in which all nodes have successfully been solved. Its
root contains the solution to the initial problem.

7 T0OSS - A Prototypical Implementation

IOSS is an instantiation of the described architecture. It supports synthesis of
provably correct imperative programs. The basis for the implementation of IOSS
is the Karlsruhe Interactive Verifier (KIV), a shell for the implementation of

proof methods for imperative programs [11]. It provides a functional Proof Pro-
gramming Language (PPL) with higher-order features and a backtrack mech-
anism. Strategies are implemented as collections of PPL-functions in separate
modules. New strategies can be incorporated in a routine way. Currently a tem-
plate file for new strategies supports this process; for the future, we envision
tool support relieving the implementor of anything but the peculiarities of the
newly implemented strategy. The graphical user interface of IOSS (see Fig. 9)
is written in tcl/tk [17] and integrates the graph visualization system daVinci
[7] to display the development tree (for details see [12]).

In this section, we first establish the notions of problem, solution, acceptabil-
ity, and explanation that are used for IOSS. We then give an overview over its
strategy base. Finally, we sketch an example development.

7.1 Problems, Solutions, and Explanations

In IOSS, problems are specifications of programs, expressed as pre- and postcon-
ditions that are formulas of first-order predicate logic. To aid focusing on the
relevant parts of the task, the postcondition is divided into two parts, invariant
and goal. In addition to these we have to specify which variables may be changed
by the program (result variables), which ones may only be read (input variables),
and which variables must not occur in the program (state variables). The state
variables are used to store the value of variables before execution of the program
for reference of this value in its postcondition.

Solutions are programs in an imperative Pascal-like language. Additional
components are additional pre- and postconditions, respectively. If the addi-
tional precondition is not equivalent to true, the developed program can only be
guaranteed to work if both the originally specified and the additional precon-
dition hold. The additional postcondition gives information about the behavior
of the program, i.e. it says how the goal is achieved by the program. If, e.g.,
the specification requires the value of variable z to be increased, the additional
postcondition might contain the equation £ = 2’ + 4711 which means that z is
increased by 4711.

A solution is acceptable if and only if the program is totally correct with
respect to both the original and the additional the pre- and postconditions, does
not contain state variables, and does not change input variables. Thus, checking
for acceptability of a solution amounts to proving verification conditions on the
constructed program.

Explanations for solutions are provided as formal proofs in dynamic logic
[8]. This is a logic designed to prove properties of imperative programs. Proofs
are represented as tree structures that can be inspected at any time during
development.

7.2 The Strategy Base

A number of interactive, semi-automatic and fully automatic strategies have
been implemented. In the current version, they are oriented toward programming

language constructs.

Three strategies solve a problem directly: one for developing the empty program
skip (skip strategy), two for developing assignments (manual assignment and
automatic assignment strategy).

Two strategies can be applied to modify a problem: the state variable strat-
egy introduces a new state variable for some result variable. The strengthening
strategy is needed to use domain-specific knowledge in the problem solving pro-
cess. The idea is to replace the goal of the problem by a stronger one, i.e. a
formula which entails the old goal in the model under consideration.

Three strategies are available for developing compound statements: one corre-
sponds to the rule for compound statements in the Hoare calculus (intermediate
assertion strategy), the two others are based on Dershowitz’ approach for con-
junctive goals [6]. The disjoint goal strategy can be applied if the goal can be
divided into two independent subgoals. The protection strategy can be applied
when the subgoals are not independent as required for the disjoint goal strategy.
In this case, the goal for the first statement must be an invariant for the second
one.

Two strategies can be used to develop conditionals: the conditional strategy
reflects the rule for conditionals of the Hoare calculus, the disjunctive conditional
applies if the goal is of disjunctive form.

The loop strategy is currently available to develop a loop. Since it does not
consider the initialization of the loop and the development of the invariant, it is
usually applied in combination with the strengthening and protection strategies.

In the near future, higher level strategies will be built in. For example, an addi-
tional loop strategy that performs the development of the invariant, the initial-
ization, and the loop body in a single reduction step, according to Gries’ method
[9]. Also, strategies for the development of divide-and-conquer algorithms or re-
usable procedures have been defined.

A complete description of these strategies can be found in [10].

7.3 1I0SS in Practice

Figure 9 shows a snapshot of the synthesis of a heapsort algorithm. On the left-
hand side of the window the development tree is displayed. Different colors and
shades of the nodes visualize different states. The user can re-scale the tree, hide
subgraphs, or view nodes. A separate window pops up for each node; several
nodes can be inspected at the same time. On the right-hand side the user sees
the current problem. To apply a strategy one chooses one from the menu of
strategies shown in the center.

