YEAST-A Formal Specification Case Study in Z

Maritta Heisel Balachander Krishnamurthy
Institut fir Angewandte Informatik Software Engineering Research Dept
Technische Universitdt Berlin AT&T Bell Laboratories
Sekr. FR 5-6, Franklinstr. 28/29 Room 2B-140, 600 Mountain Ave
D-10587 Berlin, Germany Murray Hill, NJ 07974 USA
heisel@cs.tu-berlin.de bala@research.att.com
Abstract

A formal specification in the language Z of an event-action system
called YEAST is presented. Such a specification helps users of event-
action systems to a deeper understanding of the system’s features than
can be gained by natural language descriptions. Designers of such systems
can use the formal specification as a starting point for the specification
of new event-action systems. Finally, members of the formal specification
community can profit from the general lessons learnt in this case study.

1 Introduction

Yeast [KR95] is a general-purpose platform for constructing distributed event-
action applications using high-level event-action specifications. Yeast can sup-
port a wide variety of event-action applications, including calendar and noti-
fication systems, computer network management, software configuration man-
agement, software process automation, software process measurement, and co-
ordination of wide-area software development. Yeast enhances and generalizes
the capabilities of previous event-action systems in several ways—Dby support-
ing automatic recognition of a rich collection of predefined event classes, by
providing extensibility in the form of user-defined events, and by providing a
general, application-independent encapsulation of the event-action model. Yeast
is roughly 8400 lines of code including portions written in lex and yacc with the
rest in ANSI C. Yeast is used in projects within AT&T. Yeast applications
consist of a collection of specifications written to manage or automate a portion
of the task.

This paper presents a Z specification of a large subset of Yeast (only a few
features are omitted). We expect that designers and members of the formal
specification community can benefit from such an exercise. We hope it will also
be of value to Yeast application writers but this remains to be seen. A formal
specification of a system like Yeast requires a new language to be learnt by

Yeast application writers who may be reluctant to do so. However, if we can
point out the advantages of understanding the formal specification and if it is
simple enough, then we have a higher chance of impacting the Yeast application
writers.

The specification language Z [Spi92] has been chosen because Yeast is a
sequential program that maintains an internal state. Model-based languages
like Z and VDM have been especially designed for the purpose of specifying this
kind of systems. In section 2, we present the specification of the Yeast system.
We point out how such a specification can support users and designers of event-
actions systems and report on the lessons learned on the practical application
of formal specification techniques in general. We conclude with a discussion of
related work.

2 The Z specification

The specification presented here can be seen as a description of the behavior
of the system. It is intended to clarify the various client commands and the
semantics of the event language. The intricate matching process is not presented
in full detail. We do not treat error cases—their specification is straightforward.

2.1 Basic definitions

A Yeast specification has an event pattern and an action. Atomic events and
action expressions are introduced as basic types. Action expressions, which
can be composite, are treated as atomic here because it is usually a call to an
external command and outside the scope of a Yeast specification.

[EVENT, ACTION_EXP]

Events are the heart of the system. They can be temporal (TE) or non-
temporal (NTE). Temporal events can be absolute (ATE) or relative (RTE).
Non-temporal events can either be (predefined) object events (OE) or user-
defined events (UE).

TE,NTE : P EVENT
ATE,RTE : P EVENT
OFE,UE :PEVENT

(ATE, RTE, OE, UE) partition EVENT
TE = ATE U RTE
NTE = OE U UE

These events are also called primitive events. The event language of Yeast
allows one to build more complex event expressions, using the connectors then
(sequencing), and (conjunction) and or (disjunction).

EVENT_EXP ::= prim{(EVENT))
| then(EVENT_EXP x EVENT_EXP))
| and(EVENT_EXP x EVENT_EXP))
| or(EVENT_EXP x EVENT_EXP))

Of these connectives, then binds most and or binds least. Therefore, the
following distributivity laws hold:

(Aand B) then C ~ (Athen C 1
A then(B and C) A then B) and (A then C) 2
(A or B) then C A then C) or (B then C) 3

(and (B then C) (
((
((
Athen(Bor C) =~ (Athen B)or(Athen C) (4
((
((

1R

1R

(AorB)and C ~ (Aand C)or (B and C) 5
Aand(Bor C) =~ (AandB)or(AandC) 6

N N

Using these rules, each event expression can be converted into a normal form,
similar to the disjunctive normal form of formulas of first-order predicate logic.
This normal form has only or’s as leading operators, followed by only and’s and
then’s.

As an example, let us consider the event expression (e; and e) then (e3 or e4).
Its normal form can be computed as follows:

(e1 and e3) then (e3 or e4)
((e1 and ey) then e3) or ((e1 and ey) then e4)) (by 4)
((e1 then e3) and (eq then e3)) or ((e1 then eq) and (e then eq)) (by 1)

12

12

This normal form can be represented by a set of sets of sequences:
MATCH_STATUS == P(P(seq EVENT))

This defines the normal form of an event expression to be a set. In order
to fully match the event expression, one must fully match one of the elements
of the set. This corresponds to or and is thus called an or-set. One element of
such an or-set is fully matched when all of its elements have been fully matched.
This corresponds to and. Such an and-set consists of sequences of events, each
of which has to be matched for the whole event expression be be matched. The
sequences, in turn, describe the order in which primitive events have to occur to
make matching successful. The normal form thus does not represent the syntax
of event expressions but their semantics (according to the distributivity laws).
The MATCH_STATUS data structure maintains a record of the partial match
status of events (see Section 2.4).

The following function transforms an event expression into its normal form:

norm : EVENT_EXP — MATCH_STATUS

Ve:EVENT; A,B: EVENT_EXP e
norm(prim(e) = {{(e)}} A
norm(or(A, B)) = norm AUnorm B~ A
norm(and(A, B)) = {a: norm A; b: norm B e aUb} A
norm(then(A,B)) ={a:norm A; b :norm B e {s:a;t:be s t}}

For our example, the normal form looks as follows:

{{(e1, e3), (€2, e3) }, {(e1, e), (€2, €4) } }

From the above definition it follows that the normal form of an event ex-
pression cannot contain the empty sequence.

2.2 The state space

Each Yeast specification consists of an event part and an action part. It belongs
to an owner and has an associated label for easy reference. It can be suspended,
i.e. no matching is done against the events in the specification. The users can
also state that a specification is to be added again after it is completely matched
and its action is triggered. The current match status of a specification has to
be recorded. Specifications also get a time stamp when they are registered in
the system. All this information is gathered in a schema.

[OWNER, TIME, LABEIL)
YesNo ::= yes | no

__Spec
e: EVENT_EXP

a: ACTION_EXP

match_status : MATCH_STATUS
own : OWNER

label : LABEL

repeat : YesNo

suspended : YesNo

reg_time : TIME

The internal state of the Yeast system consists of three major parts:

e The specifications currently present in the system. Specifications can be
grouped together, where the group names are of type GNAME.

e The possible events. In contrast to other event-action systems user-defined
events can be added to Yeast.

e The environment in which Yeast operates. Each client command is invoked
by a user on a specific machine. The environment influences the behavior
of Yeast. In this paper, we only consider the user who invokes commands—
this information is needed for purposes of authentication.

[GNAME)

__SpecState
specs : F Spec
specMap : LABEL > Spec
groups : GNAME < LABEL

specMap = {s : specs o s.label — s}
ran groups C dom specMap

The invariant of the specification state requires that each label be unique
and that each label referred to by the relation groups belong to an existing
specification. Yeast users can define new object classes and attributes. The set
of possible events depends on the defined object classes and attributes.