The task is to sort an array a of integers. The concept of the heapsort al-
gorithm is to first build a heap®, and then level down the heap putting the

6 A heap is a binary tree of numbers where each node is greater than or equal to both
of its successors. Such a tree can be stored in an array: the successors of node ¢ are
stored under the addresses 2¢ + 1 and 2i + 2.

Hle Edit View Graph

D Tree: Current Problem:
= Preconditions:
-
intermediate_assertion :‘ TD: ;1:(5?“11 7
= permia, al}
| sorted{s, i, n}
heap{a, null, 1}
Backirack le{rmll, i}
S ——— ls{i, n}
Automatic Assighment gea{segla, 1, n), seg(a, rull, i)}
strengthening Matmial fesinmmnent reUmLL] -
Skip
Strengthening <
State Variable Invariants:
Loop true A

s permia, al}
f inint. sorted{a, i, n}
strengthening % o aoll 3y
Protection Legrull, i}
Intermediate Assertion lefi, n}
- gea{seg(a, 1, n), segla, mll, i)}
Conditional - -
Disjunctive Conditional

Goals:

prote

Lsfi, Fino8} X

manual_assignment -
Variables:

Input: jn

Result: |2, 1

State: [Fix58, al

il
|| iy

Fig. 9. The IOSS interface

root (maximum) element at the end of the array and restoring the heap for the
remaining unsorted segment of the array.

Hence, we first apply a compound strategy to the original problem” (shown
in Fig. 10(a)). In the first part of the compound, the heap is built up, in the
second part, the sorted array is established as mentioned above. We choose the
intermediate assertion strategy with the intermediate assertion®

heap{a, null, n} and perm{a, al}

Since we can expect to get hints how to build up a heap from the transfor-
mation of a heap into a sorted array we decide to develop the second part of
the algorithm first (see Fig. 9). IOSS supports this kind of approach: the inter-
mediate assertion strategy allows us to choose the subproblem to tackle first.
With left-to-right processing of the subproblems enforced, the system would have
hindered instead of helped.

7 10SS uses a prefix-ascii notation for functions and predicates. Variables, constants,
predicates, and functions as well as non-logical axioms about them are defined in a
theory file read in by 10SS.

8 a[0..n — 1] is a heap and a permutation of the original array, denoted by the state
variable al.

Computed
[true
. :
[a=al A
lefrull, n}
Program:
[BEGIN . =
1= div2(n) :
VHILE not i = null
D0 BEGIN
= i:=p@)
Y =i
WHILE not ¢ (ls{s(mult(two, k)), n}
-> ge{get(a, ki,
getia,
Invariants: simalt(twa, k1))1)
3 and (Ls(s(simultitwo, k)}},
A
] -» ge{get(a, k),
getia,
s(stmult(tvo, k3))11))
- D0 BEGIN
IF not ls{s(s(ult(tvo, k))), i}
THEN m := s{nult(two, k})
ELSE IF grigetia, s(multitwo, k))).
et(a, s(sfmlt(tvo, k)1)))
Goals: THEN m = s(mult(two, k))
e ELSE m := s{s (nult(tvo, k)})
sorted{a, null, n} I IF griget(a, m), get(s, k)]
fpern{a, all TN = sep(s)
END
END ;
i:=n;
-~} VHILE not i = mull
nn RFRTH V|
) Computed
Variables: [true Y
Input: r.
Result: |2
State: a1
! i

Fig. 10. The initial problem (a) and its solution (b)

Heapsort is a non-trivial algorithm. We needed a total of 54 strategy applica-
tions to synthesize its two doubly-nested loops. The result is shown in Fig. 10(b).
To find the right loop condition and to avoid “off-by-one” errors in indexing the
array is not easy. The possibility to examine the development tree during the
development proved most valuable. First, we were always able to put the current
problem into context and decide what to do next. Second, IOSS proved our first
paper-made concept of the algorithm to be incorrect. Reviewing the erroneous
development tree and analyzing the false verification conditions generated by
TIOSS gave the clue to correct the development.

With higher-level strategies than the ones currently available, this work could
be further reduced. Since the program section that builds up the heap is almost
identical in both parts of the algorithm, a strategy to encapsulate code in proce-
dures would reduce the required strategy applications by half. Such higher-level
strategies are already designed. It is just a matter of time before we incorporate
them into the system.