[OBJECT_CLASS, ATTRIBUTE)]

__PossibleEvents
user_events : P UE

possible_events : P EVENT

attrs : OBJECT_CLASS +— F ATTRIBUTE
class : NTE +— OBJECT_CLASS

possible_events = TE U OF U user_events
dom class = OF U user—_events
ran class = {oc : dom attrs | attrs oc # S}

The predefined temporal and object events are possible events. The set
of attributes belonging to an object class are recorded in the function attrs.
The function class yields the object class to which a given non-temporal event
belongs. Each predefined object event and each user-defined event must have a
corresponding object class. If an object class has a non-empty set of attributes,
then there must be some non-temporal event referring to it.

The following function yields the set of primitive events contained in an
event expression. It is used to express the requirement that all specifications
present in the system refer only to possible events.

events == rano|Jo|Jo norm

The schema YeastState relates the two sub-states.

_ YeastState
SpecState
PossibleEvents

V s : specs o events s.e C possible_events

Initially, no specifications are registered in Yeast, and no user events are
defined.

__InitYeastState
YeastState'

specs’ = &
user_events' = &

The environment is modeled by the following schema. In reality, it consists
of many components but here we only model the invoker of the client command.

ClientCommand
Fowner : OWNER

For matching of events, it is important to know when a specification was
registered and when an event occurs. For this purpose, we use use the global
system clock. Since its value changes as time proceeds, it is modeled as a schema,
not as a variable.

GlobalSystemClock
Fcurrent_time : TIME

Looking up the system time can now be realized as an import of the above
schema.

2.3 Client commands

We present some of the heavily used Yeast client commands. First, we consider
the commands changing the SpecState sub-state of the system. In the second
part, we show how users can define new events.

addspec registers a new specification with the Yeast server. All events used
in the new specification must be possible. A new internal label is associated
with the new specification by the system. It is the output of this operation. If
group name(s) arguments are given, the specification is added to the specifica-
tion group(s) as well. Plain variables refer to the state in which an operation

is started. Variables decorated with “/” refer to the state after the operation is
completed. “A” means that the respective state may change, whereas “=” indi-
cates that the state does not change. Inputs are decorated with “?”, outputs are
decorated with “!”. “3J Spec” is an abbreviation for an existential quantification
over all variables declared in the schema Spec. These are combined to form an

item of type Spec using the 6 operator.

__addspec
ClientCommand
GlobalSystemClock
A YeastState

= PossibleEvents
r?: YesNo

gs? :F GNAME
e?: EVENT_EXP
a? : ACTION_EXP
{!: LABEL

events e? C possible_events
3 Spec o

label ¢ dom specMap A
e =¢€e? A a = a? A match_status = norm e? A
own = owner A repeat = r? A suspended = no A
reg_time = current_time A ! = label A
specs' = specs U {0Spec} A
groups' = groups U {g : gs? e g — label}

Isspec returns the list of specifications owned by a user.

__lsspec
ClientCommand
= YeastState
speclist! : iseq Spec

ran speclist! = {s : specs | s.own = owner}

The following client commands have as their input either a group name
or a (nonempty) set of labels. Their disjoint sum is defined as the free type
SPECREF.

SPECREF ::= lab((F, LABEL)) | gr{(GNAME))

Each of the following client commands has the same precondition. If a group
name is given as an input, it must be the name of an existing group. If a set
of labels is given, all its members must be labels of existing specifications. The

client executing the commands must be the owner of all specifications referred
to. In order not to repeat this precondition for each client command, we express

it in a schema.

__ Precond
ClientCommand
SpecState

sr? : SPECREF
Is:F LABEL

ss : F Spec

Is = if sr? € ran gr then groups({gr~(sr?)}) else lab™(sr?)
Is # 3 A ls C dom specMap
ss = {s : specs | s.label € Is}
Vs :sses.own = owner

rmspec removes one or more specifications from the system, referred to by
labels or a group name.

__rmspec
ClientCommand
A YeastState

= PossibleEvents
sr?: SPECREF

Jls: F LABEL; ss : F Spec | Precond e
specs' = specs \ ss A groups’ = groups & s

We now introduce some auxiliary schemas on specifications. Most client
commands only change one or two components of a specification.

__SpecOp
ASpec

e =eANa =aANown = own A label' = label A repeat’ = repeat

NonMatchOp = [SpecOp | match_status' = match_status A
reg_time' = reg_time]

SpecSuspend = [NonMatchOp | suspended’ = yes]

SpecFg = [NonMatchOp | suspended’ = no)

Specifications can be suspended and resumed by giving labels or group

names.

__suspspec
ClientCommand
A YeastState

ZPossibleEvents
sr?: SPECREF

Jls: F LABEL; ss : F Spec | Precond e
specs’ = (specs \ ss) U {SpecSuspend | 6 Spec € ss e §Spec'}
groups’' = groups

__fgspec
ClientCommand
A YeastState

= PossibleEvents
sr? : SPECREF

Jls: F LABEL; ss : F Spec | Precond e
specs' = (specs \ ss) U {SpecFq | 8Spec € ss @ §Spec’}
groups’ = groups

defobj and defattr change the set of possible events. defobj defines a new
object class and defattr associates new attributes with existing object classes.
The function mk_events yields the new set of user-defined events associated
with a new attribute and an object class. Note that this function is total and
injective.

| mk_events : OBJECT_CLASS x ATTRIBUTE ~— P UE

__defobj
A YeastState
=SpecState

oc? : OBJECT_CLASS

oc? ¢ dom attrs
possible_events' = possible_events
attrs’ = attrs U {oc? — &}
class’ = class

__defattr
A YeastState
=SpecState
oc? : OBJECT_CLASS
a? : ATTRIBUTE

oc? € dom attrs A a? ¢ attrs oc?

user_events' = user_events U mk_events(oc?, a?)
attrs' = attrs @ {oc? — attrs oc? U{a?}}

class' = class U {ue : mk_events(oc?, a?) @ ue — oc?}

From the injectivity of mk_events and the precondition a? ¢ atirs oc? it
follows that class’ remains a function.

2.4 Matching

Two kinds of matching semantics are applied in Yeast: For announced events or
temporal events that are monotonically increasing, sticky matching is applied:
once an event is matched it stays matched forever. For the other events, this is
not possible. In an and expression, both parts must match at the same time.
If only one part matches, it has to be re-considered until both parts match.
Therefore, we need two sets of matching functions, one for sticky matching, the
other for transient matching. Both of them are defined on the normal forms of
event expressions (see Section 2.1).

The following definition introduces two predicates. The first one states that
there is a binary relation on pairs of primitive events and times, called matches.
The predicate (e,, t,)matches(e,, t.) states that if event e, occurs at time ¢,, it
matches the event e, which was registered at time ¢,.

The second relation holds between sets of event-time pairs. Its first argument
is a set of primitive events known to have occurred at a given time. The second
argument is a set of primitive events registered at a given time. The predicate
is true if for each registered event there is an occurring event that matches it.

matches : (EVENT x TIME) < (EVENT x TIME)
_set_matches_ : P(EVENT x TIME) <> P(EVENT x TIME)

Y occurs, looked_for : P(EVENT x TIME) e
(occurs set_matches looked_for <
(Vet : looked_for e (T et : occurs o et’ matches et)))

‘We must now distinguish between events that are sticky matched and those
that are matched transiently. For user-defined events sticky matching was a
design decision, but transient matching is not reasonable for monotonically in-
creasing entities like time.

10

sticky_events : P EVENT
TE U UE C sticky_events

Apart from temporal and user-defined events, certain object events that are
based on time (time stamps on file modification, for example) are also sticky
matched.

In sticky matching, to match an or-set, each of the and-sets it contains must
be considered. To match an and-set, we must consider all the sequences it
contains. The head of each sequence represents an event we are looking for.
If the sticky event matches the head of one of the sequences, the head of the
sequence is discarded due to sticky matching. If this makes the sequence empty,
the whole sequence is removed from the and-set because the corresponding then
expression is fully matched. These steps are defined using the function prune. If
the head of a sequence does not match the occurring event, it is left unchanged.