8 Related Work

Our work relates to knowledge representation techniques and process model-
ing in classical software engineering, program synthesis and automated theorem
proving.

Knowledge-Based Software Engineering (KBSE). A prominent example of KBSE
which is close to our aims is the Programmer’s Apprentice project [20]. There,
programming knowledge is represented by clichés. These are prototypical ex-
amples of the artifacts in question, e.g. programs, requirements documents or
designs. The Apprentice approach assumes that a library of prototypical ex-
amples provides better user support than the representation of general-purpose
knowledge. We find it difficult to set up a sufficiently complete cliché library
that does not need to be extended for each new problem.

Representation of Design and Process Knowledge. Wile [26] presents the de-
velopment language Paddle. Paddle programs express procedures to transform a
specification into a program. The procedural representation of process knowledge
has the disadvantage that it enforces a strict depth-first left-to-right processing.
This restriction also applies to more recent procedural approaches to represent
software development processes [16, 21].

Potts [19] aims at capturing not only strategic but also heuristic aspects
of design methods. He uses Issue-based Information Systems (IBIS) [4] as a
representation formalism. IBIS representing heuristics tend to be specialized for
a particular application domain. Our approach, in contrast, aims at representing
general, domain independent problem solving knowledge.

Souquieres [24, 25] has developed an approach to specification acquisition
whose underlying concepts have much in common with the ones presented here.
Specifications acquisition is performed by solving tasks. The agenda of tasks
is called a workplan and resembles our development tree. A workplan is an
AND/OR-tree where OR-nodes represent alternative developments. Tasks can
be reduced by development operators similar to strategies. Development opera-
tors, however, do not guarantee semantic properties of the product. Therefore,
incomplete reductions and a variable number of subtasks for the same operator
can be admitted.

In the German project KORSO [2], the product of a development is described
by a development graph [14]. Its nodes are specification or program modules
whose static composition and refinement relations are expressed by two kinds of
vertices. There is no explicit distinction between “problem nodes” whose contents
are not completely known and “solution nodes”. In contrast to the development
tree the KORSO development graph does not reflect single development steps.
A Dbranching in our development tree maps to a subgraph in their development
graph where process information like dependencies between subproblems cannot
be represented.

Program Synthesis. I0SS serves to integrate a variety of methods which can be
expressed in its basic formalism. The synthesis systems CIP [3], PROSPECTRA
[13] and LOPS [1], in contrast, are all designed to support specific methods. It
is not intended to integrate these methods with other ones.

The approach underlying the system KIDS [22, 23] is to fill in algorithm
schemas by constructive proof of properties of the schematic parts. This is
achieved by highly specialized code (design tactics) for each schema. Section

2.1 shows how design tactics can be expressed as strategies. In KIDS however,
there is no general concept of design tactics or how to incorporate a new one into
the system. Information about the development process is maintained implicitly.
Working with KIDS, it is hard to keep track of “where” one is in a development.
There is a logging and replay facility, but this provides no possibility to browse
the state of development. Since design tactics are linearly programmed, there is
no way to change the order of independent design steps or “interleave” tactics
applications.

Tactical Theorem Proving. Tactical theorem proving has first been employed in
Edinburgh LCF [15]. The idea is to conduct interactive, goal-directed proofs by
backward chaining from a goal to sufficient subgoals. Tactics are programs that
implement “backward” application of logical rules. The functional programming
language ML evolved as the tactic programming language of LCF. Tactical the-
orem proving is also used in the generic interactive theorem prover Isabelle [18]
and in KIV [11], the theorem proving shell underlying IOSS.

The goal-directed, top-down approach to problem solving is common to tac-
tics and strategies. Nevertheless, there are some important differences. First, a
tactic is one monolithic piece of code. All subgoals are set up at its invocation.
Dependencies between subgoals can only be expressed by the use of metavari-
ables. These allow one to leave “holes” in a subgoal that are “filled” during proof
of another subgoal by unification on metavariables. Dependencies not schemat-
ically expressible by metavariables are not possible with tactics. Since tactics
only perform goal reduction, there is no equivalent to the assemble and accept
functions of strategies. They are not necessary for the tactic approach because
problems and solutions are identical except for instantiation of metavariables.
In contrast, problems and solutions of strategies may be expressed in different
languages, and the composition of solutions by assemble may not be expressible
schematically.