An event expression is fully matched when its corresponding match status
contains the empty set. This means that one and-set has been fully matched
(all the sequences contained in the and-set have been removed).

prune : P(seq EVENT) — P(seq EVENT)

sticky_match_and : (EVENT x TIME)
x (P(seq EVENT) x TIME) — P(seq EVENT)

sticky_match_or : (EVENT x TIME)
X (MATCH_STATUS x TIME) — MATCH_STATUS

Sfully_matched— : P MATCH_STATUS

Ve: EVENT; as : P(seq EVENT); os : MATCH_STATUS;
to,t, : TIME e
prune as = tail(as) \ {()} A
sticky—match_and((e, t,), (as, t,)) =
(let mas == {s: as | (e, t,) matches (head s,t,)} ®
(as \ mas) U prune mas) A
sticky—match_or((e, t,), (08, t))
= {as : os e sticky_match_and((e, t,),(as,t.))} A
fully_matched os <& D € os

For our example of Section 2.1, let us assume that the time the specification
was registered is ¢, and that e; is a sticky matched event. When an event e
occurs at time t, such that (e, t,) and (e, t,) match, the resulting match status
looks as follows:

{{<63), <62a 63)}3 {(64), <623 64)}}

In each of the two and-sets and each of the sequences e; has been removed
because it has matched and stays matched. If e; matched next, it would also

11

be removed from the match status, resulting in {{(e3)}, {(es4)}}. This means we
wait for e3 or e4 to be matched.

If, however, e; and e3 matched simultaneously, both of them would be re-
moved from the match status, resulting in the same match status as if only e,
had matched: {{(e3)},{(es)}}. This means that es has to be matched once
more at a later time in order to fully match the event expression.

The transient matching case must match sets of events in order to determine
if two or more events are matched at the same time (to match event pattern
with the combinator and). Therefore, the second arguments of match_and and
match_or are sets of events instead of single events.

transient_match_and : (P EVENT x TIME)
x (P(seq EVENT) x TIME) — P(seq EVENT)

transient_match_or : (P EVENT x TIME)
X (MATCH_STATUS x TIME) — MATCH_STATUS

Ves:PEVENT; as : P(seq EVENT); os : MATCH_STATUS,
to,t, : TIME e
transient_match_and((es, t,), (as, t,)) =
(if {e: es o (e, t,)} set_matches {s : as ® (head s, t,)}
then prune as else as) A
transient_match_or((es, t,), (08, t.))
= {as : os e transient_match_and((es, t,), (as, t,))}

Like sticky matching, all and-sets contained in the match status have to be
considered. To match an and-set, all the heads of all the sequences contained
in it are considered. If all of these are matched by one of the occurring events
they are removed. Otherwise the and-set stays as it is.

For our example, let us now assume that e; is not a sticky matched event.
Then, a match is only possible if both e; and e, are matched by one of the
occurring events. The resulting match status would be

{{{es)}, {(ea)}}

We are now waiting for ez or e4 to occur which will fully match the event
expression.

To define the operations dealing with matching, we need an auxiliary schema
stating that matching leaves everything unchanged except the match status and
the time of registration of a specification. Moreover, we define the effect of sticky
matching on a single specification. A specification that is not suspended and
is not yet fully matched is retained, however with a possibly different match
status, as defined by sticky_match_or. A specification with a repeat-flag that
is fully matched must again be registered.

SpecMatch = [SpecOp | suspended’ = suspended)]

12

—_SpecSticky
GlobalSystemClock
SpecMatch

e?: EVENT

suspended = yes =
match_status’ = match_status A reg_time' = reg_time

suspended = no =
(let ms == sticky_match_or((e?, current_time),
(match_status, reg_time)) o
= fully_matched ms N match_status’ = ms A
reg_time' = reg_time
V
Jully_matched ms N repeat = yes A match_status’ = norm e
A reg_time' = current_time)

The execution of an action can cause further events to occur. The following
function yields the set of events invoked by execution of an action.

| generate_events : ACTION_EXP — P EVENT

The next operation defines how an event announcement is treated. The
output of this operation is the set of events that will be generated by the invoked

actions.