Theorem proving systems like Isabelle usually do not maintain a data struc-
ture equivalent to the development tree. Isabelle only maintains a stack of proof
states containing the results of tactic applications in chronological order. They
are discarded upon completion of the proof. No information is given about the
tactics that produced a proof state or the dependencies between proof states.
It is the users’ responsibility to record their proof steps textually outside of the
system.

9 Discussion

Most of the tools supporting formal methods today deal with single documents
and not with the process aspect of a development. They are used to check static
semantics of the documents or to discard proof obligations obtained without tool
support. The few tools we know of that support the process aspect, e.g. KIDS,
enforce one fixed way of procedure on their users and do not provide an overview
of the state of development (see Sect. 8).

Existing tools often are monolithic systems and hardly modifiable except by
their developers. This prevents incorporation of new problem solving knowledge
by local modifications. It also reduces confidence in the tools, because is it not
clear which pieces of code are responsible to guarantee semantic properties of
the products.

The concept of strategy and the generic system architecture based on uni-
form interfaces of strategy modules and centered around the data structure of
a development tree contribute to overcome these deficiencies. The product of a
development is a development tree with acceptable solutions in all nodes. It con-
tains explanations for all strategy applications and documents design decisions
and their justifications. This improves comprehensibility of the product and may
be used as a basis to conduct inspections by certification authorities. Our work
relates to the requirements stated in Sect. 1 as follows.

Guarantee Semantic Properties. The function accept is the only component of
the interface of a strategy module that is concerned with semantic properties.
Only this function determines if a candidate solution is acceptable for the given
problem. How the other components — and other strategies — contribute to the
evolution of a candidate solution has no influence on this process. This is im-
portant for the design of strategies: they need not produce solutions that are
acceptable in every context because a strategy using their output to compose a
solution will check for acceptability of the composed solution. There is a single
point in a strategy implementation that is responsible for the semantic proper-
ties of the produced solution. This enhances confidence in the development tool
because only the accept functions have to be verified to ensure that the tool
truly guarantees acceptability of the produced solutions.

Balance User Guidance and Flexibility. Methods are uniformly represented as
sets of strategies. Their common interface to the system kernel makes method
combination possible: strategies of different methods can be interleaved to solve
a problem, e.g. the Gries’ method can be used to solve the subproblems created
by Smith’s divide-and-conquer-strategy. To incorporate a new method into the
system, the strategy base only has to be extended by the new strategies. This
involves only local changes that do not affect existing components.

More work is necessary if the notions of problem, solution or acceptability
have to be changed. One example is to extend the problems of IOSS by an ad-
ditional invariant that must not be destroyed even in intermediate states of the
synthesized program. This kind of invariant is useful for enforcing safety require-
ments. In this case, all strategies have to be revised, but the clear modularization
still helps in identifying the code that has to be changed.

The development tree allows for multi-developer environments and explo-
rative procedures. Independent leaves can safely be worked on in parallel while
the global context is still accessible by all developers.

Provide Overview of Development. By maintaining the open subproblems and
their dependencies in the development tree we get not only an overview of the
state of the development but the entire development is mirrored in this data
structure. It can be browsed to find out interrelations between subproblems and

thus to get insight into the role a certain component plays. This possibility is
particularly useful where creative design decisions have to be taken. They do not
only depend on the formal requirements as stated in the problem description,
but must consider the net effect a decision may have. Browsing is all the more
essential when using formal methods because of the increased level of detail in
formal documents. In case of a dead end in a development, it supports analysis
of the steps that led to the error. The behavior of most theorem provers that
just say “no” without further explanation why a proof attempt failed is not
acceptable in software development.

Implications to Future Research and Applications

The present implementation of IOSS is certainly not powerful enough to ap-
proach problems of realistic size. We are working on the implementation of more
powerful strategies. Concerning these, we see three implications to future re-
search:

— Strategies are a means to describe methods in a way that makes them imple-
mentable. More experience has to be gained in expressing methods dealing
with the different phases of the software life cycle as strategies. This will
enhance understanding of the requirements of efficient and extensive tool
support.

— Our approach concentrates on the problems that are specific to tool support
for formal methods. Integration with CASE technology is highly desirable.
We are currently working on integration of IOSS with tools for the specifi-
cation language Z.

— Failure analysis and re-use are important to scale up the approach to realistic
examples. The development tree is a basis to tackle both and can already be
used for simple replay and re-use “as-is” techniques. More refined techniques
remain to be developed.