— ProcessStickyEvent
GlobalSystemClock
A YeastState

= PossibleFEvents
e?: EVENT
es!:PEVENT

e? € possible_events N sticky_events

groups’ = groups

specs' = {SpecOp | 6.Spec € specs N SpecSticky e 6Spec'}

groups' = groups

es! = J{s: specs | s.suspended = no A
fully_matched (sticky_match_or((e?, current_time),

(s.match_status, s.reg_time))) o

generate_events(s.a)}

The client command Announce is just ProcessStickyEvent, where e? € UE.
The treatment of non-announced events is similar, except that sets of oc-
curring events have to be considered and the transient matching functions are

applied.

13

__SpecTransient
GlobalSystemClock
SpecMatch

es? : P EVENT

suspended = yes =
match_status’ = match_status A reg_time' = reg_time

suspended = no =
(let ms == transient_match_or((es?, current_time),
(match_status, reg_time)) o
= fully_matched ms N match_status’ = ms A
reg_time' = reg_time’
V
Jully_matched ms N repeat = yes A match_status’ = norm e
A reg_time' = current_time)

—_ ProcessTransientFvents
GlobalSystem Clock

A YeastState
ZPossibleEvents

es? : P EVENT
es!:PEVENT

es? C (possible_events \ sticky_events)
groups’ = groups
specs’ = {SpecOp | 6.Spec € specs N SpecTransient o §Spec’}
groups' = groups
es! = J{s: specs | s.suspended = no A
fully_matched(transient_match_or((es?, current_time),
(s.match_status, s.reg_time))) o
generate_events(s.a)}

For better performance, the system removes specifications which are known
to be unmatchable. Examples of unmatchable events are those that are to be
matched in the past or contradictory events that are combined with and. Like
matching, the unmatchability of event expressions is defined inductively over its
match status or normal form. The predicate unmatchable_prim(e,t,,t.) means
that the event e which was registered at time ¢, is unmatchable at time t..
We do not fully define unmatchability for primitive events or when events are
contradictory.

14

unmatchable_prim_: P(EVENT x TIME x TIME)
contradictory_ : P(P(seq EVENT) x TIME x TIME)
unmatchable_and_ : P(P(seq EVENT) x TIME x TIME)
unmatchable_ : P(MATCH_STATUS x TIME x TIME)

Vms : MATCH_STATUS; as : P(seq EVENT); ¢ : EVENT;
t.t.: TIME e
(unmatchable_and(as, t,, t.) <
(Is:ase(Ie :rans e unmatchable_prim(e’,t.,t.))) V
contradictory(as, t,, t.)) A
(unmatchable(ms, t,,t.) <
(Vas' : ms & unmatchable_and(as’, t,,t.)))

With these definitions, the specification of the operation to remove unmatch-
able specifications is straightforward.

__ RemoveUnmatchableSpecs
GlobalSystem Clock

A YeastState

A SpecState

= PossibleEvents

groups' = groups
specs' = specs \ {s : specs | s.suspended = no A
unmatchable(s.match_status, s.reg_time, current_time)}

The above specification illustrates quite clearly how Yeast and similar event-
action systems work. The matching process is fully defined once it is clear when
primitive events match. The formal specification is significantly shorter than
the program code. To answer questions regarding the system, it may be easier
to consider the formal specification than to scan the program code.

3 Assessment of the formal specification

Apart from gaining deeper insight into principles of event-action systems the
formal specification can be of further use in the future to application writers
as well as designers of event-action systems. It contributes to the ongoing dis-
cussions on places where formal specifications are feasible and useful and how
formal specification techniques can achieve a more wide-spread use in the future.

The specification has already been used to investigate the principles of soft-
ware architectures in that an architectural style has been made concrete in the
form of a formal specification [HK95]. We believe that other kinds of architec-
tural styles can be treated similarly, with the same benefits as for event-actions
systems.

15

3.1 Usefulness of the formal specification for users and
application writers

While applications that involve a dozen or so Yeast specifications are quite man-
ageable in a semantic sense, i.e., the interactions between the event patterns in
the specifications can be easily understood, larger applications are not amenable
to straightforward analysis. Often, the inner workings of Yeast are hidden from
the application writers. While this is useful in many cases, there are occasions
when serious application writers need to understand the precise semantics of
Yeast in order to take advantage of its features and to verify their interpreta-
tion of Yeast semantics. A formal specification of Yeast yields precisely this
clearer understanding in a mathematical sense.

The above specification can be used to show concrete facts about Yeast!'.
Simple facts are, for example, that addspec and rmspec are inverses of each
other:

(addspec 5 rmspec) | sr? = lab({l!}) F E YeastState

The relation between suspspec and fgspec can be expressed similarly. More
interesting facts can be derived by considering the matching operations. Here,
we can show that (i) announced events cannot be withdrawn, and (ii) events
are not kept. Once they occur, they are used immediately and then discarded.

Fact (i) follows from the definition of sticky matching, see ProcessStickyFEvent.
Once an event is announced all non-suspended specifications are considered to
see if they are “waiting” for the event. If this is the case, the matching is per-
formed and the corresponding part of the match status is discarded. There are
no operations to undo this. Fact (ii) follows from the definition of both event
processing schemas. The events that occur are only an input that is used for
matching. There is no means to store the occurring events. If an event is an-
nounced and there is no specification “waiting” for it, the event is “lost”, i.e.
the situation is no different from the one where it had not been announced.
This deduction is based on the assumption that there are no “secret” storage
possibilities that we did not include in the formal specification.

These facts are of much importance to application writers and users. Let us
suppose we want to use Yeast for monitoring a software maintenance process.
This can be done by defining an attribute debugged on the object class file which
is a boolean value. The persons who carry out the debugging will announce that
their file is debugged when they consider their task as finished. If, however, some
time later they discover an error and announce that the file is not debugged any
more, Yeast cannot take notice of this new situation because of fact (i). This
is important to know not only for application writers, but also for persons who
only use predefined applications. For more details of this example, see [IKY93].

1This is based on the assumption that the formal specification indeed captures Yeast’s
behavior in a correct and sufficiently complete way.

16

3.2 Usefulness of the formal specification for designers

The formal specification makes the underlying design principles of event-action
systems more explicit. The important points to be considered while designing
and implementing such systems are identified. Designers can easily locate the
criteria of interest in the formal specification which should guide them in their
implementation. The specification can be used as a “template” for future event-
action systems. Each design decision that was taken for Yeast (e.g. to have a
mixture of sticky and transient matching) can be questioned, and the specifica-
tion can be modified accordingly. Our formal specification helps to disseminate
and make explicit the design knowledge that has been assembled during several
years. It will continue to be useful for designers by serving as a verification
mechanism after completion of the realization.

The specification can also help in the understanding of other event-action
systems since they are based on similar concepts. Besides making those con-
cepts explicit, it can also be used to generate test cases that help discover the
properties of the system to be analyzed.

3.3 General lessons learned on formal specification

The formal specification community can benefit from looking at our specifica-
tion of a practical usable tool in use in an industrial setting. Being able to
locate properties quickly for future realizations of event-actions systems gives
an impetus to create formal specifications of applications where none exist.

Several points can be made concerning the application of formal specification
techniques in general:

o It is useful to specify already existing systems. Such a specification cannot
guide the implementation but gives a documentation of the system that
can be used further in many ways. This is demonstrated by the points
made in Sections 3.1 and 3.2.

e Formal specification techniques should be applied in a pragmatic way: if
the specification cannot be expressed at a higher level of abstraction than
the code then there is no point in writing it, at least if the code already
exists.

e The formal specification is much more concise than the program text.
Partially, this may be due to the fact that we did not insist on including
every detail in the formal specification. The conciseness refutes one of the
arguments occasionally made against formal specifications, namely that
they are as long and as unreadable as the program source.