Acknowledgment. We thank Sabine Dick, Bernd Krieg-Briickner, Balachander
Krishnamurthy and Robert Raschke for comments on a draft of this paper.

References

1. W. Bibel and K. M. Hérnig. LOPS — a system based on a strategical approach
to program synthesis. In A. Biermann, G. Guiho, and Y. Kodratoff, editors, Au-
tomatic Program Construction Techniques, pages 69-89. MacMillan, New York,
1984.

2. M. Broy and S. Jahnichen, editors. KORSO: Methods, Languages, and Tools to
Construct Correct Software. LNCS. Springer Verlag, 1995. to appear.

3. CIP System Group. The Munich Project CIP. Volume 1I: The Program Transfor-
mation System CIP-S. LNCS 292. Springer-Verlag, 1987.

4. J. Conclin and M. Begeman. gIBIS: a hypertext tool for exploratory policy dis-
cussion. ACM Transactions on Office Informations Systems, 6:303-331, October
1988.

5. D. Craigan, S. Gerhart, and T. Ralston. An international survey of industrial ap-
plications of formal methods. Technical Report NISTGCR 93/626, National Insti-
tute of Standards and Technology, Computer Systems Laboratory, Gaithersburg,
MD 20899, 1993.

6. N. Dershowitz. The Evolution of Programs. Birkhauser, Boston, 1983.

7. M. Frohlich and M. Werner. daVinci V1.3 User Manual. Technical report, Uni-
versitat Bremen, 1994.

8. R. Goldblatt. Aziomatising the Logic of Computer Programming. LNCS 130.
Springer-Verlag, 1982.

9. D. Gries. The Science of Programming. Springer-Verlag, 1981.

10. M. Heisel. A formal notion of strategy for software development. Technical Report
94-28, TU Berlin, 1994.

11. M. Heisel, W. Reif, and W. Stephan. Implementing verification strategies in the
KIV system. In E. Lusk and R. Overbeek, editors, 9th International Conference
on Automated Deduction, LNCS 310, pages 131-140. Springer-Verlag, 1988.

12. M. Heisel, T. Santen, and D. Zimmermann. A generic system architecture of
strategy-based software development. Technical Report 95-8, Technical Univer-
sity of Berlin, 1995.

13. B. Hoffmann and B. Krieg-Briickner, editors. PROgram Development by SPECi-
fication and TRAnsformation, the PROSPECTRA Methodology, Language Family
and System. LNCS 680. Springer-Verlag, 1993.

14. B. Krieg-Briickner, W. Menzel, W. Reif, H. Ruess, T. Santen, D. Schwier,
G. Schellhorn, K. Stenzel, and W. Stephan. System Architecture Framework for
KORSO. In Broy and Jahnichen [2], 1995. to appear.

15. R. Milner. Logic for computable functions: description of a machine implementa-
tion. SIGPLAN Notices, 7:1-6, 1972.

16. L. Osterweil. Software processes are software too. In 9th International Conference
on Software Engineering, pages 2—13. IEEE Computer Society Press, 1987.

17. J. K. Ousterhout. T'¢l and the Tk Toolkit. Addison-Wesley, 1994.

18. L. C. Paulson. Isabelle: The next seven hundred theorem provers. In E. Losk and
R. Overbeek, editors, Ninth International Conference on Automated Deduction,
LNCS 310, pages 772-773. Springer Verlag, 1988.

19. C. Potts. A generic model for representing design methods. In International Con-
ference on Software Engineering, pages 217-226. IEEE Computer Society Press,
1989.

20. C. Rich and R. C. Waters. The programmer’s apprentice: A research overview.
IEEE Computer, pages 10-25, November 1988.

21. T. Shepard, S. Sibbald, and C. Wortley. A visual software process language. Com-
munications of the ACM, 35(4):37-44, April 1992.

22. D. R. Smith. Top-down synthesis of divide-and-conquer algorithms. Artificial
Intelligence, 27:43-96, 1985.

23. D. R. Smith. KIDS: A semi-automatic program development system. IEEE Trans-
actions on Software Engineering, 16(9):1024-1043, September 1990.

24. J. Souquieres. Aide au Développement de Specifications. Thése d’Etat, Université
de Nancy I, 1993.

25. J. Souquiéres and N. Lévy. Description of specification developments. In Proc. of
Requirements Engineering 93, pages 216-223, 1993.

26. D. S. Wile. Program developments: Formal explanations of implementations.

Communications of the ACM, 26(11):902-911, November 1983.

This article was processed using the BTEX macro package with LLNCS style