e To set up the formal specification, considerably less time and effort was
needed than for the implementation. This shows that formal specification
is not only interesting for safety-critical systems where costs are not a

17

problem. For non-critical systems like Yeast their application is feasible
because the costs are not exceedingly high, at least if the persons applying
the formal methods are sufficiently trained.

e For Yeast, we have the ideal case that the program and its documentation
were written by the same persons. This is not true for the majority of
software systems. Quite often the user manuals are not written by the
implementors. In this case, the formal specification is a much better basis
for the user manual than the program code? because it is not only much
shorter but also more abstract: the formal specification concentrates on
those aspects of the system that are relevant for its behavior; implemen-
tation details are not shown. For the future, one might even consider to
store a formal specification in addition to manual pages. If on-line expla-
nations can be generated from the formal specification we may be able to
reduce the effort to create manual pages.

We modeled some of the information the program needs to work correctly
from the environment not by inputs but by a schema (ClientCommand) of which
only the undecorated version is imported. We deliberately did not specify any
changes to the environment. From a logical point of view, this is equivalent to
modeling with inputs. From a pragmatic point of view, this indicates that no
user input should be required for the components of the environment schema.
Instead, the system is to use information that is available internally.

4 Related work and conclusions

The specification language Z we used for this case study has gained consider-
able acceptance in academia as well as in industry. Of the twelve industrial
projects reviewed by Craigan, Gerhart and Ralston [CGR93], four used Z, all
within the commercial cluster. In several of the projects, including the work
presented here, an already existing system was specified. Mostly this was done
for the purpose of re-engineering the system. It appears that the usefulness of
formal specifications is seen only when there is some trouble in maintaining and
developing the existing system further.

The re-engineering aspect is also of importance to Yeast. Currently, a con-
current version of Yeast is under development. The formal specification of Sec-
tion 2 will be used to contrast the sequential and the concurrent version and to
support design decisions for the latter.

In contrast to the industrial case studies described in [CGR93], our specifica-
tion does not only support re-engineering and maintenance, but is a representa-
tion of general design and architectural knowledge. As far as design knowledge

2User manuals will make use of informal specification and design documents which can be
ambiguous; the clarification can be provided via the formal specification or the program code.

18

is concerned, Jacky [Jac95] has similar aims. His Z specification of a medical
device was written to serve as a starting point for the specification of other
safety-critical control systems. Our investigation of architectural styles [HK95],
which was a strong motivation to conduct this case study, goes much further.

Acknowledgments

We thank Emden Gansner, Peter Mataga and Thomas Santen for their useful
suggestions.

References

[CGR93] Dan Craigan, Susan Gerhart, and Ted Ralston. An international sur-

[HK95]

[IKY93]

[Jac95]

[KRY5]

[Spi92]

vey of industrial applications of formal methods. Technical Report
NISTGCR 93/626, National Institute of Standards and Technology,
Computer Systems Laboratory, Gaithersburg, MD 20899, 1993.

Bi-directional approach to modeling architectures, July 1995. Maritta
Heisel and Balachander Krishnamurthy, Submitted to ICSE-18.

Paola Inverardi, Balachander Krishnamurthy, and Daniel Yankele-
vich. Yeast: A case study for a practical use of formal methods.
In TAPSOFT ’93: Proceedings of the 5th International Joint Confer-
ence on Theory and Practice of Software Development, pages 105—120.
Springer-Verlag, April 1993. Published as Lecture Notes in Computer
Science no. 668.

Jonathan Jacky. Specifying a safety-critical control system in Z. IEEE
Transactions on Software Engineering, 21(2):99-106, February 1995.

Balachander Krishnamurthy and David Rosenblum. Yeast: A general
purpose event-action system. IEEFE Transaction on Software Engi-
neering, 1995. To appear.

J. M. Spivey. The Z Notation: A reference manual. Prentice Hall,
Englewood Cliffs, NJ, 1992.

19

